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ABSTRACT 

Increasing urbanization is a global phenomomen that has led to numerous urban problems, 

including air pollution and traffic noise. Urban forests are important, therefore, because they are 

able to effectively alleviate such unsustainable problems. Systematic analyses of spatial 
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differences in urban forest coverage (UFC) and the factors that influence this cover type, however, 

need to be further explored within Chinese cities, especially on the basis of spatial data. The 

intensity gradient (IG) method was applied in this study to identify urban areas across China using 

Defense Meteorological Satellite Program (DMSP)/Operational Linescan System (OLS) data. 

Urban forests were then extracted from the global land cover dataset GlobeLand30 to enhance 

comparability of this land cover type between cities. The factors influencing spatial differences in 

UFC in 286 major Chinese cities were then detected using a geographical detector method, an 

approach which differs from the more traditional use of multiple regression as it better illustrates 

the explanatory power of variables and their interactions. The results of this study reveal that 

average UFC across China was 19.7% in 2010 and that clear differences were present between 

south China (27.6%) and north China (11.1%). The factors underlying UFC differences between 

Chinese cities are complicated; data show that biogeoclimatic factors have exerted the greatest 

impact while the effects of socioeconomic factors have generally been weak. The impact of 

variables interacting with one another has also tended to be stronger than the influence of single 

factors. The results presented here also imply that there were no significant spatial differences in 

average UFC between cities with the title Chinese ‘National Forest City’ (NFC) and others.  

Keywords: Urban Forest Coverage, Major Chinese cities, Influencing factors, Geographical 

detector method 

Abbreviations: UFC: urban forest coverage; NFC: National Forest City; IG: intensity gradient; 

DMSP/OLS: Defense Meteorological Satellite Program/Operational Linescan System 
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1. Introduction 

Urbanization is increasing globally (United Nations, 2018). Indeed, the global urban 

population rose rapidly from 751 million people to 4.2 billion people between 1950 and 2018; 

estimates suggest that by 2050, 6.7 billion people will live in urban areas (United Nations, 2018), 

accounting for 68% of the global population. Rapid urban population growth has also led to 

numerous unsustainable problems, including reduced biodiversity, deteriorating air quality, and 

reductions in the amount of green spaces (Bonneau et al., 2018; Guetté et al., 2017; Lin and Zhu, 

2018; Shahbaz et al., 2017; Xu et al., 2018; Yang et al., 2018). 

Urban forests (Carter, 1994; Endreny, 2018; FAO, 2016), including residential trees and 

forests in parks, are known to be able to effectively alleviate these urban problems (Carreiro and 

Zipperer, 2008; Endreny, 2018; FAO, 2016; Konijnendijk van den Bosch et al., 2004; Kraxner et 

al., 2016; Patarkalashvili, 2017; Sundara et al., 2017). For example, they mitigate air pollution by 

absorbing gaseous compounds (Nowak et al., 2018; Yang et al., 2005), reduce the greenhouse 

effect via carbon sequestration (McPherson, 2007; Zhang et al., 2015), reduce noise (Samara and 

Tsitsoni, 2011), provide the shade for residents, and reduce air temperatures via transpiration 

(Greene and Millward, 2017). They also provide shelters for animals within cities and therefore 

alleviate biodiversity losses in urban ecosystems (Alvey, 2006), have been shown to be important 

for both the mental health and social cohesion of urban residents (Annerstedt et al., 2012; Nesbitt 

et al., 2017), and have economic benefits (Endreny, 2018). These positive effects cannot be 

replicated by other kinds of vegetation within urban areas. One study on the effects of tree shade 

and grass on local temperatures within a UK urban area showed that while the grass exerted a 

minimal effect on local temperatures, tree shade was able to reduce this variable by between 5°C 
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and 7°C, while also enabling effective global and local cooling (Armson et al., 2012). Urban 

forests impart significant benefits to city dwellers; for this reason, the theme of ‘Forests and 

Sustainable Cities’ was chosen to mark the 2018 International Day of Forests (FAO, 2016). 

 As urban forest coverage (UFC) varies markedly between different cities, it is important to 

develop an understanding of both its spatial distribution and the factors that influence this variable 

if we are to more effectively sustain and increase UFC (Chen and Wang, 2013). A range of 

different methods have been used in research to date to map urban forests, including remote 

sensing (Canetti et al., 2018; Myeong et al., 2001; Walton et al., 2008) and the application of 

modern technologies such as unmanned aerial vehicles (Kulhavy et al., 2016). Most studies based 

on spatial data to date, however, have been assessed within a single city (Canetti et al., 2018) and 

it has proved challenging to define urban areas on a global scale because of their varied definitions 

(Zhou Yixing and Yulong, 1995). China, for example, usually defines the scope of urban areas 

according to administrative units in statistical materials (Zhou Yixing and Yulong, 1995). 

Numerous studies have nevertheless attempted to find the factors that influence UFC. The 

germination and growth of trees are determined by biogeoclimatic conditions (Chen and Wang, 

2013; Nowak et al., 1996). For example, Nowak et al. (1996) showed that UFC in the United 

States is mainly influenced by the biogeoclimatic environment and is the highest in cities 

developed in naturally forested areas, followed by grassland counterparts and then desert 

agglomerations. As important components of the urban landscape (FAO, 2016), urban forests are 

also influenced by a range of socioeconomic factors; increasing population levels compact urban 

landscapes and tend to mean that forested areas are replaced by buildings, roads, and other 

artificial areas (Tyrväinen, 2001). In one earlier study, Fuller and Gaston (2009) were able to 
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demonstrate a decline in green space coverage across European cities as population density 

increased. However, as green space coverage declines in urban areas, increasing income and 

consumption levels can raise the demand for urban forests (Endreny, 2018; Gerrish and Watkins, 

2018; Zhu and Zhang, 2008). For example, Zhu and Zhang (2008) demonstrated that a 1% 

increase in income within the United States led to a concomitant 1.76% increase in demand for 

urban forests. Besides income, race (Watkins and Gerrish, 2018) and education (Krafft and Fryd, 

2016; Nesbitt et al., 2019) can also influence the distribution of urban forests. Those white 

Americans and residents with higher levels of education were more likely to have more access to 

urban forests in US cities (Krafft and Fryd, 2016; Watkins and Gerrish, 2018). Other complicated 

factors were also considered in some studies, such as historical legacy (Boone et al., 2010; Roman 

et al., 2018) and the lifestyle characteristics of neighborhood residents (Roy Chowdhury et al., 

2016). 

China is experiencing the fastest urbanization rate anywhere in the world (Muldavin, 2015; 

United Nations, 2018). The national urban population is projected to reach one billion people by 

2030 (Muldavin, 2015). Thus, in response to the increasing ecological problems caused by this 

rapid urbanization process, the Chinese government launched the ‘National Forest City’ (NFC) 

programme in 2004, and granted the first NFC title to Guiyang, a city in southern China. (Bureau, 

2007; FAO, 2016). According to the programme, the UFC of cities with the NFC title should be 

higher than 30% in northern China and 40% in southern China, to restore and improve the natural 

ecosystems between urban and rural areas, and provide a close-to-nature path for dwellers (FAO, 

2016). Since 2013, nearly 20 cities per year were newly awarded the NFC title. As of 2017, 137 

cities have been granted an NFC title. Earlier research on urban forests within China mainly 
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emphasized ecological structure and function (Jim and Chen, 2009; Yan and Yang, 2017; Zhang et 

al., 2015), including encapsulated species diversity (Yan and Yang, 2017), carbon storage and 

sequestration functions (Liu and Li, 2012; Zhang et al., 2015), and the reduction of air pollution 

(Yang et al., 2005). The distribution of urban forests and its influential factors need to be further 

systematically analyzed in China with a large geographical scope. The objectives of this research 

were to:  

 

 Extract urban forest area data with enhanced comparability between cities; 

 Analyze the UFC spatial distribution within Chinese major cities, and; 

 Systemically analyze the impact of biogeoclimatic and socioeconomic factors on UFC 

within China using a geographical detector method. Meanwhile, as a dummy variable to 

represent the influence of policy, the NFC programme was also assessed. 

2. Methods 

2.1. Data 

2.1.1. Study area 

In this study, 286 major cities were selected to examine the urban forest spatial differences 

within China, including four direct-controlled municipalities and 282 prefecture-level entities in 

the mainland.  

2.1.2. Urban areas and urban forests 

Data for urban areas and urban forests were extracted from a DMSP/OLS nighttime lighting 

image and GlobelLand30 dataset for 2010. DMSP/OLS nighttime lighting data was downloaded 

from the National Geophysical Data Center (NGDC) website of the National Oceanic and 

Atmospheric Administration (NOAA), as obtained by the Defense Meteorological Satellite 
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Program (DMSP) F18. This image excludes the effects of sunlight and moonlight on the data as 

well as that of clouds, has a 1 km spatial resolution, and covers almost all areas on Earth where 

human activity is seen (Xiang and Tan, 2017). On this image, each pixel is denoted by a digital 

number (DN value) between zero and 63 which refers to average light intensity. 

GlobeLand30 is a land cover dataset at 30 m spatial resolution derived from Landsat 

TM/ETM+ and Chinese HJ-1 satellite images with a pixel-object-knowledge (POK)-based 

operational mapping approach (Chen et al., 2017a). It can be downloaded from the National 

Geomatics Center of China (NGCC). Numerous scholars have verified that the overall 

classification accuracy of this data is greater than 80% (Chen et al., 2017a); forests are defined as 

land with more than 30% tree canopy cover (Chen et al., 2017b) with the accuracy of 89% in 

2010. 

 

2.1.3. Proxy variable sources 

Precipitation and temperature data were obtained from the China Meteorological Data 

Service Center (CMDC) at a 0.5° × 0.5° spatial resolution. Elevation data were extracted from 

Shuttle Radar Topography Mission (SRTM) digital elevation model (DEM) data at a 90 m spatial 

resolution as, provided by the National Aeronautics and Space Administration Jet Propulsion 

Laboratory (NASA-JPL), while socioeconomic datasets were obtained from the China City 

Statistical Yearbook in 2011 (NBSC, 2011) and included urban population density, total city 

populations, urbanization level, urban per capita GDP, and secondary industry share.  
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2.2. Methods 

2.2.1. Urban forest extraction 

Figure 1 presented that the extraction of urban forests mainly covered two steps: 1) Extract 

urban areas; 2) Extract urban forests by the mask of urban area polygon from forest cover data.  

Fig.1 

Urban areas were extracted using the IG method (Tan, 2017). IG is defined as the maximum 

rate of change in nighttime light from the cell to its neighbors across the corresponding spatial 

distance, and was expressed using the angle of slope (θ). The IG method mainly comprises two 

steps: 1) Use of DMSP/OLS nighttime light data to extract an area with an angle of slope (θ) 

greater than 89.85° to define urban boundaries, and; 2) Extracting central portions of lit area with 

DN values greater than 30, in order to avoid the loss of some areas which have complicated spatial 

distribution and unclosed boundaries, especially large coastal cities, when converted into polygon 

features using the software ArcGIS (Tan, 2017). The urban areas identified using this approach are 

shown in Fig. 2. It is noteworthy, however, that the approach used here is based on the assumption 

that there is a border around urban areas at which nighttime light intensity (NTLI) value changes 

sharply because of vast differences in this variable between a city and its surrounding areas.  

Fig.2 

Urban forests were then extracted using the “extract by mask” tool in the software ArcGIS. 

2.2.2. Potential driving factors and proxies 

Values for UFC (%) discussed in this article refer to the percentage of urban forest areas 

versus the total urban areas. As discussed, the aim of this study was to develop an explanatory 
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framework for UFC differences between Chinese cities based on previous studies (Chen and 

Wang, 2013; Fuller and Gaston, 2009; Gerrish and Watkins, 2018; Iverson and Cook, 2000; 

Nowak et al., 1996; Zhu and Zhang, 2008). The framework developed here encompassed 

biogeoclimatic factors as well as socioeconomic ones which describe the characteristics of each 

city alongside political factors. 

Biogeoclimatic factors 

As forest growth bears a close relationship with biogeoclimatic factors (Nowak et al., 1996), 

precipitation (Pre), temperature (Tem), and elevation (Ele) were all used as proxy variables to 

represent biogeoclimatic conditions (Fig. 3). In order to be useful within a geographical detector 

model, proxy variables need to be stratified. Thus, precipitation, temperature, and elevation were 

stratified according to the climate division reference for China (Zheng et al., 2010) (Fig.4). 

Socioeconomic factors 

As constituent parts of urban systems, urban forests are affected by both urban areas and 

human populations within these regions, as shown in the cases of European cities (Fuller and 

Gaston, 2009), tropical Southeast Asian cities (Richards et al., 2017), Chinese cities (Dou and 

Kuang, 2020; Song et al., 2019), and New York City (Grove et al., 2014). The city size can be 

measured by urban population (UN-DESA, 2018); the urbanization level is the percentage of 

urban population in the total population of a city; and the urban population density, which is a 

measurement of population per unit area, can reveal the pressure on land that may result in 

changes in land use structure (Li et al., 2015). Therefore, city size variables (Size) as well as those 

for urbanization levels (Urban_L) and population density (Upop_D) were all utilized to reflect the 

characteristics of cities.  
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Economic factors were also considered as independent variables in this analysis, as more 

revenue is allocated to urban forests in more prosperous cities (Warren et al., 2011), and higher 

income levels lead to increased demand for urban forests and green spaces in some cases (Zhu and 

Zhang, 2008). GDP per capita (GDP_per) was therefore selected as an appropriate proxy variable 

to reflect the level of economic development. It is also the case that the share of secondary 

industry comprising manufacturing and construction industry in overall GDP can exert an 

influence on urban forests because industrial zones take up a large proportion of urban areas 

(Canetti et al., 2018). Moreover, policies play an important role in both urban planning and spatial 

patterns (Conway and Urbani, 2007). Thus, considering data accessibility and comparability 

across cities, we designed a dummy variable, ‘NFC’, and denoted cities as either NFC, or not.  

These above proxy variables were used to explain the UFC differences between the cities 

assessed in the study (Fig. 3). Similarly, according to the demand of a geographical detector 

model, city size was stratified according to the new national standard classification for this 

variable (QI et al., 2016). Urbanization level, urban population density, GDP per capita, and the 

secondary industry share were all stratified on the basis of Natural Breaks in the software ArcGIS; 

Natural Breaks were used to minimize the average deviation of each class from its mean while 

maximizing its deviation from those of other groups (Jenks, 1967), thus avoiding any human-

made interference (Liu and Yang, 2012). The discretized variables used in this study are shown in 

Fig. 4. 

Fig.3 

Fig.4 

Jo
ur

na
l P

re
-p

ro
of



 

11 

 

2.2.3. Geographical detector 

The geographical detector was used in this analysis to detect the factors influencing 

differences in UFC based on the assumption that if an independent variable has an important 

influence on its dependent counterpart then similarities in their spatial distribution should also be 

evident (Wang and Hu, 2012; Wang et al., 2016a). This similarity is expressed using the value of q 

within the range [0, 1]; thus, when q-statistic value approaches 1, the explanatory power of the 

proxy variables to UFC is stronger. Similarly, this power is weaker when q is closer to 0, as 

follows: 

2

2

1




N

N
q

L

h hh
    . 

In this expression, China is composed of N units and is stratified into h = 1, 2 … L strata. In 

addition, Nh denotes the number of units in stratum h, while σ2 and σh
2 denote UFC variance in 

population and stratum h, respectively. 

The geographical detector can also be used to determine the interaction intensity between 

different proxy variables (Xa and Xb) (Wang et al., 2010) which can then be classified into five 

types (Table 1). The q value of the interaction (q (Xa∩Xb)) is then obtained via a new polygon 

distribution formed by merging the layers of the two variables Xa and Xb; this is then compared 

with q (Xa), q (Xb), and (q (Xa∩Xb) to detect interaction intensity (Table 1). 

Table 1.  

The geographical detector has been used in a range of studies to detect influential factors 

(Wang et al., 2018; Zhang and Zhao, 2018; Zhou et al., 2018). This approach was used here to 

detect the impact and interactions of the nine proxy variables on UFC differences across cities. 

This method was chosen because, in the first place, stratified independent variables enhance the 
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representation of a sample unit and so afford a greater level of statistical accuracy compared to 

other models at the same sample size (Wang et al., 2010). Secondly, the use of a q-statistic value 

enables a higher level of explanatory power but does not require the presence of a linear 

relationship between independent and dependent variables (Wang et al., 2010). Third, the 

geographical detector is able to determine the true interaction between two variables and is not 

limited to pre-established econometric multiplicative interactions (Wang et al., 2010). Lastly, the 

use of a geographical detector does not require consideration of the collinearity of multiple 

independent variables (Wang et al., 2010). 

 

3. Results 

3.1. UFC spatial differences 

Fig.5 

Data show that average 2010 UFC in China was 19.7%. Examination of Fig. 5 also reveals 

that UFC in northern China was 11.1%, much lower than the national average, while the average 

value for southern China was 27.6%. UFC values in about one-third of cities nationally were 

lower than 5%, revealing very low urban forest area in many Chinese cities. 

3.2. Factors influencing UFC 

3.2.1. Proxy variable q-statistics 

Fig.6 

The data presented here in Fig. 6 reveal that elevation, urbanization level, and NFC have all 
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exerted no significant impact on UFC values (p > 0.1). At the same time, however, the proxy 

variables precipitation and temperature were significant at the 0.01 level, while the variables of 

urban population density, GDP per capita, and share of secondary industry all exerted significant 

impacts on UFC at the 0.05 level, and city size was statistically significant at the 0.1 level. Data 

show that precipitation had the greatest impact on UFC, followed by temperature, while 

socioeconomic variables (i.e., share of secondary industry, city size, urban population density, and 

GDP per capita) remained relatively weak. 

 

3.2.2. Interactive q-statistics for proxy variables  

Table 2.  

The interactive q-statistic values derived here were greater than the values of all single 

variables (Table 2); the interactions between precipitation-temperature, NFC-precipitation, 

elevation-precipitation, and urban population density-NFC all exhibited binary enhancement over 

the time period of this analysis, while others exhibited nonlinear enhancement. Calculations show 

that when precipitation and elevation variables interacted, explanatory power reached a maximum 

value of 0.50. The effects of biogeoclimatic variables on UFC differences within China remained 

much stronger than those of socioeconomic factors. Data also show that socioeconomic factors 

can enhance the explanatory power of the biogeoclimatic factors on UFC; for example, 

perspective values for precipitation and city size were 0.38 and 0.04 but their interactive q-statistic 

reached as high as 0.49. 
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4. Discussion 

4.1. Impacts of biogeoclimatic factors on the urban forest spatial 

differences 

The q-statistic values calculated here using the geographic detector method reveal that the 

major variables influencing UFC within China have been precipitation and temperature, for 286 

major cities, including municipalities and prefectural-level entities in the mainland. This result is 

similar to previously-reporting findings (Nowak et al., 1996). This earlier work noted that the 

amount of available natural precipitation can influence the tree cover across the United States 

(Nowak et al., 1996). Temperature can also impact tree growth as values that are either too high or 

too low influence the balance of tree metabolism (Xie et al., 2015). Data also show that elevation 

has exerted no significant influence on urban forests; if this variable is entered into the model, 

however, it acts to greatly enhance the explanatory power of other variables. It can be seen that the 

interaction q value of precipitation and elevation had the greatest influence on UFC, at least in this 

study. 

 

4.2. Impacts of socioeconomic factors on the urban forest spatial 

differences  

City size and urban population density both significantly influence UFC, consistent with 

earlier work (Fuller and Gaston, 2009; Nesbitt et al., 2019; Richards et al., 2017; Wu et al., 2019). 

These authors noted that green space coverage has declined with increasing human population 

density. This has also been the case in China; UFC is quite low in cities with high population 
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densities because as urban populations increase in size, more space is needed, which results in 

urban forest shrinkage. 

The data presented in this paper also shows that UFC values are low in cities that have high 

GDP per capita. This result conflicts with research by Chen and Wang (2013) who argued for a 

positive impact of economic development on UFC. The data Chen and Wang (2013) used was 

statistical panel data between 2002 and 2009, while cross-section data in 2010 extracted in remote 

sensing data was used in our study, where the time series was not considered. It is possible that the 

time series data may interfere with the results of spatial distribution of UFC. The result presented 

here also differs from previous findings for cities within developed countries, where high-income 

neighborhoods are more likely to have high UFC in many previous studies about environmental 

justice (Krafft and Fryd, 2016; Nesbitt et al., 2019; Schwarz et al., 2015). Compared with cities in 

developed countries, Chinese cities are in a stage of rapid development (Kuang et al., 2014). Cities 

with high GDP per capita will have strong economic strength for urban construction, and thus the 

available land in the urban forest is compressed (Yin et al., 2011). Original forests within urban 

areas are often destroyed and converted to other land use types such as roads, residential, 

commercial, and industrial zones. 

Results also reveal that secondary industrial share is negatively related to UFC as these zones 

often encompass large proportions of urban areas. In the quantification of urban land area 

conducted by Canetti et al. (2018) within Araucaria, industrial zones cover approximately 30% of 

the total urban areas. This means that urban forests and secondary industry must compete with 

each other for urban land. 

The results of this study also suggest that the NFC programme has exerted no significant 
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effects on the spatial differences of UFC. Indeed, 2010 average UFC of the NFCs was 16.3%, 

lower than the average UFC in other non-NFC cities (19.9%). Furthermore, according to the 

qualifications of the programme that the UFC of NFCs should be higher than 30% in northern 

China and 40% in southern China (Bureau, 2007), this result also shows that the average UFC of 

NFCs was much lower than the required standards. Throughout the process of urban development, 

interactions between residents and nature will increasingly depend on urban forest networks, and 

the demands for well-designed and well-managed urban forests will increase (FAO, 2016). The 

NFC programme was proposed under this background. It is noteworthy that more professional 

assessment is needed for the NFC title awarding. Urban forests need to be further emphasized in 

future urban planning for the sustainable development.  

 

4.3. Limitations  

The urban forest used for this analysis was defined as the land use type with more than 30% 

tree canopy cover within an urban area. This definition is different from some definitions which 

can encompass all forms of urban vegetation (Chen and Wang, 2013). Indeed, grassland exerts a 

limited effect upon ecological environments (Armson et al., 2012). However, this definition and 

the dataset also has some limitations. This definition of urban forests would exclude some 

sparsely-treed neighborhoods, for example, as many residential neighborhoods have canopy 

covers below 30% (Chen et al., 2019), especially in dense cities. The spatial resolution of land 

cover dataset is 30 m, and thus that some newly planted forests and street trees cannot be 

identified, which underestimated the values of UFC. In addition, tree height, tree crown depth and 

plant species cannot be captured in remote sensing images; thus the quality of the urban forests 
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were not included in this research. Another limitation relates to statistical data used in this study, 

which inevitably has some errors and uncertainties in data collection. Even so, analyses based on 

all Chinese major cities are useful for understanding spatial differences of UFC and provide a 

theoretical basis for urban forest development. In the future, we can use higher-resolution images, 

such as Sentinel-2 and QuickBird images, to extract more accurate urban forest cover dataset. In 

addition, Light Detection and Ranging (LiDAR) data (Wang et al., 2016b) can also be integrated 

to obtain the height and quality information of urban forests.  

 

5. Conclusion 

This analysis extracted urban areas across China by applying the IG method in order to 

examine the spatial distribution of UFC values. The geographical detector method was then 

applied to systemically analyze the impact of biogeoclimatic and socioeconomic factors on UFC 

in 286 Chinese major cities. The results of this analysis lead to a number of conclusions. 

(1) The average UFC of major cities within China was 19.7% in 2010 but nearly one-third of 

these data points were less than 5%. The distribution of UFC values also exhibits marked 

differences between the northern and southern parts of China; average values for cities in 

northern China were 11.1%, while average values were 27.6% in the southern part of the 

country. 

(2) Urban forests in Chinese major cities have been influenced by both biogeoclimatic (i.e., 

precipitation and temperature) and socioeconomic factors (i.e., secondary industrial share, 

city size, urban population density, and GDP per capita). Overall, data show that 
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biogeoclimatic factors have exerted a stronger influence on the spatial differences of UFC, 

while the impacts of socioeconomic factors have been weaker. 

(3) The use of geographical detector model also reveals that the explanatory power of 

interactions are all higher than those of a single factor, and that interactions between 

precipitation and elevation have exerted the greatest impact on UFC values. 

(4) Data show that the Chinese NFC programme has had no significant impact on spatial 

differences of UFC. Indeed, it is notable that average UFC of the NFCs remain lower than 

those of other cities; and average UFC of cities with the NFC title were also much lower than 

standards which the NFC programme required. Thus, urban forests need to be emphasized 

within future urban planning and the government should take a leading role in ensuring the 

supply of investment and lands.  
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Figure legends 

Fig. 1. The technical route used in this study to extract urban forest data. 

Fig. 2. Urban areas in China (2010) extracted using the IG method. 

Fig. 3. Determinants, proxy variables, and their descriptions. 

Fig. 4. The spatial distribution of discretized variables in 2010: a. precipitation; b. temperature; c. 

elevation; d. city size; e. urbanization; f. urban population density; g. GDP per capita; h. share of 

secondary industry, and; i. NFC. 

Fig. 5. 2010 UFC values for major cities within China. The Qin Mountains–Huai River Line is an 

important geographical boundary nationally as it divides China into southern and northern parts. 

Fig. 6. UFC q-statistics for China. Abbreviations: * p-value < 0.1; ** p-value < 0.05; ***p-value < 

0.01). 

 

 

Table legends 

Table 1. Defined interaction relationships (Wang and Hu, 2012). 

Table 2. Interactive proxy variable q-statistics for urban forests. 
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Figures 

 

Fig. 1. The technical route used in this study to extract urban forest data. 

 

Fig. 2. Urban areas in China (2010) extracted using the IG method. Jo
ur

na
l P

re
-p

ro
of



 

26 

 

 

Fig. 3. Determinants, proxy variables, and their descriptions. 

 

Fig. 4. The spatial distribution of discretized variables in 2010: a. precipitation; b. temperature; c. 

elevation; d. city size; e. urbanization; f. urban population density; g. GDP per capita; h. share of 

secondary industry, and; i. NFC. 
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Fig. 5. 2010 UFC values for major cities within China. The Qin Mountains–Huai River Line is an 

important geographical boundary nationally as it divides China into southern and northern parts. 

 

Fig. 6. UFC q-statistics for China. Abbreviations: * p-value < 0.1; ** p-value < 0.05; ***p-value < 

0.01) 

Tables 

Table 1. Defined interaction relationships (Wang and Hu, 2012). 
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Description Interaction 

q (Xa∩Xb) < Min (q (Xa), q (Xb)) Weakened, nonlinear 

Min (q (Xa), q (Xb)) < q (Xa∩Xb) < Max (q (Xa), q (Xb)) Weakened, unique 

q (Xa∩Xb) > Max (q (Xa), q (Xb)) Enhanced, bilinear 

q (Xa∩Xb) = q (Xa) + q (Xb) Independent 

q (Xa∩Xb) > q (Xa) + q (Xb) Enhanced, nonlinear 
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Table 2. Interactive proxy variable q-statistics for urban forests. 

  
Precipi

tation 

Tempe

rature 

Eleva

tion 

City 

size 

Urbanization 

level 

Urban 

population 

density 

GDP 

per 

capita 

Share of 

secondary 

industry 

Nation 

Forest 

City 

Precipitation 0.38          

Temperature 
0.46 

(EB) 
0.28        

Elevation 
0.50 

(EN) 

0.41 

(EN) 
0.03       

City size 
0.49 

(EN) 

0.37 

(EN) 

0.16 

(EN) 
0.04      

Urbanization 

level 

0.41 

(EN) 

0.33 

(EN) 

0.09 

(EN) 

0.07 

(EN) 
0.01     

Urban 

population 

density 

0.48 

(EN) 

0.34 

(EN) 

0.11 

(EN) 

0.09 

(EN) 

0.06 

(EN) 
0.03    

GDP per 

capita 

0.43 

(EN) 

0.33 

(EN) 

0.12 

(EN) 

0.13 

(EN) 

0.08 

(EN) 

0.08 

(EN) 
0.03   

Share of 

secondary 

industry 

0.44 

(EN) 

0.36 

(EN) 

0.11 

(EN) 

0.12 

(EN) 

0.09 

(EN) 

0.10 

(EN) 

0.08 

(EN) 
0.04  

National 

Forest City 

0.39 

(EB) 

0.29 

(EN) 

0.04 

(EB) 

0.05 

(EN) 

0.02 

(EN) 

0.04 

(EB) 

0.05 

(EN) 

0.04 

(EN) 
0.00  

Abbreviations: (EN) denotes the nonlinear enhancement of two variables, and; (EB) denotes the binary enhancing of 

two variables (see Table 1) (Wang and Hu, 2012). 
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