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Abstract
Traditional sample designs for household surveys are contingent upon the
availability of a representative primary sampling frame. This is defined using
enumeration units and population counts retrieved from decennial national
censuses that can become rapidly inaccurate in highly dynamic
demographic settings. To tackle the need for representative sampling
frames, we propose an original grid-based sample design framework
introducing essential concepts of spatial sampling in household surveys. In
this framework, the sampling frame is defined based on gridded population
estimates and formalized as a bi-dimensional random field, characterized
by spatial trends, spatial autocorrelation, and stratification. The sampling
design reflects the characteristics of the random field by combining
contextual stratification and proportional to population size sampling. A
nonparametric estimator is applied to evaluate the sampling design and
inform sample size estimation. We demonstrate an application of the
proposed framework through a case study developed in two provinces
located in the western part of the Democratic Republic of the Congo. We
define a sampling frame consisting of settled cells with associated
population estimates. We then perform a contextual stratification by
applying a principal component analysis (PCA) and  -means clustering to ak
set of gridded geospatial covariates, and sample settled cells proportionally
to population size. Lastly, we evaluate the sampling design by contrasting
the empirical cumulative distribution function for the entire population of
interest and its weighted counterpart across different sample sizes and
identify an adequate sample size using the Kolmogorov-Smirnov distance
between the two functions. The results of the case study underscore the
strengths and limitations of the proposed grid-based sample design
framework and foster further research into the application of spatial
sampling concepts in household surveys.
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Introduction
Research and policymaking often require demographic data, such 
as population enumerations and age and sex structures. While 
these data have been historically derived from national censuses1, 
the past 40 years have witnessed an increasing interest in the use 
of household surveys for demographic estimations2. Starting 
from 2000, for instance, the US Census adopted the dual system 
estimation that complements the national census with a richer 
set of demographic and socio-economic characteristics cap-
tured using household surveys3. This kind of survey provides a 
cost-effective way to access an extensive range of attributes that 
can be ultimately generalized to a larger population of interest4. 
Generalization is especially valuable in low- and middle-income 
countries with outdated, inaccurate or incomplete censuses, 
where a sample of representative households can be used to 
estimate demographic data5.

Traditional sample designs for household surveys build on three 
pillars — the sampling frame, sampling design, and estimator6. 
The sampling frame consists of a list of all potential sampling 
units7, the sample design defines the probability of any given unit 
to be sampled8, and the estimator determines the rule to general-
ize the estimate (for example, recovering the mean characteris-
tics of the population of interest using the mean characteristics of 
the sampled households)6. In low- and middle-income countries, 
these sample designs are generally set up in two stages because of 
logistical and financial considerations9. This form of multistage 
design involves the initial sampling from the primary frame, 
which is composed of non-overlapping enumeration units. Fol-
lowing the definition of a secondary frame resulting from the 
enumeration of all households in the sampled enumeration units, 
households are finally sampled9.

The primary frame is an essential aspect of two-stage sampling 
designs because it is meant to provide an accurate, complete, and 
up-to-date representation of the distribution of the population of 
interest7. This is defined using enumeration units and population 
counts retrieved from the most recent national census, an exer-
cise that, in the best-case scenario, is carried out on a decadal 
basis10. Census data become rapidly outdated because a maxi-
mum time-span of two years should typically occur between the 
definition of the sampling frame and the sample design imple-
mentation7. As a consequence, sample designs for household 
surveys are increasingly relying on alternative sampling frames, 
typically derived from gridded population estimates10. These esti-
mates are produced through top-down spatial disaggregation of 
national census data11 or bottom-up spatial interpolation based on 
household survey data collected within small geographic areas12.

Adopting a gridded sampling frame requires adjusting the three 
pillars of household sample design conceived for one-dimensional 
listings to a bi-dimensional geographic space4. This adjustment 
can be achieved by considering the three core concepts of spa-
tial sampling — the random field, the design, and the estimator13. 
The notion of random field formalizes the population of interest 
through a bi-dimensional random process characterized by errors, 
trends, autocorrelation, and stratification14; the design reflects 
the specificities of the random field in the selection of sampling 

units; and the estimator defines the generalization of the esti-
mate retrieved from the sampling units to the entire sampling 
frame15. Despite the need for bridging sample designs for house-
hold surveys and spatial sampling, explicit joint methodological 
frameworks are currently still rare10.

To fill this knowledge gap, we propose a grid-based sample 
design for household surveys that embeds the three core concepts 
of spatial sampling13. In doing so, the gridded sampling frame is 
formalized as a bi-dimensional random field13; the design con-
siders spatial trends, spatial autocorrelation, and stratification 
through a contextually stratified16 proportional to population size  
sampling5; a nonparametric estimator is used to assess the  
sampling design and inform sample size estimation17. We dem-
onstrate the application of this sample design framework with 
a case study developed in two provinces located in the west-
ern part of the Democratic Republic of Congo. This country 
had its last census over 30 years ago, and sampling frames for  
household surveys are still based on these extremely outdated 
population figures18. The results of the case study provide valu-
able insights into the implementation of the proposed framework  
and foster further research into grid-based sample designs.

Methods
The grid-based sample design framework
Figure 1 shows the proposed grid-based sample design frame-
work, which embeds the core concepts of spatial design into the 
three pillars of household sample design. First, the sampling frame 
(Figure 1A) is formalized as a bi-dimensional random field, 
defined by superimposing a square grid to the study area, where 
the presence of settled area defines the sampling cells. The sam-
pling design (Figure 1B) reflects the characteristics of the random 
field, namely, spatial autocorrelation and spatial heterogeneity, by 
combining contextual stratification and proportional to popula-
tion size sampling techniques. Lastly, an estimator (Figure 1C) of 
nonparametric nature, namely the cumulative distribution func-
tion (CDF), is used to evaluate the sampling design and guide 
sample size estimation in a simulation study. The three elements 
of the proposed grid-based sample design framework are pre-
sented in detail in the next sections. The proposed grid-based sam-
ple design framework can be implemented using the R statistical 
language19 in RStudio 3.5.220, using the following packages — 
gridsample 0.2.121, raster 3.0-722, sf 0.8-023, and spatstat 1.61-024.

Sampling frame
The notion of sampling frame is at the core of household sam-
ple design because it ensures that every household has a known 
probability of being surveyed7. This concept, however, is not 
frequently adopted in other disciplines, such as environmental  
sciences, because full listings are considered impractical or even  
impossible13. To overcome this issue, in the domain of geostatis-
tics, the complete listing of the population of interest is replaced 
by the listing of the geographical location where it can be found16. 
For this purpose, a regular geometric grid with square or hexago-
nal patterns is overlaid on the study area to enable equal sampling 
probability25. Given the heterogeneous geographic distribution of 
the human population, in the past, the use of gridded sampling 
frames has been discouraged for household surveys16. However, 
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other spatially explicit sampling frames, for instance, based on 
parcel boundaries26 or air pollution levels16, have already been 
adopted in the past for household sampling.

Gridded population sampling frames are being increasingly 
adopted in household sampling carried out in low- and middle-
income countries with outdated census frames10. This is because, 
in some instances, traditional sampling frames lack complete 
geographic coverage, well-defined geographic boundaries and 
up-to-date population data9. Conversely, a gridded sampling 
frame provides comprehensive coverage of well-defined regu-
lar sampling units — the grid cell5. The increasing availability of 
high-resolution gridded population estimates, with cells meas-
uring between 3027 and 250 meters28, also enables deriving sam-
pling frames of relatively fine spatial resolution. Whether gridded 
population estimates have known inaccuracies connected with 
the quality of the input datasets5 and selected spatial disaggre-
gation techniques11, they are generally considered to provide a 
more accurate approximation of the geographical distribution 
of population counts than outdated census enumerations5,11.

While most gridded population estimates are constrained to set-
tled areas11, WorldPop top-down estimates provide a continu-
ous population-count value across all land masses to ensure that 
sparsely-populated areas are not omitted29. This dataset also 
offers the advantage of a systematic global coverage and an 
accuracy assessment29. Furthermore, a gridded sampling frame 
derived from WorldPop top-down estimates can be refined using 
global settlement datasets such as the Global Urban Footprint 
(GUF)30 and the Global Human Settlement Layer (GHSL)28 
using the settled area as a limiting ancillary variable31. The sam-
pling frame, defined based on the population counts within set-
tled cells, can be formalized as a random field (ℜ), where the 

population count in a settled cell (X) is distributed across a bi-
dimensional parameter space (ℜ2) as a function of its geographic 
coordinates (l) (Equation 1).

Equation 1 { }2( ),X l l= ∈R

The population count within a settled cell (X(l)) is influenced by 
the following features. First, spatial autocorrelation, or first-order 
non-stationarity, since X(l) is expected to be similar when the set-
tled cells are close to one another32. This condition violates the 
underlying assumption of an independently distributed popula-
tion governing probabilistic sampling and involves a loss of sam-
pling efficiency33. Second, spatial heterogeneity, or second-order 
non-stationarity, as X(l) is likely to differ across l in different geo-
graphic contexts, such as urban/rural or mountainous/flat areas34. 
This situation also contravenes a crucial assumption of proba-
bilistic sampling, namely, the presence of an identically distrib-
uted population35. The third variable is discreteness, as X(l) is 
not continuous across all potential l but limited to settled areas 
only31. This last characteristic implies that traditional spatial sam-
pling techniques are not directly applicable because the sampling 
frame is not a continuous surface but constrained to settled cells 
only13.

Sampling design
Opposite to geostatistics, household surveys adopt design-based 
sampling strategies because the population of interest is consid-
ered unknown but fixed and entirely measurable4. Within different 
design strategies, household surveys in low- and medium-income 
countries are often based on two-stage sampling designs9. This 
design involves drawing enumeration units from a primary sam-
pling frame with probability proportional to population size, 
in which a number of households are subsequently randomly 

Figure 1. The grid-based sample design framework. The key elements of this framework are the sampling frame (A) defined by deriving 
from the study area (A1) the gridded sampling frame (A2); the sampling design (B) consisting of contextual stratification (B1) and sampling 
proportional to population size (B2); and the estimator (C) where the empirical cumulative distribution function and the weighted empirical 
cumulative distribution function are used to evaluate the design (C1) and estimate sample size (C2).
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surveyed7. First-stage sampling is crucial to improve sampling 
efficiency because it can incorporate characteristics of the ran-
dom field6. For example, enumeration areas may be selected 
with probabilities proportional to their population sizes to better 
account for spatial heterogeneity and to include densely popu-
lated areas that would likely be excluded from a random sample. 
However, the scarce accuracy of the population enumera-
tions retrieved from the last census and the definition of coarse 
strata can limit the efficiency of proportional to population 
size sampling for household surveys36.

Stratified sampling assumes that the population of interest can be 
partitioned into more homogeneous subpopulations, or strata13. 
This is to capture the spatial heterogeneity in the population of 
interest globally, and, consequently, to reduce the in-sample spa-
tial autocorrelation6. Stratification can be based on prior knowl-
edge, pre-sampling, or proxy variables37. In household sam-
pling, strata often consist of a proxy reflecting the urban/rural 
divide8, a strategy that is reproduced in existing grid-based sam-
pling designs to provide independent estimates for planning and  
decision-making5. The use of bi-dimensional gridded sampling 
frames enables finer contextual stratification by incorporat-
ing information on geographic phenomena influencing the dis-
tribution of the population of interest16. This can be achieved by 
accessing ancillary gridded datasets related to socio-economic  
(e.g., distance to major roads and urban centres) or physical 
characteristics (e.g., terrain and climate) that are embedded  
in top-down population models38.

For each ancillary dataset, the cell values intersecting the set-
tled cells define a high-dimensional space describing geographi-
cal context. This approach enables to define contextual strata 
by combining two popular methods for dimensionality reduc-
tion39 — principal component analysis (PCA)40 and k-means  
classification41. PCA is meant to reduce the number of correlated 
random variables into a set of linearly uncorrelated principal 
components42. The number of principal components can be 
selected by assessing the proportion of the total variance 
explained, which should generally be above 80–90%43. The prin-
cipal components of the high-dimensional contextual space can 
be further reduced using a k-means classification39. This method 
enables to capture intrinsic structures by minimizing heteroge-
neity within clusters and maximizing the heterogeneity across 
clusters based on the mean of the principal components. The 
number of clusters can be assessed using the “elbow” method 
applied to the variance explained (i.e., the within-cluster sum of  
squares)44, but also by inspecting whether the spatial distribution  
of the resulting clusters produces meaningful contextual strata.

Within each stratum, proportional to population size sampling has 
a straight-forward implementation in gridded sampling designs, 
through dedicated software packages5 and web platforms (e.g. 
https://gridsample.org). The crucial feature of proportional to 
population size sampling is the use of gridded population data-
sets. For this purpose, several top-down gridded population data-
sets are currently available globally (e.g., GHS-POP28, GPWv445, 
LandScan27, and WorldPop29,46, while bottom-up datasets are only 
being produced in a limited number of countries12. These datasets 

have different characteristics and fitness for use that should 
be carefully considered in the sampling design implementation11. 

The probability scheme resulting from stratified proportional 
to population size sampling ( )( )SPPS

iπ  can be summarized as 
the joint probability of stratified sampling ( )( )S

iπ  and sampling 
proportional to population size ( )( )PPS

iπ  (Equation 2).

Equation 2 ( ) ( ) ( )SPPS S PPS
i i iπ π π= ×

The probability of selecting a specific cell X
i
 in the design ( )S

iπ  
is contingent on the size of the stratum it belongs to (S

i
), where 

n
S
 is the number of sampled settled cells in the stratum S

i
 and 

m
S
 the total number of settled cells in the stratum S

i
 (Equation 3).

Equation 3 
( )S S
i

S

n

m
π =

The probability of selecting a specific cell X
i
 in the design 

( )PPS
iπ  is relative to its population size and the total size of the 

population, in other words, the sum of the population counts 
for each cell 

1

Sn

ll
X

=∑  (Equation 4).

Equation 4 
2

( )PPS i
i

ll

X

X
π

∈

=
∑ 

Based on the probability scheme specified above, it is possible 
to produce an unbiased estimator that can be used to evaluate 
the sampling design and inform sample size estimation.

Estimator
In household sampling design, the estimand is a parameter sum-
marizing the random variable of interest, such as the mean, vari-
ance, or total8. Typical examples are the mean proportion of 
children under five years old or the number of women of child-
bearing age. In this setting, the estimator is built using a para-
metric attribute of the random variable of interest47. However, 
the use of nonparametric estimators enables to retrieve the char-
acteristics of the entire random variable48,49. In the case of sam-
ple design for household surveys, the random variable consists of 
the population count across settled cells, where a large number 
of cells have medium-to-low population counts and only a few 
have high population counts. To capture the characteristics of the 
entire population of interest, the estimand becomes the full prob-
ability distribution of the random variable through its CDF50. 
The CDF (F

X
(x)) summarizes the probability for the popula-

tion count within a settled cell (X
i
) of being lower or equal to x. 

Given the law of large numbers, the CDF can be approximated 
using the empirical CDF (ECDF) ˆ( ( ))mF x  for a number m 
of sampling frame cells (Equation 5).

Equation 5 { } { }
1

11ˆ ( ) , where
0

m i
m i ii

if X x
F x I X x I X x

otherwisem =

≤
= ≤ ≤ = 


∑

Given that the proposed sample design is not random but proba-
bilistic, the estimator needs to be weighted for the respective 
probability scheme51. Typical parametric estimators, such as 
the mean or total, can be weighted using the Horvitz-Thompson 
estimator, by implementing the inverse of the probability 
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scheme47. This concept can be extended to nonparametric esti-
mators, by weighting the ECDF using the inverse of the prob-
ability scheme, and producing a weighted empirical cumulative 
distribution function (WECDF) ˆ( ( ))nG x  for the number of 
sampled cells (n) (Equation 6).

Equation 6 { } ( )

1

1ˆ ( ) , where 1/
n SPPS

n i i i ii
G x W I X x W

n
π

=
= ≤ =∑

In household surveys, the sample size is typically determined 
using a power analysis applied to the parametric estimator, which 
is assumed to be normally distributed for large sample sizes8. 
For nonparametric estimators, such as the WECDF, a simulation 
study can enable evaluation of the sample size required to pro-
vide an accurate representation of the population of interest across 
the different strata17. For this purpose, the same gridded popula-
tion data used in proportional to population size sampling can 
serve as a proxy for the entire population of interest. The popu-
lation counts across sampling frame cells are used to derive the 
ECDF for the entire population of interest and the WECDF for 
different sample sizes, and compare the two distributions using 
a nonparametric statistic — the Kolmogorov-Smirnov distance 
(D

m,n
)52 (Equation 7).

Equation 7                     .
ˆˆ| ( ) ( ) |m n x m nD sup F x G x= −

D
m,n

 is based on the maximum distance between ˆ ( )mG x  for the 
entire population of interest across m settled cells, and ˆ( ( ))nF x  
for the population within a varying number of sampled cells 
n. While n increases iteratively, it is possible to assess the asso-
ciated changes in D

m,n
. However, given that D

m,n
 is extremely 

sensitive to the shape of the two distributions, the process of 
sampling n settled cells should be replicated and averaged to 
provide a robust assessment of D

m,n
. The use of nonparametric  

estimators (i.e., the ECDF and the WECDF) and statistic (i.e., 
the Kolmogorov-Smirnov distance) typically requires large 

sample sizes to capture the entire range and variability of popu-
lation counts within settled cells. This process can be optimized 
by estimating sample size for each stratum independently13.

Case study
We demonstrate an application of the proposed grid-based  
sample design framework in two provinces in the western part 
of the DRC. This country is the second-largest by area and the 
fourth-most-populous in Africa. However, official population 
figures are currently lacking because the last census was carried 
out over thirty years ago, in 1984. Attempts to produce demo-
graphic data are routinely being carried out using population 
estimates and projections (e.g., https://population.un.org/wpp), 
as well as national surveys18. Six national surveys have been car-
ried out in the DRC since 2004 — two Demographic and Health 
Surveys (DHS) in 2013–2014 and 2017–2018, a Multiple Indica-
tor Cluster Survey (MICS) from UNICEF in 2010, two Enquête 
1-2-3 Surveys from the Congolese National Statistics Office in 
2005 and 2012, and a Comprehensive Food Security and Vulner-
ability Analysis (CFSVA) from the World Food Programme in 
2011–2012. These surveys have been developed using outdated 
sampling frames based on the census data of 1984, which has 
been shown to introduce uncertainty in both the collected survey 
data and the derived demographic information18.

Study area
The study area covers the Kongo-Central and Kinshasa prov-
inces, in the Democratic Republic of the Congo. Together, these 
provinces constitute the most dynamic socio-economic region 
of the country. In this region, approximately 80% of the popu-
lation lives in urban areas — in the capital city of Kinshasa, 
the cities of Boma and Matadi, and a number of smaller cit-
ies and towns53. Figure 2 shows that urban areas develop from 
South-West to North-East, from the harbour town of Moanda, 
across the Congo river basin, to the vast agglomeration of the 

Figure 2. The study area comprising the Kongo-Central and Kinshasa provinces. Cities and towns develop mostly across the Congo river 
basin, while smaller towns can be found in the sparsely-populated plateau at the North-West and South-East of the study area. At elevated 
locations, the vegetation is prominent with the rain forest at the North-West and the savannah at the South-East.
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capital city Kinshasa. The remaining of the study area lies on a 
sparsely-populated plateau, where smaller towns (e.g., Kinganga 
and Mbankana) act as sub-regional centres for the surround-
ing villages and hamlets. In this sector, the vegetation is denser 
than in the Congo river basin, as the rain forest is prominent at 
the North-West and the savannah at the South-East. These par-
ticular urbanization patterns, and the consequent geographic 
distribution of population, are connected with the diverse socio-
economic, infrastructural, environmental, physical, and climatic 
characteristics of the study area53.

Gridded sampling frame
We accessed a settlement layer produced by the Oak Ridge 
National Laboratory using feature extraction from high-resolution 
imagery for population modelling work undertaken in the Kin-
shasa and Kongo-Central provinces. The settlement layer con-
sists of settlement polygons of approximately 7 meters resolution 
that were subsequently subset to the official province bounda-
ries provided by the Central Bureau of Census (BCR) of the 
Democratic Republic of the Congo. Comprehensive metadata 
are provided in Table 1. The polygons were rasterized based 
on a reference grid with a resolution of 3 arc-seconds, approxi-
mately 90 meters. The presence of at least one settlement poly-
gon designated a settled cell — a gridded sampling unit. Figure 3 

shows the gridded sampling frame, which comprises 211,831 set-
tled cells. A large number of settled cells can be observed in the 
cities of Kinshasa, Boma, and Matadi, while more scattered set-
tlement patterns can be observed in the rest of the study area. In 
more urbanized areas, such as in the city of Boma (Figure 3A), 
the settled cells tend to match the extent of the settlement layer. 
Conversely, in suburban areas (Figure 3C), towns (Figure 3D), and 
rural areas (Figure 3B) the gaps between the settlement layer and 
the settled cells become larger because the built-up area is more 
scattered.

Contextual stratification
We retrieved ten gridded datasets describing the socio-economic 
(i.e., distance to conflict points and light intensity at night), 
infrastructure (i.e., distance to major roads and travel distance 
to cities), environmental (i.e., land cover and degree of urbani-
zation), physical (i.e., elevation and slope), and climatic (i.e., 
temperature and rainfall) characteristics of the study area. 
These datasets have been selected because they represent key 
geospatial covariates in top-down population models developed 
by WorldPop38. Comprehensive metadata are provided in 
Table 1. Gridded dataset attributes were extracted for the 
cells intersecting the settled cells, and categorical variables 
were “dummified”. A PCA was performed on the resulting 16 

Table 1. Metadata for the datasets used in the case study. The column “Type” indicates the characteristics addressed. The column 
“Format” describes the type of input data. The column “Type” defines the type of variable. The column “Source” reports the links to the 
datasets used in the case study.

Type Name Provider Year Format Variable Source

SE Distance to 
conflict points

Armed Conflict 
Location and 
Event Data 
(ACLED) Project

2016 VECT CONT https://www.acleddata.com/data/

SE Travel distance 
to cities

Malaria Atlas 
Project (MAP) 2015 RAST CONT http://doi.org/10.1038/nature25181

INF Distance to 
major roads OSM/WorldPop 2016 RAST CONT https://www.worldpop.org/doi/10.5258/SOTON/WP00644

INF Light intensity at 
night VIIRS/WorldPop 2016 RAST CONT https://www.worldpop.org/doi/10.5258/SOTON/WP00644

ENV Degree of 
urbanization GHS-SMOD 2015 RAST CAT https://ghsl.jrc.ec.europa.eu/ucdb2018visual.php

ENV Land cover ESA-CCI 2015 RAST CAT https://www.esa-landcover-cci.org

PHY Elevation SRTM/WorldPop 2000 RAST CONT https://www.worldpop.org/doi/10.5258/SOTON/WP00644

PHY Slope SRTM/WorldPop 2000 RAST CONT https://www.worldpop.org/doi/10.5258/SOTON/WP00644

CLIM Rainfall WorldClim 1960–2000 RAST CONT http://worldclim.org/version2

CLIM Temperature WorldClim 1960–2000 RAST CONT http://worldclim.org/version2

— Population 
counts WorldPop 2016 RAST CONT https://www.worldpop.org/doi/10.5258/SOTON/WP00645

— Settlement layer ORNL/WorldPop 2016 VECT CAT https://doi.org/10.5281/zenodo.3562191

— Administrative 
boundaries

Central Bureau 
of the Census 
(BCR)

2018 VECT CAT *

*Datasets not publicly available.

SE, socio-economic; INF, infrastructural; ENV, environmental; PHY, physical; CLIM, climatic; VECT, vector; RAST, raster; CONT, continuous; CAT, categorical.
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gridded data attributes and produced nine principal components 
that, together, explain 91.36% of the original variance. The nine 
principal components were then fed into a k-means clustering 
algorithm. Figure 4 shows the within-cluster sum of squares reduc-
tion for clusters spanning between one and ten. The “elbow” 
method suggests that three, five and eight clusters, with respec-
tively 60.30%, 46.15% and 35.48% of the principal components’ 
variance explained, provide the best scenarios for capturing the 
variance in the principal components.

Figure 5 contrasts the spatial distribution of three, five and 
eight clusters across the urban area (Figure 5A), suburban area  
(Figure 5C), town (Figure 5D), and rural area (Figure 5B) pre-
sented in Figure 3. The legends show the ratio of settled cells 
allocated to the different clusters. Overall, the three scenarios 
produce comparable results, with a clear distinction between 
urban and suburban areas versus towns and rural areas. How-
ever, within urban and suburban areas, five and eight clusters 
seem to produce less realistic geographic patterns, with improb-
ably sharp cluster boundaries (Figure 5A5) and prominent  
“salt and pepper” effects (Figure 5C8). Some of these patterns 
persist across the three scenarios, for instance, the sharp cluster 
boundaries occurring in the suburban area (Figure 5C) and town  
(Figure 5D). Within the three scenarios, the three-cluster  
scenario appears to produce the most realistic contextual strata. 
These contextual strata appear to reflect high (in red), medium  
(in blue), and low (in green) urban status.

Figure 3. The settled cells constituting the gridded sampling frame. The gaps between settlement layer and the settled cells tend to vary 
considerably across the urban area of Boma (A), the suburban areas at the outskirts of Kinshasa (C), the town of Mbankana (D), and the rural 
area north of the town of Kimpese (B). 

Figure 4. Within-cluster sum of squares reduction for k-means 
clusters spanning between one and ten. Three, five, and eight 
clusters are the best scenarios, according to the “elbow” method, 
for capturing the variance in the nine principal components derived 
from the gridded data attributes.

Probability proportional to population size
We accessed high-resolution gridded population estimates for 
2016 from WorldPop and allocated population figures to the cor-
responding settled cells. Comprehensive metadata are provided 
in Table 1. Figure 6 shows the distribution of the population 
counts per settled cell across the contextual strata derived from 
the three clusters scenario. Contextual strata labelled as high, 
medium, and low urban status include 26.91%, 40.14%, and 
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Figure 5. The spatial distribution of three, five and eight clusters for selected locations. The legends show the ratio of settled cells 
allocated to the different clusters. Overall, the spatial patterns resulting from the three scenarios produce comparable outputs, with a clear 
distinction between the urban (Boma — A) and suburban (outskirts of Kinshasa — C) areas versus the town (Mbankana — D) and rural area 
(North of Kimpese — B).

Figure 6. Distribution of population counts per sampling-
frame cell across the contextual strata defined based on the 
three clusters scenario. The large horizontal black lines show the 
median, the boxes the interquartile range, the whiskers the minimum 
and maximum, and the dots the outliers.

32.95% of the settled cells, respectively. Overall, the distribu-
tion of population counts per settled cell varies considerably 
across the three contextual strata, and this is consistent with the 
allocated labels of high, medium, and low urban status. The stra-
tum characterized by high urban status has the highest median 
population count per cell of 55.58 and the largest outliers, with a 
maximum of 1109.41. Conversely, the stratum characterized by 
low urban status shows a very low median population count per 
cell of 0.15, with a maximum value of 13.97. The stratum with 
medium urban status also has a low median population count 
per cell of 1.39, but outliers are relatively important, with a 
maximum value of 146.74.

Sampling evaluation
We sampled settled cells from each contextual stratum 
proportionally to the respective population counts. Figure 7 con-
trasts the ECDF (black lines) to the WECDF (coloured lines). 
For each stratum, the ECDF lines depict the cumulative dis-
tribution of the population counts across all the settled cells, 
while the WECDF lines show the cumulative distributions of the 
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population counts for a number of sampled grid cells spanning 
between 1 and 1000. Overall, the WECDF lines become less dis-
persed towards higher values and are mostly above the ECDF 
lines. Conversely, the WECDF lines tend to be more scattered for 
low-to-medium values and are mostly located below the ECDF 
lines. These results reflect the oversampling of settled cells with 
the highest population counts resulting from the proportional 
to population size sampling strategy. This expected pattern is 
predominant in the stratum characterized by high urban status, 
while it appears to be negligible in the strata with medium and 
low urban status.

Sample size estimation
We computed the Kolmogorov-Smirnov distance between the 
baseline ECDF and the WECDF for sample sizes spanning 
between 1 and 1000 across the different strata. We replicated this 
procedure 1000 times for the different sample sizes and aver-
aged the distance metrics to provide a robust assessment of the 
distance between the two functions. Figure 8 shows the mean 
Kolmogorov-Smirnov distance for sample sizes spanning between 
1 and 1000 across the different contextual strata. Overall, aver-
age distances show similar patterns across different strata. Low 
average distances can be observed for extremely low sample 
sizes that then spike before gradually decreasing as a function 
of sample size. This suggests that after discarding very low sam-
ple sizes — poorly recovering the reference population — and 
very high sample sizes — providing negligible improvements 
— it is difficult to estimate ideal sample sizes. However, Figure 8 
suggests that a sample size threshold can be defined based on sen-
sible distance values (e.g., between 0.10 and 0.20), and sample 

size can be allocated across strata to provide similar sampling 
performances. Figure 8 shows that, in order to achieve a sam-
pling performance of 0.15, 139 settled cells should be sampled 
from the stratum with high urban status, 171 from the stratum 
with medium urban status and 83 the stratum with low urban 
status — 0.25%, 0.20%, and 0.12% of the respective settled cells.

Figure 7. Empirical cumulative distribution function (ECDF) and weighted ECDF (WECDF). The ECDFs are depicted as black lines and 
the ECDFs as coloured lines. Sample sizes for the ECDFs span between 1 and 1000. The settled cells are selected using proportional to 
population size sampling for each contextual stratum (high, medium, and low urban status), independently.

Figure 8. Average Kolmogorov-Smirnov distance for each 
contextual stratum. For sample sizes spanning between 1 and 
1000, 1000 repetitions have been carried out and then averaged 
to produce a more robust assessment. The box highlights sample 
sizes resulting in reasonable distance metrics. The circles show the 
sample sizes resulting in a distance of 0.15.
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Sampled locations
To obtain similar sampling performances, we sampled 139, 171 
and 83 settled cells from the strata with high, medium, and low 
urban status, respectively, proportionally to population size. 
Figure 9 shows the sampled locations across the three strata and 
the sampling weights to be embedded in the estimator. The high-
est weights can be observed for the stratum of medium urban 
status, mostly across sparsely populated areas. Higher weights 
are also present in the stratum with high urban status, espe-
cially at the outskirts of Kinshasa. In this sector, the urban tran-
sition results in substantially lower population counts per settled 
cell, compared with the settled cells within the same stratum. 
The lowest weights can be observed across the strata with low 
urban status because its total population is by far the lowest.

Discussion and conclusions
Limits of traditional sample designs
In low- and middle-income countries, sample designs for house-
hold surveys are traditionally set up in two stages for logistical 
and financial considerations9. This form of multistage sampling 
involves an initial sampling from the primary frame, which con-
sists of non-overlapping enumeration units defined proportion-
ally to population size7. These enumeration units are typically 
derived from the last national census, which is usually carried 
out on a decadal basis54. In reality, the time-spans between cen-
suses can be even larger as, according to the United Nations’ 
Department of Economic and Social Affairs, 23 countries had 
the last census over ten years ago. Even when collected regu-
larly, census data become rapidly outdated because a maximum 
time-span of two years should typically occur between the defi-
nition of the sampling frame and the household survey sampling 

and implementation7. For this reason, traditional sample designs 
for household surveys are to be considered representative only at 
sporadic frequencies and for relatively short periods.

The uncertainty associated with non-representative sampling 
frames propagates through the sampling design to the estimator8. 
As a consequence, the resulting household surveys can limit the 
accuracy of the derived demographic data18. To tackle this issue, 
research in the domain of household sample design recently 
started to focus on the use of gridded population data to pro-
duce actionable sampling frames10. Given the geographically 
explicit nature of gridded sampling frames, sample designs for 
household surveys can arguably benefit from spatial sampling 
techniques traditionally applied in natural sciences13. To date, 
only a limited number of sample designs for household surveys 
have explicitly considered concepts of spatial sampling through 
the concepts of random field, sampling design and estima-
tor. Two such studies reflect the characteristics of the random 
field in sample design using parcel boundaries26 and air pol-
lution levels16. However, none of these studies explicitly con-
sidered the geographic distribution of the reference population 
in their sample design.

Adopting gridded sampling frames
To tackle the limits of traditional sample designs, we proposed 
an innovative grid-based sample design framework for house-
hold surveys. This framework is centred around the concept of 
gridded sampling frame, a concept that is traditionally being 
adopted in natural sciences8 and, more recently, in sampling for 
household surveys10. The use of geographically explicit sampling 
units enabled us to revise the three pillars of traditional sample 

Figure 9. Sampled settled cells across the different contextual strata. The resulting sampling weights vary considerably across strata. 
Higher weights can be observed in areas of lower population counts per settled cell within the medium urban status stratum, while lower 
weights can be found in the sparsely populated low urban status stratum.
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design — sampling frame, sampling design, and estima-
tor — through the elements of the core components of spatial  
sampling13. A key element of the proposed framework is formal-
izing the population distribution as a random field, and tackle 
spatial trends, spatial autocorrelation, and stratification of the 
reference population. These considerations are embedded in the 
sampling design, where contextual stratification8 and population-
weighted sampling36 are used jointly to improve sampling effi-
ciency. Both the sampling design and the sample size are assessed 
based on a nonparametric estimator to assess generalization  
to the entire reference population48,49.

We demonstrated an application of our proposed sample design 
framework with a case study developed in two provinces 
in the western part of DRC. In this country, existing sampling 
frames are typically developed based on outdated census figures 
dating from 1984. As a result, much demographic information 
produced through the six national surveys carried out since 2004 
is highly uncertain18. We built a gridded sampling frame for the 
study area consisting of settled cells of approximatively 90 meters 
spatial resolution. We then defined the two essential elements 
of our sampling design, namely the contextual strata based on a 
combination of PCA and k-means algorithm and the probability 
proportional to population size per settled cell retrieved from 
recent gridded population estimates. While the estimates are 
arguably uncertain because based on projections from the last 
national census, their geographic distribution is a reasonable 
approximation of the geographic distribution of population 
across the study area5,11. We assessed the sampling design by 
contrasting the ECDF for the population to the WECDFs for dif-
ferent sample sizes across the contextual strata. We also exam-
ined how sample size impacts the recovering the characteristics 
of the entire reference population across the different contextual 
strata. Lastly, we document and describe the geographic distribu-
tion of the sampled cells and the relative sampling weights to be 
embedded in the estimator.

Challenges and next steps
The case study underscores some challenges of the proposed grid-
based sample design. First, the spatial accuracy of a gridded sam-
pling frame is contingent upon the quality of the input settlement 
layer. The case study showed that the settlement layer enables to 
detect settlement patterns at high spatial resolution across urban 
and rural locations. The use of settlement data of lower spatial reso-
lutions would reduce the accuracy of the sampling frame, especially 
in regions where the built-up area is more scattered. Second, the 
dimensionality reduction techniques employed to define con-
textual strata suffer inherent limitations in detecting complex 
dimensionality structures. Alternative unsupervised classifica-
tion methods should be tested55. The sampling design can also 
be affected by the quality of the gridded population data used to 
define the probability scheme. Even if these gridded data are 
argued to be more accurate than the related administrative counts21, 
their fitness for use is contingent upon a number of criteria listed 
elsewhere11. The use of a nonparametric estimator to assess sam-
pling efficiency also demonstrated systematic oversampling of 
settled cells with higher population counts when sampling pro-
portional to population size. This involves that larger sample 
sizes are required within heterogeneous strata.

The proposed grid-sampling design inspired the selection of 
household survey locations in the Kongo-Central and Kinshasa 
provinces in 2018 as part of the Geo-Referenced Infrastructure 
and Demographic Data for Development (GRID3) project. In this 
project, household survey data collected across small and well-
defined geographic areas were used as input data for bottom-up 
population models to predict basic demographic character-
istics across the study area. The survey work conducted as 
part of this project enabled us to identify critical next steps in 
the household survey implementation. First, carrying out house-
hold surveys within grid cells can be challenging if clear guide-
lines are not defined in the survey protocol. This includes, 
for instance, defining the buildings belonging to a cell using the 
location of their entrance door. The survey work also highlighted 
other challenges in the implementation of the proposed grid-based 
sample design related to the difficulty of detecting square grid 
boundaries in complex settings, as they do not reflect identifiable 
physical boundaries on the ground (e.g., roads and water bodies). 
In addition, surveying individual grid cells can be poorly 
resource-effective in sparsely populated areas. For this rea-
son, a minimum population-count threshold could be enforced 
by aggregating neighbouring grid cells prior to the sampling 
design10. This feature has been recently suggested by an auto-
matic enumeration units delineation tool56 and implemented in 
the latest update of the online version of GridSample, available at 
https://gridsample.org/.

Data availability
Source data
Most of the data used in our case study are freely available and 
can be accessed following the references presented in Table 1. 
The official administrative boundaries for the Kongo-Central and 
Kinshasa provinces are owned by the Central Bureau of the Cen-
sus (BCR) of the Democratic Republic of the Congo and can be 
accessed upon reasonable request made to bcrinfo@ins-rdc.org. 
Further information on the data created by the BCR is available 
on http://ins-rdc.org.
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This well-illustrated paper is proposing a grid-based sample design framework where
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representative sampling for household surveys. This framework is targeted to low- and middle-income
countries and is illustrated with case study developed in two provinces located in the western part of the
Democratic Republic of Congo.
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A review of ‘A grid-based sample design framework for household surveys’, by Gianluca Boo et al.
The paper describes the set up and implementation of a household survey carried out in the western
Kongo. It is a study of clear interest and relevance, although relatively simple in its different aspects. In
fact, the introduction is promising much more than what is delivered in the paper. For instance, the role of
geostatistics (hence of spatial dependencies) disappears shortly after equation 1. But what comes out of
it in the end, i.e. the implementation, can certainly serve as a ‘framework’. Also the case study has its
merits, and in particular figure 7 is convincing. The following changes should be made to make the
manuscript acceptable for indexing:

Adjust the introduction such that it becomes more realistic and in line with the framework as
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Adjust the introduction such that it becomes more realistic and in line with the framework as
presented.
 
The terms ‘frame’ and ‘framework’ need a definition.
 
Figure 8, at the left side, has a strange red line, increasing from about 0.18 until 0.35. This artifact
of the software should be removed.
 
In the discussion section there is a mentioning of representative and non-representative samples.
This should be further considered, as so far the sampling is done mainly in a design -based frame.
There is literature, notably by Brus et al. that integrate design-based sampling with model-based
sampling. I would appreciate it if the authors could add a paragraph on this frame in the discussion
section.
 
Also: much is   considered in this paper, like costs, cost-effectiveness, a justification for thenot
choice of the KS-distance, the role of PCA, and (as often happens in developing countries)
extending the sampling to more than one variable. This puts other constraints on the framework.
The authors should concentrate on these aspects as well.

Is the rationale for developing the new method (or application) clearly explained?
Partly

Is the description of the method technically sound?
Yes

Are sufficient details provided to allow replication of the method development and its use by
others?
Partly

If any results are presented, are all the source data underlying the results available to ensure full
reproducibility?
Yes

Are the conclusions about the method and its performance adequately supported by the
findings presented in the article?
Yes

 No competing interests were disclosed.Competing Interests:

Reviewer Expertise: Spatial statistics, spatial sampling

I confirm that I have read this submission and believe that I have an appropriate level of
expertise to confirm that it is of an acceptable scientific standard, however I have significant
reservations, as outlined above.

Page 18 of 18

Gates Open Research 2020, 4:13 Last updated: 12 MAR 2020


