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Continual advances in quantitative modelling of surface processes, combined with new spatio-temporal and geo-
computational algorithms, have revolutionised the auto-classification and mapping of landform components
through the automated analysis of high-quality digital elevation models (DEMs). Digital geomorphic mapping
(DGM) approaches that can simplify and translate the inclusion of “human knowledge” to automatic terrain clas-
sification across a broader spectrum of terrain morphological units as well as a range of spatial scales, therefore,
offer great potential for improved topographic and landscape analysis. One such approach is the mapping of land-
form elements using the concept of the Geomorphon (geomorphological phonotypes). The output of the
geomorphon approach is the stratification of the landscape into ten unique but recognisable landform elements:
peak, ridge, shoulder, spur, and slope, hollow, foot slope, valley, depression and flat. Equally appealing is the way
the model self-adapts to local topography using a line-of-sight principle enabling better matching of landform el-
ements to computational spatial scale. The purpose of this paper is to observe the effects that different pixel res-
olution (grain size) and digital elevation model source (DEM) would have on the replication of observed
geomorphic spatial patterns and representation of terrain selected parameters within the landscape. This
paper provides a comprehensive exploratory assessment of digital terrain representation and relief classification
using an automated geomorphometric mapping approach, by evaluating three different digital surface models
(SUDEM, SRTM, ASTER GDEM2) and different spatial resolution (30 m & 90 m) for an 11,200 ha catchment in
KwaZulu-Natal, South Africa. To test the self-adapting ability of the geomorphon approach under regional condi-
tions, we use 4750 gridded terrain samples to quantitatively analyse how the choice of terrain model and scale
influence the extraction, generalisation and representation of digitally-derived terrain attributes such as slope,
elevation and terrain unit feature extent. We further show how the variation in resulting terrain unit represen-
tation is limited by spatial resolution discontinuities of selected elementary soil association distribution, soil tex-
ture and soil depth. We also introduce the results of a Similarity Index used to gauge the degree of recall and
precision between the different geomorphic landscape features. Finally, the findings of the regional
geomorphon-soil relationships are presented in a readily interpretable and qualitative manner, providing a
“quasi-landscape signature” for potential localised geomorphons. The application of the study findings may be
beneficial to practitioners looking to align or refine modelled terrain classification approaches with expert per-
ception and formalised heuristic approaches.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

boundaries of topographic quantification and geomorphic
regionalisation of land surfaces within a GIS environment (Bishop

Digital terrain representation techniques have been developed since
the middle of the 20th century, relying heavily on developments in geo-
computational technology, modern mathematics and computer graphi-
cal operations. The last decade has seen renewed interest in pushing the
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et al., 2012; Florinsky, 2012). Over this period, land-surface analyses
and classification have seen rapid improvements in both the rate and
quality of geomorphometric computational approaches, a key factor
for the utility of digital geomorphic mapping (DGM) (Bishop et al.,
2012; Rigol-Sanchez et al., 2015). DGM has provided users with a new
set of tools with which to explore the conceptual issues of simulating
single or even multi-landscape level functional and structural processes
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and hierarchical organisation of heterogeneous surface composition or
character (Bishop et al., 2003; Tate and Atkinson, 2001; Walsh et al.,
1997).

Importantly, DGM has provided an outlet for users to transcend be-
yond traditional humanistic and deterministic approaches to spatial or-
ganisation and visualisation of landscape phenomena. While
conventional methods offer a high degree of regional or site-specific ac-
curacy driven by expert input; replication, analytical reasoning and
standardisation of procedures are often inhibited by human error, sub-
jectivity and biases typically characterised by qualitative geomorpho-
logical and physiographic terrain analysis (Baker, 1986). Incidentally,
with advanced DGM approaches, users are now able to better quantify
and represent landscape morphology (Pike, 2000; Reuter et al., 2009),
disaggregate terrain morphological units for farm-scale applications
(Flynn et al, 2019); evaluate surface-biophysical associations
(Florinsky, 1998; Gregory and Goudie, 2011; Liang, 2007; Smith and
Pain, 2009; Tarolli et al., 2009) and implicitly explore spatial landscape
complexity (Papadimitriou, 2009) through a broad suite of diversity
and contagion indices of landscape heterogeneity (Li and Reynolds,
1993). Current international literature on landform classification and
soil-landscape analysis using DGM is extensive (Libohova et al., 2016).

However, the specific application of DGM is yet to be fully explored
under Southern Hemisphere conditions where a variety of landscape
pattern-process functions inevitably influence a unique-set of soil-
landscape and pedo-hydro-geomorphic processes (Grab and Knight,
2015; Holmes et al.,, 2016; Partridge et al., 2010). There is an immense
opportunity to further examine the effectiveness of geospatial tools in
understanding the scale-dependency of landscape pattern-process as-
semblages and calibrate model predictions to local geographical set-
tings (Van Zijl and Le Roux, 2014). With regards to the pioneering of
geomorphological studies, that now form the baseline for many DGM
principles, the authors acknowledge that much work has already been
done with regards to exposing the geomorphic principles that resonate
in today's diverse South African Landscape and landforms. At a national
scale, the work by Lester King (King, 1967) in delineating 18 geomor-
phic provinces for Southern Africa based on geomorphic history, geolog-
ical structure, climate location and altitude provides a departure point
in assessing how far the discipline of geomorphological mapping has
progressed in South Africa. Recently, Partridge et al. (2010) were able
to refine the concept by identifying 34 geomorphic provinces and 12
sub-provinces relating to drainage structure and slope by combining
macro-reach descriptors, statistical analyses and digital terrain derived
data (Holmes et al., 2016). These studies have contributed much to-
wards outlining the contemporary challenges of landscape classification
and landform discretisation studies in South Africa. However, these ter-
rain categories remain limited to macro-scale geomorphic classification
and offer a minimal contribution to the representation of distinct, local-
scale (meso) geomorphic sub-regions (Schumann et al., 2011).

Arguably the most prevalent representation of landscape pattern-
process for South Africa must be the National Land Type Database
(ARC, 1972). A Land Type Unit represents a delineated area at a map
scale of 1:250,000, displaying marked uniformity with regards to terrain
form, soil pattern and climate (Schoeman et al., 2013) resulting in a ho-
mogenous distribution of soil properties across the landscape. Soil attri-
butes are represented by a probabilistic organisation and symmetry of
soil property associations and topographic processes known as a topo-
sequence (Bushnell, 1943), or terrain morphological unit (TMU) linked
to the following five terrain units: Crest (TMU 1), Scarp (TMU 2), Mid
Slope (TMU 3), Foot Slope (TMU 4) and Valley Bottom (TMU 5). In the
absence of readily accessible conventional or semi-detailed soil survey
data for a vast majority of South Africa, local context studies still rely
on the Land Type Survey database for describing a variety of process-
pattern interactions within the landscape. Incidentally, the pursuit of a
universally acceptable domain ontology for defining a framework in
landform characterisation, particularly in South Africa, remains ever
elusive given the fugacious nature, regionality, scale-dependency and

preference of geospatial technologies in addressing geomorphological
problems (Cavazzi et al., 2013).

0Oddly, DGM technologies remain a source of Felix culpa to the end-
user. That is, a major caveat of using DGM technologies for landscape
analysis is the abundance of empirical black-box toolsets currently
available to the general end-user. DGM technologies provide an objec-
tive and repeatable definition for geomorphological mapping of ele-
mentary terrain forms. However, many users are not adequately
prepared for the technical-rigour required to define and translate the
scientific underpinnings of geomorphological concepts into a GIS envi-
ronment to accurately parameterise or regionalise these terrain models;
leaving the end-user often undecided or unconvinced of the resulting
modelled landform representations. Concomitantly, users are now
called upon to a have a generalised understanding of the practical as
well as empirical underpinnings of key discipline-specific concepts.
Many considerations now exist before a terrain map can even be de-
rived. So, while current DGM software/tool technologies expose a youn-
ger, more technocratic generation to the appreciation for quantitative
evolutionary assessment of terrain features, so too does it prejudice
more traditionalist-geoscientists reluctant, intimidated and disinter-
ested in exploring these new avenues of research (Bishop et al., 2012).
DGM approaches that can both simplify and translate the inclusion of
“human-knowledge” to automatic terrain classification, therefore,
offer great potential for improved landscape analysis. A design that
has attracted attention in the field of DGM, internationally, is that of
Geomorphon mapping created by Jasiewicz and Stepinski (2013).
Geomorphons represent the fundamental micro-structures within a
landscape and simultaneously represent terrain attributes and landform
types (Jasiewicz and Stepinski, 2013). Geomorphons are analogous to
textons (Julesz, 1981) of a landscape and their extraction from a DEM
comes at a small computational cost considering that they simulta-
neously represent quantitative and stratified terrain attributes and
landform types. The product of the geomorphon approach is the strati-
fication of the landscape into ten unique but recognisable landform ele-
ments: Peak, Ridge, Shoulder, Spur, and Slope, Hollow, Footslope, Valley,
Pit and Flat (Jasiewicz and Stepinski, 2013).

Two important concepts truly distinguish the geomorphon ap-
proach apart from its contemporaries. First, is that landform
discretisation is not based only on geomorphometric variables, but
rather on the complete topographic pattern corresponding to specific
landform elements. Applying tools of computer vision rather than sim-
ply tools of differential geometry in an attempt to replicate the level of
classification performed by human analysts (Silva et al., 2016a). Sec-
ondly, is the ability of geomorphons to determine a local pattern from
a DEM using a neighbourhood approach with size and shape that self-
adapts to the local topography using the line-of-sight principle (Lee,
1991; Nagy, 1991; Yokoyama et al., 2002) enabling better matching of
landform elements to the appropriate spatial scale. This aspect in itself
is a revolutionary advantage to end-users not sufficiently skilled in the
concept of DGM scale-dependency (how patterns change with scale)
which is pivotal in feature selection and terrain generalisation
(Cavazzi et al., 2013). No consensus omnium yet exists for defining the
optimal grain size for environmental factors to use in terrain analysis
and scale-dependency in soil-landscape analyses is still mostly unre-
solved with minimal empirical guidelines available (Bishop et al.,
2012). The main reason for this is that the determination of an optimal
grid size for classifying terrain heterogeneity is highly dependent on is-
sues such as terrain provenance, terrain complexity, observed terrain
phenomena, neighbourhood size and DEM generalisation approach
(Wu, 2004). Thereby limiting direct applicability of most DGM ap-
proaches and models of soil-landscape studies to other regions (Quinn
etal., 1991; Vaze et al., 2010). The main challenges with DEM pixel res-
olution are that firstly at finer resolutions the terrain variables contain
too much unnecessary detail or “noise” that may lead to poorer
modelled accuracies. Secondly, at coarse resolutions, terrain variables
may show too much generalisation or “smoothing” and not adequately
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represent terrain attributes or the land surface, ultimately limiting the
predictive capacity and accuracy of soil-landscape models (Cavazzi
et al., 2013). The utility of superior DGM tools, such as the geomorphon
approach, in simplifying the spatial definition and classification of ter-
rain morphology within complex soils-landscape systems necessitates
further review in a local context. It's against this backdrop that the au-
thors contend, supported by others (Malan, 2016; Mashimbye et al.,
2014; Miller and Schaetzl, 2016; Smith and Hudson, 2002; Van
Niekerk, 2010; Zerizghy et al., 2013), that geomorphic classification
and delineation need to be better represented in discrete landform
mapping endeavours in South Africa. Central to this directive is the
shift away from an ad-hoc to a more formal and systematic approach
to landscape character assessment (Wascher, 2005) across a range of
DEM pixel resolutions, using modern geographic technologies and in-
corporating better base maps of topography into the landform mapping
process (Miller and Schaetzl, 2014). Here landscape character is defined
as the distinct, recognisable and consistent pattern of elements in the
landscape that distinguish one landscape from another (Swanwick,
2002). This definition, therefore, underlines the explicit recognition of
individual landscape elements, that constitute the landscape, and there-
fore allow for a systematic comparison of areas based on their landscape
character (Galatowitsch et al., 2009). On this basis, the authors believe
that the present study approach offers great potential to not only im-
prove landform classification but so too terrain-unit discretisation at a
local to semi-regional scale in South Africa. This study was carried out
in response to the need to explicitly investigate how DEM spatial varia-
tions and geomorphon parameterisation influence the geomorphic ter-
rain characterisation for soil-landscape feature extraction. In this study,
we investigate how robust the geomorphon approach is at characteriz-
ing terrain features from three different derived DEM models, namely
the SUDEM, SRTM and ASTER GDEM2 datasets calculated at two distinc-
tive, and operationally-relevant, pixel resolutions, 30 m and 90 m. Two
key objectives were outlined for this study: 1) to qualitatively assess,
using a single set of model optimisation criteria, the similarity in terrain
representation and selected soil-landscape covariate extraction be-
tween four geomorphon surfaces derived at different spatial resolutions
in a mountainous region in Central KwaZulu-Natal. 2) to evaluate how
well aligned these derived geomorphon surfaces and their (scale-
dependent) topographic properties are to the heuristic underpinnings
of accepted, operative soil-landscape relationships for the study region.

2. Materials and methods
2.1. Site description

This study was carried out in a 16 km x 11 km area (11,200 ha) lo-
cated near the town of Bergyville in the Central Drakensberg Region,
KwaZulu-Natal (Fig. 1). The study area, which extends from 28° 38’
13.17"S to 28° 38’ 56.99”S and from 29° 0’ 57.01”E and 29° 17’ 11.28"
E was selected as it provided a suitable range of terrain types from mod-
erate to steep sloping hills to open and incised valleys showing evidence
of anastomosing channels formed by old stream meltwaters. Moreover,
regional-scale digital elevation models show these rolling hills as dis-
tinct, recognisable features of the landscape. Changes in elevation
from the lower-lying troughs to hillslope highs are approximately
45 m, and distances between these features are about 150 m.

The primary geological material across the site is of the Karoo Sys-
tems' Beaufort Series. The lithology consists mainly of blue, green, red,
or even purple mudstones and shales alternating with yellow, fine-to
medium-grained feldspathic sandstones (Van der Eyk et al., 1969).
The most distinctive landscape element in the study area is the notice-
able presence of a table-topped hill (mesa) feature with well-defined
scarp slopes extending to lower ranging hillslopes and finally an alluvial
toe slope at the base of Woodstock Dam (Ruhe, 1960). The less domi-
nant terrain features are characterised by moderate to steep undulating
sandstone deposits through the site. The elevation ranges from 1164 m

above sea level in the east to 1472 m in the centre of the study area with
an average altitude of 1318 m. Mean annual temperature is in the region
of 18.4 °C with temperatures dropping as low as 1.2 °C between June
and July and reaching 31.1 °C during the summer months of December
to January. Median annual rainfall for the region is 820 mm with a
higher concentration from December to February (Camp, 1995). The
dominant land use in the area is natural grassland and veld (6387 ha)
with other prominent land uses including extensive commercial arable
and livestock agriculture (3961 ha), woodland and open bushland
(153 ha) and water bodies (453 ha) with Woodstock Dam occupying
373 ha of the total catchment impoundment footprint. Most of the
urban villages and settlements (32 ha) are limited to the lower-lying re-
gions while surface erosional features (55 ha) such as channelled gullies
and “dongas” prevail in the moderate to lower surface gradient regions
(GeoTerralmage, 2015).

2.2. Data acquisition and analysis

2.2.1. Sample data points

To characterise landscape homogeneity, its spatial heterogeneity
must first be appropriately described. Using the definition by Kolasa
and Rollo (1991), a surface property is heterogeneous, if its measure-
ments vary in space. A more thorough description is that spatial hetero-
geneity in categorical landscape maps is defined as the complexity for
both the composition (diversity) and configuration (spatial arrange-
ment) of a particular land feature (Lausch, 2015). Landscape composi-
tion accounts for the types of categories that are present, including
how many of these groups are present while ignoring the specific spatial
arrangement of these classes on the landscape. In this study, spatial con-
figuration refers to the particular spatial arrangement of the different
cover types on a landscape (Wang et al.,, 2017). Characterizing the spa-
tial heterogeneity of geomorphons derived under a set of controlled pa-
rameters may help in designing the spatial resolution for future earth
observing missions, vis-a-vis, under local settings (Morisette et al.,
2002). In this study, spatial heterogeneity has been defined through
two components, namely: the spatial variability (DEM derivative vari-
ability) of the surface property over the observed study area; and the
spatial structure (Geomorphon variability) or landscape objects or
patches that represent themselves independently and repeatedly
within the study site at a characteristic length scale (spatial scale)
(Garrigues et al., 2006).

The study adopted a purposive grid sampling approach (Aguilar
et al, 2005; George et al, 2018; Nanni et al, 2011) using a
150 x 150 m ground-sampling grid resulting in a total of 4750 derived
gridded sample-point locations for the entire 11,200 ha site. The choice
of this sampling design is based on two fundamental research-specific
considerations: 1) foremost, the design is intended to capture as much
surface heterogeneity from the DEM-resulting geomorphon surface de-
rivatives as possible by exhaustively surveying the entire study region
using all 4750 point samples. This systematic gridded sample approach
proved most optimal in comprehensively accounting for the terrain fea-
ture variation within the study site, limiting minimum biased feature
extractions and resulting in higher reliability of final results in compar-
ison with other possible sampling techniques, i.e. stratified cluster sam-
pling or Conditioned Latin-hypercube Sampling (George et al., 2018).
Furthermore, the applied sampling approach would not only limit the
possibility of drawing an unrepresentative sample of terrain features
but also enable the second-order geographical variance: global variance
and spatial structure to be better represented (Wang et al., 2010). The
choice of the sample-grid resolution (150 x 150 m) was selected by de-
sign to corroborate derived computational results with in-field applica-
tions to soil and landscape assessments in the Province of KZN where
this grid resolution is the de facto grid resolution for field-based surveys
(Smith, 2006). Incidentally, a review of the model proposed by (Heng],
2006) to determine maximum location accuracy (MLA) or average
size area (ASA), the 150 x 150 m gridded approach applied in this
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Fig. 1. Bergville area - (a) Location of study site showing stratified sample observations (b) geographical overview of the study site (c) DEM delineated catchment area.

study was found to be appropriate to describe the landscape with re-
ported results correlated well to similar pixel resolutions for the 30
and 90 m resolution DEM datasets used in the study.

2.2.2. Digital elevation data

DEM choice generally contains tradeoffs between cost, accuracy,
spatial coverage and grid size as well as the way they are prepared
and corrected (Robinson et al., 2014). However, the quality of the
DEM ultimately determines the accuracy and reliability of the spatial
geomorphometric analysis. For this study, four DEM surfaces were ana-
lyzed: a locally derived 30 m and 90 m (generalised from 5 m DEM sur-
face) Stellenbosch University Digital Elevation Model (SUDEM) (Van
Niekerk, 2014; Van Niekerk, 2016) as well as the readily available C-
Band, 90 m Shuttle Radar Topography Mission (SRTM) and 30 m Ad-
vanced Spaceborne Thermal Emission and Reflection Radiometer
(ASTER) Global Digital Elevation Model V2 surface models. The high-
resolution SUDEM terrain products are gaining in popularity in a variety
of terrain analysis, digital-soil mapping and hydrological modelling ap-
plications. The SUDEM is perhaps the most accurate and readily avail-
able localised high-resolution DEM for South Africa. SUDEMs are
offered as a series of products developed by the Centre for Geographic
Analysis (CGA) situated at Stellenbosch University, South Africa. By pro-
cessing large scale contours and spot heights with local interpolation
approaches, DEM products are offered at four different processed levels:
level 1,2 3 and 4 (Van Niekerk, 2012). Selected regional studies have
shown that the SUDEM products, even when generalised to lower reso-
lutions, are able to yield as accurate terrain feature representations
when compared to using higher-resolution products such as LiDAR

generalised to the same resolutions (Atkinson et al., 2017). The
SUDEM is an appealing option in terrain surface analysis in South
Africa as it's both cost-effective and retains high feature quality. While
there are spurious issues relating to contour and spot height estimations
in the data, many of these errors (gaps) do not feature in the final inter-
polated product(s). The baseline level 2b product used in this study of-
fered far superior data accuracy and image quality than other readily
available primary surface models obtained from public-sector data cus-
todians such as the South African Chief Directorate National Geospatial
Information. The SRTM and ASTER GDEM2 remain the most widely ap-
plied satellite-derived, near-global and high-resolution DEM data sets
and were selected due to their reputable operational application and
general ease of open-access to the end-user (Gesch et al., 2012). The
SRTM is reported to have an absolute vertical (orthometric) accuracy
of 16 m or less, a relative vertical accuracy of 10 m or better and an ab-
solute horizontal accuracy of better than 20 m (Rexer and Hirt, 2014;
Jarihani et al., 2015; Sharma and Tiwari, 2014). While the ASTER
GDEM?2, released in October 2011, has an improved vertical accuracy
(orthometric) of 17 m, and absolute horizontal accuracy of +£30 m
(Gesch et al., 2012; Jarihani et al., 2015; Meyer, 2011) For a full compar-
ative review of the sensor and surface products used in this studies,
readers are referred to the study by Atkinson et al. (2017).

To examine the applicability of DEMs for geomorphon feature detec-
tion, digital analyses with ArcGIS® (ArcMap™, Version 10.5) had to be
performed for further data interpretation. All DEM products were
re-projected to meters from a Geographic Coordinate System to the Uni-
versal Transverse Mercator (UTM) projection (Zone 36S) before analy-
sis. Minimal post-processing procedures were applied to the DEM
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models (versions) used in this study as the products were already
suitably post-processed by the vendors with image enhancements
including the elimination of voids, spike and pit removal, water
body levelling with overall improved surface accuracy and height
validation (Tachikawa et al., 2011; Yang et al., 2011). Postprocessing
of the primary-derived geomorphon products using both the with
majority-filtering and mean-filtering algorithms ensured that out-
lier pixels and anomalies within classes were removed before the
final reclassification of the geomorphon raster surfaces into the ten
discrete categories. While pre-processing is vital for model accuracy,
DEM preparation can impact other components of model perfor-
mance (Callowa et al., 2007).

Consequently, none of the DEM models were further modified to
generate hydrologically-conditioned DEM surfaces. This was a neces-
sary and deliberate consideration since the study required the identifi-
cation of certain discontinuous terrain features such as pits
(Geomorphon Unit 10) and hollows (Geomorphon Unit 7) within the
landscape. Furthermore, Atkinson et al. (2017) reported that the use
of hydrologically corrected DEMs to derive selected surface parameters
was not found to be reliable for the extraction of selected terrain vari-
able estimates across a range of pixel resolutions.

To ensure DEM comparability, all DEMs were processed to
equal spatial resolutions of analysis of 30 and 90 m, respectively
(Bubenzer and Bolten, 2008). While both the ASTER GDEM2 and
SRTM DEMs were used in their native resolutions of 30 and 90 m re-
spectively, the 30 m and 90 m SUDEM DEM models were derived
from a high-resolution 5 m SUDEM using the nearest neighbour gen-
eralisation approach outlined by (Atkinson et al., 2017). Having been
derived directly from the 5 m DEM, and therefore assuming the
highest elevation accuracy, the 30 m SUDEM was used as the refer-
ence DEM to evaluate the accuracy of the geomorphon surfaces and
associated terrain variables from the other DEM sources. A vital
part of this research involved the identification of the relationship
between geomorphon surfaces and terrain character and the simi-
larities in terrain products across these scale-specific geomorphon
surfaces. It is however beyond the scope of this paper to explicitly
address all the issues of DEM error assessment in a single paper
and readers are referred to the work of (Atkinson et al., 2017;
Florinsky, 1998; Prasannakumar et al., 2011; Shafique et al., 2011;
Serensen and Seibert, 2007; Thompson et al., 2001).

2.3. Geomorphon pattern characterisation

For the creation of the 2D geomorphon models, the DEMs were input
to GRASS GIS (v 7.4.1) (Neteler and Mitasova, 2007) with the workflow
making use of the r.geomorphon extension. The raster-based r.
geomorphon delineates the ten most universally accepted landform
units by applying a pattern recognition algorithm that is based on
3 x 3 local neighbourhood search radius from a central focal point
(Jasiewicz and Stepinski, 2013). Each Geomorphon coincides with the
most common slope positions used to describe landscape features. A
vital function of the r.geomorphon extension is the ability to process ex-
tensive DEM datasets through optimal memory management (Jasiewicz
and Stepinski, 2013). It does this by limiting geomorphon calculations to
a local, user-defined neighbourhood extent (line of sight) thereby en-
suring that only a relevant, small portion of the entire DEM is read to
the computer memory during processing. A key consideration in the
generation of geomorphic surfaces is a posterior selection of window
size and length-scale (Wood, 2002). The r.geomorphon algorithm can
analyse the extent and shape of the featured neighbourhood to classify
the landform elements by automatically self-adjusting/adapting to the
geometry of the local terrain derived from the DEM surface. Notably,
model optimisation depends on three core parameters: maximum
search radius (lookup distance), flatness threshold (t-degrees) and Skip
radius (cells). A key consideration is the search radius (L-cells) which
represents the maximum distance for line-of-sight (LOS) calculations

for each pixel. To evaluate, how well the r.geomorphon tool can adapt
to feature scale recognition and consistently detect similar local terrain
features its essential that landform feature resolution is relative to DEM
spatial (pixel) resolution. Users can therefore systematically and itera-
tively, albeit on a trial-and-error basis, calibrate the geomorphon
model inputs with parameters such as search and skip radii values to
determine the appropriate scale of analysis for the study. By adjusting
these parameters, user's can effectively skip small terrain variations to
capture more massive landforms and uniformly optimise the final
geomorphon surface outputs. For this study, the optimisation approach
enabled the researchers to determine whether geomorphic features de-
tected at 30 m are diligently represented at 90 m and vice versa across
different DEM surfaces.

In this study, the authors adopted a similar approach to Luo and Liu
(2018) and Gruber et al. (2015) by iteratively selecting model parame-
ters that offered a reasonable balance between the accuracy of capturing
landform elements and model computational cost. Applying a constant
outer search radius of 30 cells across all DEM surfaces allowed the au-
thors to control the classification outputs by solely observing surface
variation resulting from pixel resolution and not the line of sight varia-
tions as well (Libohova et al., 2016). The following optimisation param-
eters best represented the Geomorphon surfaces across all DEM
surfaces (Table 1).

The table shows that a constant outer search radius of 30 cells was
used to map the Geomorphon features between the DEM surfaces. The
30-cell search radius is equal to search distances of between 900 and
2700 m for the 30 and 90 m DEM surfaces respectively. The r.
geomorphon tool allows the user to model both inner and outer search
radii using either cell number or ground distance (m) depending on
user preference (Jasiewicz and Stepinski, 2013). Finally, the flatness
threshold of 1.2° used in this study corresponded well with similar
studies by Luo and Liu (2018) and Trentin and Robaina (2016) who
settled on a maximum search radius of 2500 m and 1800 m and flat-
ness threshold of 1° and 2° respectively. The SUDEM 30 m and 90 m,
as well as the SRTM DEM, identified nine geomorphic features while
the Aster GDEM2 identified all ten geomorphic features including
the “Pit” terrain feature.

24. Extracting the primary topographic covariates

All geomorphon features were assessed against two primary com-
pound terrain attributes namely altitude (DEM height) and slope gradi-
ent. These indices were selected since they are readily extractable in a
GIS environment, are simple to interpret and compare across datasets,
can be analyzed using descriptive or non-parametric statistical ap-
proaches and are regularly used as input variable parameters in similar
landscape assessment studies (Kumar, 2013). Many studies still rely on
local elevation and slope as easily interpretable parameters to identify
and compare landform types (Saadat et al., 2008). Slope, represented
as percentage values, were extracted using the slope tool in the Earth
Science Research Institutes ArcGIS® (ArcMap™, Version 10.5) Spatial
Analyst suite of tools.

Table 1
Distance parameters (search, skip, flat distances) used in r.geomorphon for computational
optimisation of multi-resolution DEMs.

Flatness  Flatness
Threshold Distance

Inner Search
Radius

DEM Resolution Outer Search
Source Radius

Cells Distance Cells Distance

SUDEM 30 m 30 900m 6 180m 1.2° 0

SUDEM 90 m 30 2700m 6 540 m  1.2° 0

ASTER 30 m 30 900m 6 180m  1.2° 0
GDEM

SRTM 90 m 30 2700m 6 540 m  1.2° 0
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2.5. Extracting legacy soil data: Tugela Basin database

In this study, the primary source of synoptic soil information that
provided reasonable coverage of the area was obtained from the semi-
detailed survey of the Soils of the Tugela Basin. It was Van der Eyk
et al. (1969) who first produced a compilation of hardcopy soil maps
at a scale of 1:50,000 for the Three Rivers Area (Umvoti, Umgeni and
Illovo) and 1:18,000 topographic coverage for the Tugela Basin, in
which the study area resides. The purpose of the survey was, however,
not to provide a blueprint for detailed land use planning, and the data
do not show the distribution of individual soil series or phases of series
for the region. Instead, the data reveals the broad zonal arrangements in
the distribution of the soil series with each mapping unit potentially
comprising as many as several associated series (Van der Eyk et al.,
1969). For this study, a digital version of the Tugela survey data was
used. The data was initially acquired in a vector format but later
rasterized for ease of automated overlay analysis with the other covari-
ate terrain datasets. In the absence of readily interpretable taxonomic
criteria, the study applied categorical properties (as defined in the orig-
inal attribute space of the soil dataset) associated with soil taxa such as
dominant soil complex, dominant clay content and dominant soil depth
class. The authors acknowledge that while these indicators do not pro-
vide an utterly definitive definition for taxonomic classification by mod-
ern standards or approaches, they do however enable a “coarse” first
approximation and departure point to assess the soil-landscape compo-
nent between derived geomorphon surfaces.

2.6. Data analysis and measures used for map comparisons

The 4750 sample data points were used to extract the raster values
from each of the geomorphon, elevation, slope, soil complex, clay per-
centage and soil depth data sets respectively in ArcGIS 10.5 using the ex-
tract to multipoint feature. The data were then imported to STATISTICA
13.2 for statistical and exploratory data analysis. Data analysis for simi-
larity assessment of geomorphon features between DEMs was primarily
limited to simple quantitative assessment metrics of central tendency
and variance around the mean. Each geomorphon surface feature was
classified according to count, trimmed mean, min, max, standard devia-
tion, coefficient of variation and standard error values for elevation and
slope respectively.

Further to this, data for elevation, slope, soil complex, clay content and
soil depth were categorically classified for comparison of dominant soil-
landscape features across each geomorphon surface. Finally, to indepen-
dently evaluate the accuracy and similarity of the predicted
geomorphon surface products, the resulting maps (90 m SUDEM,
90 m SRTM and 30 m ASTER GDEM2) were compared to the reference
DEM surface (30 m SUDEM). A cell-by-cell comparison of raster values
for each of the geomorphon surface layers and each of the derived
datasets using measures of recall and precision were used to analyse
feature similarity. Specifically, the novel application of a composite
measure (BK) (Leifman et al., 2003) to evaluate geomorphon classifica-
tion similarity (Smirnoff et al., 2008) was used in this study. The BK met-
ric (normalised between —1 and 1 but typically reported as n x 100%)
has been used in other studies to evaluate the accuracy of different clas-
sification methods and has an advantage of being readily produced from
a confusion matrix (Sharifzadeh et al., 2005) of predicted vs observed
observations. Geomorphon feature similarity was then assessed by the
following: Recall = Cells of Unit X placed as X on resulting map/All cells
of Unit X on the original map then (1- Recall) which is considered an indi-
cation of the classification of false negatives. Similarly, the Precision =
Cells of Unit X placed as X on resulting map/All cells of Unit X on the
resulting map represents the portion of cells rightfully placed in the
units of the resulting map with (1-Precision) representing the so-
called false positives (Smirnoff et al., 2008).

A significant advantage of using the composite BK approach is that it
allows two or more generalised maps to be compared, regardless of

spatial resolution differences, with either of them serving as a reference
map. The observed BK values then represent the degree of similarity/
dissimilarity between two or more maps. The high-resolution SUDEM
30 m, including all associated derived products, was used as reference
(observed) map while the other DEM surfaces and their related prod-
ucts served as the predicted (produced) surface(s). By combining the
recall and precision, the BK = Recall + Precision — 1 score can be calcu-
lated with the range of the composite values represented between —1
and 1 with higher similarity tending towards more positive values ap-
proaching 1.

3. Results and discussion
3.1. Geomorphon similarity, cross-tabulation and BK composite measure

The overall similarity results of the unsupervised surface classifica-
tion for the BK composite comparison are presented both graphically
and through a confusion matrix (Tables 2a-2c). The results reflect the
geomorphon feature comparison of the SUDEM 90 m (Fig. 2b), SRTM
90 m (Fig. 2c) and ASTER GDEM2 (Fig. 2d) to the reference SUDEM
30 m surface (Fig. 2a). Visual inspection of the geomorphon surfaces re-
veals that the reference 30 m SUDEM exhibits the most surface detail,
while the 90 m geomorphon surfaces depict a relatively smooth, gener-
alised landscape with geomorphon features still distinctive and most
surface-feature patterns well aligned with those represented in the
30 m SUDEM. In contrast, the 30 m GDEM2 surface displayed a noisy
and incoherent geomorphon surface with minimal feature characterisa-
tion largely attributed to the “fractured” nature of the DEM surface. Ad-
mittedly, the GDEM2 coverage for the study site is inherently poorly
represented with high intra-class fragmentation and heterogeneity of
surface elevation. In this instance, the overall poor performance of the
GDEM2 Geomorphon classification is predominantly a manifestation
of the sub-optimal quality of the DEM surface. The ASTER GDEM2 sur-
face product(s) have noticeably improved quality compared to its pre-
decessor, ASTER GDEM1, attributed to reduced artefact incidence and
improve spatial resolution and the accuracy of water masking (Rexer
and Hirt, 2014). Despite the overall improved image quality, the
GDEM2 dataset remains beset with region/scene-specific anomalies
and artefacts that require processing and removal before use, particular-
ity at higher latitudes (>60 N) and lower latitudes (<60 S) (Robinson
et al., 2014). Furthermore, improvement in both vertical and horizontal
accuracy has come at the cost of increased noise in the datasets as well
as reflectance-bias to land cover and reflective surfaces with accuracy
measurement being lower for forested areas, buildings etc. compared
to bare surface areas (Gesch et al., 2012; Meyer, 2011).

Considering these first-approximation visual comparisons, we can
conclude that while the reference 30 m SUDEM surface may contain de-
tailed geomorphon detail, particularly with the representation of dis-
crete features, such as ridges, slopes and valleys, the 90 m
geomorphon surface products were able to graphically represent simi-
lar morphon features perhaps not in extent but at least in terrain posi-
tion. This result was not entirely unexpected, given how spatially
autocorrelated all the DEM surfaces were within the study area
(Tables 3a-3d). Nonetheless, the result remains positive in the context
of this study given that the consensus is that as pixel resolution of the
DEM surface decreases slope values are underestimated typically lead-
ing to a misrepresentation of terrain features at coarser resolutions
(Warren et al.,, 2004).

However, deferring to the quantitative result comparisons for the
overall similarity performance, i.e. the BK composite results, between
the predicted and reference surfaces are not particularly promising.
The performance described here refers to the quality of the classifier
(predicted surface) and its usefulness for automatic mapping of the
“true surface” or some permutation thereof (Jasiewicz et al., 2015).
The low BK values displayed in Tables 2a-2c show that a majority of
the predicted geomorphon units are statistically dissimilar to their
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Table 2a
BK similarity comparison of geomorphometric features between the reference SUDEM 30 m and SUDEM 90 m DEM surface.
ACTUAL (30 m SUDEM) PREDICTED (90 m SUDEM) SIMILARITY
FLAT SUMMIT RIDGE SHOULDER SPUR SLOPE HOLLOW FOOTSLOPE VALLEY DEPRESSION TOTAL RECALL PRECISION BK
FLAT 16 0 0 2 0 0 0 45 2 0 65 0.25 0.16 —0.59
SUMMIT 0 19 11 0 0 0 0 0 0 0 30 0.63 0.28 —0.09
RIDGE 5 42 429 41 89 33 1 4 1 0 645 0.67 0.55 0.21
SHOULDER 5 0 27 36 14 35 15 30 6 0 168 0.21 0.15 —0.63
SPUR 6 5 192 50 224 194 27 36 18 0 752 0.30 0.36 —0.34
SLOPE 35 2 111 88 257 607 168 207 123 0 1598 0.38 0.53 —0.10
HOLLOW 2 1 13 11 30 205 155 73 119 0 609 0.25 0.34 —0.40
FOOTSLOPE 28 0 0 5 5 18 7 150 135 0 348 043 0.24 —0.33
VALLEY 1 0 4 1 4 64 80 83 297 0 534 0.56 0.42 —0.02
98 69 787 234 623 1156 453 628 701 0 4749
Table 2b
BK similarity comparison of geomorphometric features between the reference SUDEM 30 m and SRTM 90 m DEM surface.
ACTUAL (30 m SUDEM) PREDICTED (90 m SRTM) SIMILARITY
FLAT SUMMIT RIDGE SHOULDER SPUR SLOPE HOLLOW FOOTSLOPE VALLEY DEPRESSION TOTAL RECALL PRECISION BK
FLAT 6 0 0 0 2 1 2 44 10 0 65 0.09 0.29 —0.62
SUMMIT 0 22 8 0 0 0 0 0 0 0 30 0.73 0.28 0.01
RIDGE 1 48 433 18 102 30 3 8 2 0 645 0.67 0.52 0.19
SHOULDER 1 0 37 22 21 32 14 34 7 0 168 0.13 0.20 —0.67
SPUR 1 8 207 28 221 213 30 16 28 0 752 0.29 0.34 —0.37
SLOPE 6 1 125 35 257 651 219 151 153 0 1598  0.41 0.54 —0.05
HOLLOW 0 0 13 7 36 205 157 41 150 0 609 0.26 0.30 —0.44
FOOTSLOPE 6 0 0 2 8 25 9 149 149 0 348 0.43 0.31 —0.26
VALLEY 0 0 5 0 6 52 87 42 342 0 534 0.64 0.41 0.05
21 79 828 112 653 1209 521 485 841 0 4749
Table 2¢
BK similarity comparison of geomorphometric features between the reference SUDEM 30 m and ASTER GDEM2 30 m DEM surface.
ACTUAL (30 m SUDEM) PREDICTED (30 m ASTER GDEM2) SIMILARITY
FLAT SUMMIT RIDGE SHOULDER SPUR SLOPE HOLLOW FOOTSLOPE VALLEY DEPRESSION TOTAL RECALL PRECISION BK
FLAT 0 1 4 5 7 16 4 5 15 8 65 0.00 0.00 —1.00
SUMMIT 0 17 11 2 0 0 0 0 0 0 30 0.57 0.13 —0.30
RIDGE 0 79 364 17 111 53 11 1 7 2 645 0.56 0.44 0.00
SHOULDER 0 6 61 4 31 35 16 0 14 1 168 0.02 0.06 —0.92
SPUR 0 10 199 8 269 178 50 15 22 1 752 0.36 0.35 —0.30
SLOPE 0 11 150 22 295 702 237 19 154 8 1598  0.44 0.55 —0.01
HOLLOW 0 0 13 5 32 147 210 18 178 6 609 0.34 0.32 —0.34
FOOTSLOPE 1 2 24 3 26 86 54 8 122 22 348 0.02 0.08 —0.90
VALLEY 1 0 5 2 7 54 82 36 318 29 534 0.60 0.38 —0.02

reference geomorphon counterpart. In particular, the predicted
geomorphon features that showed the lowest similarity in both 90 m
DEM products were the flat, shoulder, spur and footslope terrain fea-
tures. Coincidently, the same geomorphon features also exhibited
higher slope gradient standard deviations to the SUDEM 30 m surface
(Tables 3a-3c). Interestingly, a study conducted by Gruber et al.
(2017) similarly found that features such as shoulders, foot slopes,
and localised flat regions were poorly mapped despite applying best pa-
rameter settings for each topographic position with only minor gains in
accuracy related to scale variation. In contrast, the results for the 30 m
GDEM2 displayed lower similarity to the reference 30 m SUDEM surface
than the 90 m products with almost all morphon features displaying
lower BK values with features such as flat, shoulder and footslope BK
scores even approaching —1.00 suggesting complete dissimilarity
with the reference surface. Conventionally, these results would not be
expected given the fine-scale resolution of the 30 m GDEM2 surface co-
inciding with the resolution of the reference 30 m SUDEM.

Before simply ignoring the extraneous predicted surface similarity
results to the reference surface as ineffectual for terrain

characterisation, based solely on the poor BK values, we need to
also consider two additional measures of model effectiveness, i.e.
model recall (producer accuracy) defined as the proportion of rele-
vant material actually retrieved and model precision (user accuracy)
representing the proportion of correlated material actually appropri-
ate (Leifman et al., 2003). Furthermore, the BK approach used in
this study was adapted from Smirnoff et al. (2008) who applied
the metric as means of comparing the results obtained from surface
generalisation using a cellular automata algorithm on a cell-by-cell
basis. While novel when applied to this study, our application of dis-
crete point feature comparisons may have led to a far more restric-
tive sample-space analysis of results if compared to a complete
pixel-based grid comparison of datasets. This may have in part con-
tributed to the overall poor BK results and moderately acceptable
precision and recall results between the predicted and actual
geomorphon surfaces. Further investigation into the selection of a ro-
bust and suitable “benchmark” assessment for similarity assessment
between geomorphon surfaces may yet need to be further defined
for future applications in terrain analyses.
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Fig. 2. Overview of a centrally located Sub-AOI showing a 2-D comparison of (a) reference SUDEM 30 m geomorphon surface with (b) SUDEM 90 m surface (c) SRTM 90 m surface and
(d) GDEM2 30 m geomorphon surface. Figures (e-f) showing results of the BK similarity for the SUDEM 90 m, SRTM 90 m and 30 m GDEM2 respectively.

Table 3a
Descriptive statistics for DEM elevation, slope and feature area for the 30 m SUDEM reference Geomorphon surface.
SUDEM 30 Height Slope Area
Count Min Max Mean SD cv SE Min Max Mean SD v SE Ha
Flat 65 1169 1255 1181 16 1 2 0 6 2 2 65 0 145
Summit 30 1244 1472 1379 81 6 15 0 19 6 4 68 1 70
Ridge 645 1182 1462 1278 57 4 2 0 55 7 7 101 0 1450
Shoulder 168 1176 1292 1225 32 3 2 0 15 3 2 53 0 392
Spur 752 1178 1445 1259 44 4 2 0 60 9 8 88 0 1670
Slope 1598 1172 1417 1247 40 3 1 0 55 8 5 73 0 3600
Hollow 609 1178 1375 1246 31 2 1 1 52 7 4 58 0 1359
Foot 348 1168 1292 1201 27 2 1 0 11 3 2 62 0 796
Valley 534 1169 1335 1230 33 3 1 0 20 6 4 62 0 1233
Pit 0 0 0 0 0 0 0 0 0 0 0 0 0 0

In all three predicted surfaces, the summits, ridges, slopes and val-
leys show relatively high values of either recall or precision accuracy
concerning the SUDEM surface. For instance, while the 90 m SRTM sur-
face yielded low overall BK values, the recall accuracies - that a mapped
geomorphon was predicted - were high with 73%, 67% and 64% for the
summit, ridges and valleys respectively. Interestingly, even the ASTER
GDEM?2, despite the low similarity in the BK metrics, was able to map
57% and 56% of the summit and ridges in the reference surface 30 m
SUDEM surface. These results indicate that some replication between
the predicted and reference surfaces, albeit at a specific morphon fea-
ture and not complete landscape level, is possible even with coarse

DEM resolutions of 90 m and despite inherent artifactual inconsis-
tencies in selected DEM surfaces.

These results present both advantages and drawbacks for future ter-
rain characterisation analysis with varying DEM surfaces using
geomorphons. Firstly, the application of coarse resolution DEMs to
geomorphon feature discretisation holds promise for soilscape studies
in South Africa, particularly in regions where open-source global DEM
datasets such as SRTM are still a primary source of terrain data. How-
ever, the fact that the GDEM2 was able to comparatively represent ap-
proximately 60% of the reference geomorphon features despite the
mediocre DEM surface begs the question: how much of the model
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Table 3b
Descriptive statistics for DEM elevation, slope and feature area for the 30 m GDEM2 predicted Geomorphon surface.
GDEM2 Height Slope Area
Count Min Max Mean SD cv SE Min Max Mean SD cv SE Ha
Flat 2 1170 1176 1173 4 0 3 9 29 19 14 74 10 4
Summit 126 1173 1470 1287 67 5 6 1 47 14 9 64 1 270
Ridge 831 1168 1469 1266 56 4 2 0 86 13 10 77 0 1885
Shoulder 68 1164 1386 1242 51 4 6 1 47 14 8 54 1 144
Spur 778 1164 1432 1256 48 4 2 0 87 14 10 70 0 1770
Slope 1271 1159 1436 1248 44 4 1 0 66 13 8 64 0 2839
Hollow 664 1163 1367 1240 36 3 1 1 61 12 8 62 0 1480
Foot 102 1161 1313 1222 31 3 3 1 33 12 7 57 1 240
Valley 830 1150 1328 1225 34 3 1 0 50 12 7 58 0 1928
Pit 77 1154 1267 1197 29 2 3 2 33 13 8 58 1 155
Table 3¢
Descriptive statistics for DEM elevation, slope and feature area for the 90 m SRTM predicated Geomorphon surface.
SRTM 90 Height Slope Area
Count Min Max Mean SD cv SE Min Max Mean SD cv SE Ha
Flat 21 1172 1213 1183 11 1 2 0 10 4 2 64 1 44
Summit 79 1295 1476 1416 57 4 6 0 45 16 14 88 2 172
Ridge 828 1194 1419 1277 42 3 1 0 58 8 7 96 0 1887
Shoulder 112 1188 1302 1243 32 3 3 1 16 5 3 50 0 242
Spur 653 1197 1420 1268 37 3 1 0 47 8 6 77 0 1489
Slope 1209 1184 1398 1250 34 3 1 1 51 7 4 59 0 2705
Hollow 521 1190 1317 1246 25 2 1 1 20 6 3 47 0 1156
Foot 485 1166 1288 1199 24 2 1 0 25 5 3 64 0 1082
Valley 841 1168 1323 1223 30 2 1 0 18 5 3 60 0 1938
Pit 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Table 3d
Descriptive statistics for DEM elevation, slope and feature area for the 90 m SUDEM predicated Geomorphon surface.
SUDEM 90 Height Slope Area
Count Min Max Mean SD v SE Min Max Mean SD cv SE Ha
Flat 98 1169 1250 1185 15 1 1 1 14 4 2 58 0 228
Summit 69 1296 1472 1418 59 4 7 0 45 16 14 84 2 155
Ridge 787 1193 1426 1278 46 4 2 0 52 8 8 99 0 1776
Shoulder 234 1187 1346 1241 31 2 2 0 21 6 3 60 0 557
Spur 623 1193 1387 1270 34 3 1 0 41 8 6 72 0 1362
Slope 1156 1185 1357 1249 32 3 1 1 36 7 4 54 0 2614
Hollow 453 1191 1324 1248 26 2 1 2 17 6 2 41 0 1020
Foot 628 1168 1288 1204 25 2 1 0 24 5 3 61 0 1417
Valley 701 1170 1300 1221 27 2 1 0 21 5 3 56 0 1586
Pit 0 0 0 0 0 0 0 0 0 0 0 0 0 0

precision in the output predicted geomorphon surfaces is a result of sta-
tistical or spatial chance or even endogenous error.

Indeed, the intelligible multi-scale format of the geomorphon ap-
proach may appear to wholly endogenize the otherwise complicated in-
puts of other pixel-based terrain models; however, MacMillan and
Shary (2009) concluded that it would be near impossible and impracti-
cal for any terrain model using any fixed dimension of search radius to
perfectly capture the variation of landform features of interests in any
given area. With the geomorphon approach, this expectation is not
without a valid reason. By users specifying an infinitely large search ra-
dius (L) and low flatness threshold (t) when trying to define
geomorphons in the landscape, the vision-based model should, in the-
ory, identify all possible landform elements within a particular land-
scape (Jasiewicz and Stepinski, 2013). However, shorter (L) values will
attempt to register surface microfeatures while applying larger (L)
values will result in smaller features lumped into other more common
landforms with the apparent implication of false-positive morphon
classifications. Incidentally, the monologue by (Levin, 1992) states
that “scale represents the window of perception, the filter or the measuring

tool through which a landscape may be viewed or perceived”. Unambigu-
ously then, the most critical consideration for users of geomorphons
(and their success after that) is that firstly the geomorphometric appli-
cation and interpretation must still be governed by primary geomor-
phological factors such as the characterisation of either localised or
regional landforms in the landscape (Pike, 2000). It's incumbent upon
users to, therefore, invest adequate time in pre-planning and trouble-
shooting the optimal synergies between DEM quality and geomorphon
parametrisation before their strategic and operational uptake in terrain
or soil-landscape based studies.

Given the undulating terrain for this study site combined with the
low frequency of “narrow” and “finer” resolution features such as flats,
shoulders and summits (Fig. 3) it would not be surprising if many of
these smaller features were grouped with the more extensive and
more frequently occurring elements such as slopes and valleys and
ridges in the 90 m DEM surfaces. In fact, (Luo and Liu, 2018) found
that geomorphon maps created using different search radii converge
yield no significant comparisons as the maximum search radius in-
creased to a threshold of zero variance. In this study, a similar trend
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Fig. 3. Histogram of geomorphon frequency for the SUDEM 30, GDEM2 30, SUDEM 90 and SRTM 90 DEM with feature area (ha) indicated for each Geomorphon feature.

was observed between the 30 m and 90 m SUDEM surface products
where, despite the difference in pixel resolution, the threshold values
set in Table 1 resulted in similar features detected across the landscape
albeit in different extent, abundance and detail (Fig. 3a-f). Evidently, se-
lected findings from our study on this particular aspect were corrobo-
rated by (Libohova et al, 2016) who also reported little to no
significant difference between geomorphon products with a different
line of sight within the same pixel resolution. Consequently, the line of
sight threshold(s) evaluated in this study would then be considered
consistent and applicable for mapping most terrain features across
that landscape across the observed DEM resolutions. Our findings gain
further momentum, given the detailed comparison of automated land-
form detection by Gruber et al. (2015). Their study concluded that
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there was no significant difference between terrain features
characterised at meso (50-100 m) and macro (250-400 m) extents
when uniform (L) values were tested with the only important consider-
ation that at a mesoscale level some terrain classes were not reliably de-
tectable. While not much new evidence has been generated by this
study at a global scale, what is encouraging is that our results are in-
line with reviews of a similar localised nature, specifically that of
Libohova et al. (2016); Gruber et al. (2015) and Trentin and Robaina
(2016).

Adjacent to the discussion on optimal pixel resolution Liang et al.
(2004) observed impacts of different spatial resolutions on modelling
surface runoff and concluded that the resolution could be improved
only to a critical level after which no substantial improvements on
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Fig. 4. Histogram showing percent soil complex cover and geomorphon frequency for a) 30 m SUDEM b) 90 m SUDEM c) 90 SRTM d) and 30 m ASTER GDEM2.
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model performance will be observed. So, while grid resolution plays a
vital role in the efficiency of the mapping geomorphons, its contribution
can only be optimised to a certain level to satisfy both processing capa-
bilities and representation of spatial variability. Further, regarding the
parametrisation of geomorphons, specifically the choice and refinement
of optimal LOS values, Silva et al. (2016a) were able to highlight that
pixel size alone and not threshold LOS values had a more considerable
influence on the Chi-squared values of geomorphon surfaces and soil
type phenomena. (Hengl, 2006) corroborated this pixel-specific con-
cept with similar findings suggesting that the choice of optimal pixel
size may need to differ according to different target terrain variables
investigated.

In fact, Gruber et al. (2015) explicitly outlined the need to adapt
model thresholds or membership functions according to topographic
detail of an area for better terrain differentiation. A key finding from
their study encapsulates the dichotomy and complexity of terrain detail
vs membership function vs pixel resolution considerations: their study
found that in general, macro-scale terrain classification maps were
able to replicate a larger number of topographic position classes
(quantitative) whereas the meso-scale models contained fewer classes
but were more similar (qualitative) to a reference surface.

3.2. Geomorphon area frequency distribution by DEM surface

The ability to quantify the overall similarity between different land-
scapes by merely evaluating the descriptive data of the associated and
derived surfaces is a critical element of our methodology. Jasiewicz
et al. (2014) recommend the use of a histogram as an option for rapidly
assessing the terrain-pattern “primitive feature” signature because of its
rotational invariance, i.e. two patterns rotated in respect to each other
will be identical. Fig. 4 shows the histogram of geomorphon terrain fea-
tures vs feature area for each of the DEM surfaces. Tables 3a-3d show
the detailed results for the respective geomorphon surface products, in-
cluding the summary statistics for elevation, slope and geomorphon
area. Firstly, comparing the point-sample count for each geomorphon
surface, interpreted here as a quasi-indicator for in-field sample survey
frequency, it was observed that the dominant (count) and largest (area)
terrain feature identified in all geomorphon surfaces were slope fea-
tures. A key observation was that for selected geomorphon features,
the areas derived from the coarser-resolution 90 m SUDEM and 90 m
SRTM surfaces were consistently higher for the same Geomorphon fea-
tures derived from the reference 30 m SUDEM surface. Furthermore, the
results depict a higher intra-class similarity of geomorphon properties
within, rather than between surface resolution, vis a vie, geomorphon
feature properties derived from the 90 m SUDEM and 90 m SRTM
DEM surfaces were more similar to the geomorphons derived from
the reference surface (30 m SUDEM) than the 30 m ASTER GDEM2
surface.

These trends are evident in both the lower-lying terrain features
such as foot slopes and valley bottoms as well as certain higher altitude
features such as summits, ridges and shoulders. These results are sur-
prising, considering that higher resolution DEMs have typically shown
to be better suited for the detection of finer resolution terrain features
(Cavazzi et al.,, 2013). Interestingly, similar results were observed in
separate studies by Libohova et al. (2016) and Silva et al. (2016b). The
work by Jasiewicz et al. (2014) provides the necessary context for the
observed trends in this study relating these observations to the compu-
tational efficiency (or rather limitations) of the geomorphon approach
to ternary pattern characterisation. While the final geomorphon
model-output represents the ten most common and recognisable ter-
rain features; there are more ternary elements and associated patterns
that are calculated within a given feature space with as many as 500
geomorphon patterns identified in some studies (Jasiewicz and
Stepinski, 2013). There is no ideal or utterly optimal classification ap-
proach to accomplish the decomposition of so many terrain morphol-
ogies into ten, unique classes. Similarly, there are multiple terrain

features that may systematically be assigned to one of the archetypical
ten unique geomorphon classes, and therefore the Type Il error misclas-
sification of cells can be expected. Moreover, it is possible to have mul-
tiple ternary elements and different ternary patterns that represent
different instances of the same morphon class, i.e. slope; valley etc.
within and between locations (Jasiewicz and Stepinski, 2013). The less
constrained the rule-criteria are for the allocation of the ternary pat-
terns to the morphon instances (combinations) and the more uniform
the landscape is, the higher the frequency of features assigned to a typ-
ical class and higher the likelihood of Type II errors (false positives). In
contrast, the accurate detection of specific (and less common when
compared to slopes and valleys) landform features such as pits/depres-
sions and summits/peaks require a single exact geomorphon to be allo-
cated to the final 10 class classified map. So typically there are fewer
instances or interpretations of these less-common ternary patterns be-
fore final classification, generally resulting in a far lower computational
frequency of these features within the final 10-class geomorphon
surfaces.

Analysing the histogram patterns (landscape signature) for each of
the DEMs we observe that the reference SUDEM 30 m is the only
geomorphon surface that is dominated by a slope-spur-ridge-hollow
pattern. The remaining DEM surfaces all display similar patterns with
minor variations. The SRTM 90 m: slope-valley-ridge-spur, SUDEM
90 m: slope-ridge-valley-footslope and the GDEM2 30 m: slope-
valley-ridge-spur. Despite these sequential variations between the
DEM surfaces, the histogram results imply that all geomorphon surfaces
were still able to broadly define the “character” of the landscape as a
composite of higher altitudes, i.e. ridges; spurs as well as lower lying
features, i.e. valleys; foot slopes albeit in varying extent and frequency
of occurrence. Surprisingly, despite being derived from the same 5 m
DSM, the two SUDEM surfaces do not show as much geomorphon fea-
ture similarity as would have been expected. This is evident by the
fact that almost 3500 ha of slope feature area was classified in the
30 m SUDEM surface in contrast to the 2500 ha in the 90 m SUDEM
product reaffirming that the influence of pixel resolution and pixel gen-
eralisation on the detection and classification of certain features in the
landscape must still be acknowledged in geomorphon surface analysis
(Atkinson et al., 2017; Thompson et al., 2001). Astonishingly, the
GDEM2 geomorphon surface results were more comparable to the
SRTM 90 surface than the SUDEM 30 m surface. However, the GDEM2
histogram also revealed certain trends in the geomorphon surface that
suggested the presence of inherent spurious anomalies in the DEM sur-
face as previously observed with the BK similarity results. For instance,
the GDEM2 was the only surface that had identified approximately
200 ha of pit features while only classifying 50 ha as flat areas and fur-
ther classifying approximately 2200 ha of valley features in the study
site. As a baseline visual approximation of the geomorphon surfaces,
the histogram plot provides the basic synoptic overview to establish
that the quality of the GDEM2 for this region may inherently be compro-
mised for terrain-based assessments and feature extraction.

The slope gradient is more sensitive than elevation to local and
global terrain variation (Atkinson et al., 2017). From the results in
Table 3a-3d, we see that slope gradient values do show more variability
than elevation between the four DEM surfaces. Importantly, the derived
slope values for the three DEM surfaces were well aligned to widely ac-
cepted conceptualisations of slope values for the actual landscape fea-
tures for the region (Smith, 2006). These findings are positive as they
suggest the categorisation of the modelled geomorphic features by
slope gradient remains consistent despite the difference in pixel resolu-
tion (grain size) of the DEM surface and choice of DEM sensor platform.
The exception to this appears to manifest with a higher altitude, com-
plex terrain features such as ridges, spurs and summits which conse-
quently indicated higher slope SDs for the SUDEM 30 m, SUDEM 90 m
and SRTM 90 DEMs respectively.

Notwithstanding, to further endorse the spurious findings of the
GDEM2 elevation data, the higher than expected mean slope and SD
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values observed in selected GDEM2 geomorphons confirms the likeli-
hood of contemporaneous DEM error present in the surface model. No-
tably, all GDEM2-identified flat features were reported to have a mean
slope of 19% and a maximum slope of 29% at low altitudes (1173 m).

Likewise, typically steep terrain features such as spurs; slopes and
ridges all displayed relatively small mean slope values of approximately
13% (1266 m) at higher altitudes (1266 m). These summary results for
the GDEM?2 presented in Table 3d are not indicative to the topographic
patterns for the region which may present a challenge in defining the
utility of the GDEM2 product for further geomorphon soilscape applica-
tions in KZN. Slope gradient and soil properties are strongly correlated
(Gerrard, 1981) and Landscape configuration features can be readily de-
fined by contemporary geomorphological and pedogenic processes.
Topo-sequence properties further represent a composite of terrain char-
acteristics, i.e., profile curvature, slope gradient and relative elevation
that allow experts to develop a mental, albeit subjectively, the model
of soil patterns in the landscape to synthesise complex soilscape rela-
tionships in-field “on-the-fly”. It is therefore crucial that when calibrat-
ing the geomorphic/topo-sequence heterogeneity of derived models,
that these generalised soil-landscape relationships correspond with
well-defined, and widely accepted interpretive catenary delineations,
aligned with knowledge-driven expressions of qualitative mental
models of pedogenesis, whether explicit (soil properties) or implicit
(soil classes), particularly for South African conditions (Van den Bergh
etal., 2009). Understanding the contemporaneous erosional and hydro-
logical succession of soil properties down the slope is necessary for
guiding the description and segmentation of the geomorphon soil-
scape “fingerprint” for each DEM surface. Constraints on accurate sur-
face representation using the GDEM2 naturally pose challenges to the
credibility of any derived geomorphon to predict soil-landscape proper-
ties across the study site. These findings corroborate well with work by
(Rexer and Hirt, 2014) who found similar results when conducting ac-
curacy assessment studies of the GDEM2 and SRTM products in
Australia. Their findings reported that the major drawback of ASTER
for landscape analysis is that as an optical sensor, data collection may
be impaired by cloud cover over certain areas leading to data anomalies
such as voids (holes) or artefacts in the GDEM2. To evaluate the utility
and scale-sensitivity of geomorphons for soil-landscape assessments
the authors aimed to further assess how predicted geomorphon terrain
features measured against specific qualitative descriptions for well-
accepted soil-landscape relationships and terrain properties for the
study region.

3.3. Geomorphon character assessment: generalised soil-landscape
properties

The interaction between soils and topography and perhaps, more
importantly, soil-landscape pattern-process relationships can be
treated on several levels. For the purposes of this study, the results of
the geomorphon contribution to the soil-landscape pattern-process in-
teraction for the study region have therefore been limited to a “black-
box” assessment approach whereby the whole system is regarded as a
collection of sub-units with no consideration of the dynamics of the in-
ternal structure, i.e. no attempt has been made to account for the flux of
materials and/or energy through the pedo-transfer system or the con-
sideration of the balance between inputs or outputs directly relating
to soil genesis in the landscape (Gerrard, 1981). Instead, similar to the
work by (Strand, 2011) the results are intended to highlight how soil
pattern-processes within geomorphons may contribute to the concept
of landscape character assessment (Wascher, 2005), i.e. the distinct,
recognisable and consistent pattern of elements in the landscape that
differentiates one landscape from another (Swanwick, 2002). This ap-
proach attempts to emphasize the recognition of individual compo-
nents that constitute the geomorphic landscape for the Bergville
region. The soil properties for each geomorphon unit may then be
used as a basis to establish a systematic approach to formal and

parametrised soil-landscape mapping (Miicher et al., 2010) providing
a rapid comparison of regions in terms of their landscape character
(Galatowitsch et al., 2009). The generalised classification of soil proper-
ties into the geomorphon classes across the different DEM surface reso-
lutions yielded exciting results for the selected soil covariates. These soil
covariates were selected based on their comprehensive representation
of the Tugela Basin soil survey and their ability to represent the basic
soil-landscape characteristics of the region.

3.4. Geomorphons and soil complex

Each geomorphon surface was sampled using the terrain attributes
intended to capture the maximum variation in generalised soil-
landscape properties for the region. Histogram modifications were per-
formed on the attribute maps to highlight essential features in each
resulting geomorphon surface (Jasiewicz and Stepinski, 2012). The ob-
served soil complex properties characterised in the geomorphon classes
are presented in Fig. 4a-d. The results show the relationship between
each DEM specific geomorphon feature and soil complex presented as
percentages (cumulative) based on the frequency of extracted gridded
soils points per landscape feature within the geomorphon surface(s).
Table 4 provides an overview of the Tugela soil complex descriptions
with reference to the major World Reference Base (WRB) Classification
system (Téth et al., 2008).

A high degree of variability was observed between the four DEM sur-
faces and the legacy soil complex distribution both in the percentage
composition of soil complex and in the extent of occurrence for each
geomorphon feature. The only two DEM datasets that showed overall
generalised soil-geomorphon similarity were the two 90 m DEM sur-
faces. This result was, however, expected given the prior findings of
the analysis, which showed that these two datasets were highly corre-
lated on pixel resolution alone. Interestingly, the hollow, ridge and
shoulder geomorphons for all modelled surfaces, including the ASTER
GDEM2, were highly similar both in composition and extent of the spe-
cific soil complexes, vis a vie, hydromorphic and well-drained apedal
soils respectively. Accurately, the hollow feature for all DEM surfaces
represented the dominant soil complexes as 45-55% yellow-brown

Table 4
Soil complex descriptions used in this study correlated with WRB soil groups.

Soil complex Soil set WRB reference

Hydromorphic Groundwater affected soils Gleysols;
Alternating wet-dry conditions, rich  Vertisols
in swelling clays

Accumulation of Fe under
hydromorphic conditions

Litho/structured/yellow  Soils with clay enriched-subsoil

Plinthosols

Alisols; Acrisols;

brown apedal Lixisols
Relatively young soils or soils with  Arenosols;
little or no profile development Cambisols
Litho/structured Soils with limited rooting Leptosols
Soils with clay enriched-subsoil Acrisols
Relatively young soils or soils with ~ Cambisols
little or no profile development
Abrupt textural discontinuity Planosols
Structural textural discontinuity Stagnosols
Red apedal/structured  Soils with clay enriched-subsoil Luvisols; Lixisols
Relatively young soils or soils with ~ Ferralsols,
little or no profile development Arenosols;
Cambisols
Red apedal Relatively young soils or soils with  Ferralsols,
little or no profile development Arenosols;
Cambisols
Yellow Brown Relatively young soils or soils with ~ Ferralsols,
apedal/structured little or no profile development Arenosols;
Cambisols
Soils with clay enriched-subsoil Alisols; Acrisols;
Lixisols
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apedal soils, 10-12% red apedal soils and 10-15% hydromorphic soils
while the ridge features were consistently associated with 30-40%
yellow-brown apedal, 20-25% red apedal and 10-15% red structured
soils.

Notable findings from the analysis include the results for soil com-
plex distribution per geomorphons for the 30 and 90 m SUDEM sur-
faces. The similarity in soil complex distribution between the 30 and
90 m resolution DEMs suggests that the soil-landscape characterisation,
and the scale of actual and predicted topographic features present in the
study site and were well represented by the Line of sight optimisation
parameters used to model the geomorphons between the 30 or 90 m
SUDEM. However, the 30 m SUDEM was able to better characterise
the valley bottom features as being dominated by hydromorphic soils,
as expected by the topo-sequence for the region, as well as yellow-
brown apedal soils typical of lower, permanently and seasonally wet
areas in the landscape. In contrast, while hydromorphic soils were at
least represented by valley-bottom regions in both the 90 m SUDEM
and SRTM geomorphon surfaces at 26 and 28% respectively, they were
not identified as the dominant soil complex. Given the definitive and
known hydrography of the study site, these valley-bottom features
should undoubtedly be dominated by hydromorphic soils. A similar re-
sult was observed in several other geomorphon features where the
SUDEM 30 m surface presented a more “analogous” soil-landscape pat-
tern for the region, able to characterise the summit features as being
dominated by yellow-brown and structured soil complexes while the
flat areas of the study site were indicated to contain approximately
17% hydromorphic soils. Which, given the natural physiographic com-
position of the study site and the degree of seasonal saturation suggests
that these soil-landscape associations are most probable.

To further analyse the degree of soil-geomorphon similarity, a Chi-
square contingency test was used to explore any significant relationship
between geomorphon features and the soil complex covariates under
the different DEM surface models. The Chi-square test is an aspatial
goodness of fit test used to assess whether or not the predicted distribu-
tion differs from the actual observed distribution H,: was defined as no
association between Geomorphon features and soil complex and H;: de-
fined as the alternate hypothesis as significantly different at the 5% signifi-
cance level.

S(0—e)?
e

X2 = )

The given model is represented by Eq. (1) where o represents the
observed area of each combination between geomorphon feature and
soil complex while e denotes the expected area of each combination.
The higher the calculated value (X?) above the critical value (X critical)
as determined by a chi-square table, the closer the relationship between
soil complexes characterised by geomorphons at different DEM resolu-
tions (Silva et al.,, 2016b). The test was performed at a 95% confidence
level, where o = 0.05 and df = n-1. Where the predicted surface is
not statistically different from the observed surface (30 m SUDEM),
then the DEM datasets are assumed to represent the geomorphon/soil
covariate pattern-process. The Chi-square test was used to compare
the geomorphon surfaces association firstly between the SUDEM 30 m
and SRTM 90 m DEMS, then the SUDEM 30 m and GDEM2 and finally
the SUDEM 90 m and the SRTM 90 m for the soil complex. The results
for the 2-way cross-tabulation are presented in (Table 5) showing the
best Chi-square value (X?) as well as the asymptotic significance for
soil complex. The X? results for soil complex and geomorphon feature
between the predicted and observed datasets show better than ex-
pected levels of association considering the marginal performance re-
sults from the BK geomorphon similarity analysis. Most of the
distributions for the soil geomorphon and soil complex relationships
failed to model the observed surfaces with the results found to be statis-
tically significant in favour of H, However, there were selected
geomorphon features that did show positive soil complex associations

between the different DEM datasets with features such as summits,
ridges, spurs, foot slopes and valley bottoms all showing some degree
of similarity between the predicted and observed surfaces. Specifically,
the soil complex/geomorphon association was most notable for the
ridge and hollow features showing similarity across all DEM resolutions.
These results hold promise for soil-landscape studies exploring the in-
teroperability and utility of the SUDEM and open-source DEM datasets
for multi-resolution soil-landscape applications.

Interestingly, the Chi-square results, including the 90 m datasets,
show a definite pattern of similarity in soil complex and high altitude,
narrow and higher slope gradient geomorphon features. Indeed, while
higher resolution DEM surfaces are perhaps more suited to detecting
subtle terrain discontinuities, the association presented here also relates
to the unique arrangement of soil complex to a specific geomorphon.
The more unique/specific the soil complex within the landscape and
the smaller the area of the geomorphon then the higher the association
of the geomorphic soil complex patterns. This is supported by the fact
that flat features, with higher variability of well-drained apedal soil
complex combinations, showed no association between the DEM sur-
faces while hollows, characteristically dominated by hydromorphic
soils showed a better association between the DEM surfaces. Equally
surprising is the predominance of geomorphon dissimilarity between
the 90 m SUDEM and 90 m SRTM DEM datasets given that these two
datasets have the same spatial resolution, and therefore would be ex-
pected to perform similarly when compared to the reference 30 m
SUDEM. These findings, in conjunction with the positive X* results be-
tween the 30 and 90 m SUDEM selected geomorphons, suggest that
the quality of the DEM, and not only the resolution, is a major contribut-
ing factor to geomorphon applications in soil-landscape analyses. Given
these findings, there may be merit in further exploring the influence
that finer spatial resolutions and quantitatively-based statistical DSM
approaches (McBratney et al., 2011), as well as detailed soil form and
even modal soil type data instead of broad, generalised soil complex
representations, could have on geomorphon based soil-landscape asso-
ciations, (Zerizghy et al., 2013). Our results were able to show that re-
gardless of DEM scale and even inner search radius permutations all
DEM surfaces, with the exceptions of the GDEM2, were able to depict
the probable and expected soil complex, and thereby toposequence,
within the landscape that best represented the synthesised interpreta-
tion of composite terrain characteristics for the study site.

3.5. Geomorphons and clay content

The results for clay content exhibit a general degree of uniformity
across all DEM surfaces with most geomorphon features characterised
by medium to high percentage clay textured soils. The clay content
and geomorphon analyses have been presented as a histogram indicat-
ing frequency class and ordinal clay content category with this study
adopting the same clay content class-breaks for analysis as (Van den
Bergh et al.,, 2009) (Fig. 5a-d). A major shortcoming in using the clay
content reported in the Tugela Basin study relates to how the clay con-
tent was estimated. Much of the soil texture (clay fraction) was esti-
mated in-field and then “binned” into broad, predefined texture
categories (Smith, 2006; Van der Eyk et al., 1969). Secondly, the soils
in this region are typically highly weathered, dystrophic and
characterised by higher than the average accumulation of clay minerals
within 80 cm rooting depth. Furthermore, the dominance of secondary
minerals such as Goethite (a-FeOOH) and Hematite (o -Fe203), giving
rise to the prominent reddish-brown hue down the soil profile, has been
shown to mislead the in-field estimation of clay content especially in
highly weather and soils (Smith, 2006). These results suggest that the
use of legacy categorical data (and associated analyses) for geomorphon
characterisation and comparisons for soil-landscape analysis must ex-
plicitly consider the scale of measurement as well as the method of
clay content analysis, i.e. categorical in-field estimations vs actual clay
percentage obtained through wet chemistry approaches.
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Table 5

Chi-squared (X?) goodness of fit analysis of Geomorphon similarity by soil association distribution by comparing the 30 m SUDEM and 90 m SRTM, the 30 m SUDEM and 30 m GDEM2 and,

the 90 m SUDEM and 90 m SRTM surface models.

Geomorphon Flat Summit Ridge
Value df Asymp. Sig. Value df Asymp. Sig. Value df Asymp. Sig.
30 m SUDEM vs 90 m SRTM 38.934 4 0.001 122.848 5 0.001 0.794% 3 0.851
30 m SUDEM vs 30 m GDEM2 200 4 0.001 75.669 4 0.001 1.669* 3 0.644
90 m SUDEM vs 90 m SRTM 37.311 4 0.001 0,206° 3 0.977° 0.512° 3 0916
Geomorphon Shoulder Spur Slope
Value df Asymp. Sig. Value df Asymp. Sig. Value df Asymp. Sig.
30 m SUDEM vs 90 m SRTM 8.257 3 0.041 26.134 3 0.001 24377 4 0.001
30 m SUDEM vs 30 m GDEM2 38.226 3 0.001 22.253 3 0.001 24513 4 0.001
90 m SUDEM vs 90 m SRTM 9.295 3 0.260 0.622° 3 0.891° 21.145 4 0.001
Geomorphon Hollow Footslope Valley bottom
Value df Asymp. Sig. Value df Asymp. Sig. Value df Asymp. Sig.
30 m SUDEM vs 90 m SRTM 0.4167 3 0.937 3.061 3 0.382 34.95° 4 0.001
30 m SUDEM vs 30 m GDEM2 21.574 4 0.001 39.56% 4 0.940 239.94° 3 0.001
90 m SUDEM vs 90 m SRTM 1.38* 3 0.710 22.047 4 0.001 0.802° 3 0.849
¢ Denotes geomorphon features where Ho is not rejected: terrain features are similar across observed DEM surfaces.
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Fig. 5. Histogram showing frequency and pattern of clay content (clay %) for each geomorphon feature in the a) 30 m SUDEM b) 90 m SUDEM c) 90 m SRTM d) and 30 m ASTER GDEM2.

Despite the poor characterisation of clay content, the results were
still able to detect a generalised catenary association/similarity for se-
lected geomorphon features. Footslopes typically accepted to repre-
sented zones of colluvial material accumulation characterised by
increased clay content were segmented by approximately 28% medium,
70% high and 3% very high clay content in the SUDEM 30 m, SUDEM
90 m and SRTM 90 m respectively. It seems likely that these results
could prove to be useful to land use and natural resource planning func-
tions for regional agronomic assessments still relying on the Tugela
Basin data. Firstly, land planning practitioners can be assured that the
choice of DEM source, and consequently, the resolution between 30
and 90 m, should not significantly influence the representation of clay

content across geomorphic features. Secondly, considering that much
of the Land Type survey data for this region was derived from the Tugela
Basin study (Paterson et al., 2015), similar results could be expected
when disaggregating the Land Type data by geomorphic features. Fi-
nally, the correct representation of medium to very high textured soils
in lower altitude features such as foot slopes, valley bottom and flat fea-
tures typically characterised by higher textured soils, assure that the re-
lationship between the estimated clay content for the area and
modelled geomorphic landscape features are aligned with knowledge-
based conceptual models of soil-landscape patterns for the region. De-
spite the glaring radiometric deficiencies highlighted earlier in this
study, the clay content results for the GDEM2 geomorphons were
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represented as being positively related to the other geomorphon DEM
surfaces (Type II error). The endogenous error of the ASTER GDEM2
highlighted previously has shown that the GDEM2 is not suited to
DGM for the region. However, these anomalies have not been detected
in the clay content representation given the use of historical broad clay
content categories despite the poor DEM surface.

3.6. Geomorphons and soil depth

Similar to clay content, diagnostic soil depth (max 120 cm) for the
study region was represented as a histogram indicating geomorphon
class and ordinal soil depth classified into broad categorical classes de-
rived from the infield depth estimations (Van der Eyk et al., 1969).
Geomorphon features were then characterised by the frequency of
gridded sample points per depth class (Van den Bergh et al., 2009).
Soil depth values were categorised as follows: 0-44 cm: shallow;
45-84 cm: medium; 85-120 cm: deep (Fig. 6a-d).

Despite the use of broad, functional categories to represent
geomorphon soil depth character, unlike clay content and soil depth
showed better variability between geomorphon features. The results
for both 90 m DEM surfaces were almost identical in their representa-
tion of soil depth across similar geomorphon features within the study
site and the relationship between soil depth and typically shallow-soil
terrain features such as summits; ridges; and spurs were accurately rep-
resented within DEM surfaces. Interestingly, the 90 m DEM surfaces
were able to represent the steeper, shallower terrain features better
than even the SUDEM 30 m surface, with the latter showing more re-
fined representations of the flatter, narrower and in-depth features
such as the valley bottoms and hollows. Of particular interest, the sum-
mits modelled with the SUDEM 30 m were able to represent 7% of the
area as deep soils, suggesting that the use of fine-resolution DEMs
with coarse resolution soil covariate datasets such as the Tugela soil
depth are still able to better represent selected soil-landscape relation-
ships of narrow terrain features than their coarse 90 m counterparts.
These soil depth results, when overlaid with soil texture, could be
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most beneficial to functional land use planning from an agronomic per-
spective. Superimposing the soil-covariate datasets with the
geomorphon features may provide a better representation of soil-
landscape composition and information. Moreover, regional adapta-
tions must be incorporated into developed models to better represent
soil variability and geometric signatures in the specific area of interest
(Silva et al., 2016b). The results from this study have shown that, as a
first approach, regional soil depth estimations can be successfully strat-
ified by geomorphons into functional landscape unit's characteristic of
typical soil-landscape relationships.

4. Conclusion

Much reliance has been placed on pattern recognition for terrain
discontinuity segmentation, classification and mapping. It's further
supposed that geomorphological maps that can better define soil-
landscape relationship can be improved using the medium to high-
resolution DEM datasets. Terrain classification by geomorphons has
shown to be a practical approach to significantly enhance soil-
landscape characterisation in the Drakensberg interior region. In
this study, the use of high-resolution DEMs, GIS and open-source
geomorphon approach has shown to be fast, feasible and user-
friendly for landform classification in the highland region of the Cen-
tral Drakensberg.

This paper provides an appealing outlook of geomorphon character-
isation across varying DEM resolutions with the intention of highlight-
ing how different DEM source and resolutions, influence the
representation of soil-landscape pattern and processes phenomena. A
significant part of this research involved the identification of the rela-
tionship between geomorphon terrain character and the similarities in
derived terrain products across these scale-specific geomorphon sur-
faces. The study further tested the notional scale-independence prop-
erty of the geomorphon approach for selected soil (soil complex, soil
depth and soil texture) and terrain parameters (elevation, slope) with
varying DEM resolution. What is promising for the representation of
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Fig. 6. Histogram showing frequency and pattern of soil depth for each geomorphon feature in the a) 30 m SUDEM b) 90 m SUDEM c) 90 m SRTM d) and 30 m ASTER GDEM2.
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geomorphic features and to soil properties is that the presentation of
the soil texture, soil depth and terrain classification of the Tugela Basin
survey, were well aligned to the known catenary soil-landscape trends
for the region with the exception of the ASTER GDEM2 surface products.
Our study has reiterated that the quality of DEMs ultimately determines
the accuracy and reliability of the spatial geomorphometric analysis.
DGM practitioners should, therefore, be aware of the implication to
land use planning when integrating elevation datasets of known inher-
ent data deficiencies for soil-landscape and digital soil mapping analy-
sis, especially under South African conditions. The SUDEM is perhaps
the most accurate and readily available localised high-resolution DEM
for South Africa, and the study has shown why it remains a popular
choice for a variety of terrain analysis, digital-soil mapping and hydro-
logical modelling applications.

A key finding of the study relates to the scale-utility- of
geomorphons for soil-landscape applications with associations of soil
complex, clay content and soil depth to geomorphon all suggesting
that geomorphons may well have suitable application at a landscape
and regional level rather than a local, farm level. The study has shown
that while geomorphon features are detectable across most DEM sur-
faces of varying resolution, the accuracy of the geomorphon characteri-
sation is not linearly correlated with pixel resolution, i.e. finer resolution
DEMs do not necessarily produce “improved” geomorphon surfaces.
Mainly because improved geomorphon representation may not trans-
late into enhanced soil-landscape applications; instead, geomorphon
surfaces should be applied and interpreted with the conditions of the
area under observation and the objectives of the analyses in question.

Reflecting on the collective findings of the study, the authors are
compelled to raise an indispensable question regarding the future utility
of the geomorphon approach in similar regional environments: is the
Geomorphon approach truly as scale-independent as initially anticipated?
The answer is perhaps more polarised and less anecdotal than initially
expected. The application of “machine vision” or “visual perception” to
identify terrain-feature patterns, whilst immensely contemporary and
efficient, should signal to users that DEM parametrisation inputs and
landform relevant outputs can be infinitely more complicated to define
and interpret by end-users with extreme subjectivity and variance in
surface outputs both within and between DEM scale. For geomorphons
to then be functionally relevant, it's necessary to reconcile the choice of
optimal scale for simple static terrain visualisation versus the represen-
tation of spatial features and associated environmental phenomena or
process across the landscape.

The presented results and discussion are based on the comparison of
the modelled geomorphons surfaces, i.e. 30 m ASTER GDEM2, 90 m
SUDEM and 90 m SRTM DEM to a reference 30 m DEM derived from
high a resolution 5 m SUDEM, digital terrain model. Specifically, the
main findings of the study are:

» The application of medium and coarse resolution DEMs for
geomorphon feature discretisation holds promise for regional
soilscape studies in South Africa, particularly in the central regions
where open-source DEM datasets such as SUDEM and SRTM are still
a primary source of quality terrain data.

Modelled geomorphic features were able to represent altitudinal and
slope gradient of terrain features characterised by higher altitudes, i.e.
ridges, spurs as well as lower lying features, i.e. valleys, foot slopes al-
beit in varying extent and frequency of occurrence across all DEM sur-
faces.

Broad-based assessment studies such as ours are necessary to qualita-
tively inform the generalised representation of soil pattern character-
isation within topographic features, in this case, geomorphic features
for a large-scale region.

Geomorphon feature relevance for defining landscape structure and
terrain spatial heterogeneity must be framed in the context of land-
scape or terrain detail, soil covariate membership, DEM pixel resolu-
tion and user preference.

* While the ASTER GDEM2 may be a suitable option for selective visual-
isation of a three-dimensional surface, it is not an appropriate option
for the analysis of derived terrain attributes particularly in mountain-
ous regions of the South African interior.

Information and methods discussed in this paper will be valuable for
landscape and suitability studies, especially at the regional level. The
ability to quantify the overall similarity between different landscapes
by merely evaluating the descriptive data of the associated and derived
geomorphon surfaces is a critical element of our methodology. Further-
more, the accurate representation of the contemporaneous soil and ter-
rain properties within the study site provides a first approximation for
guiding the description and segmentation of the geomorphon “finger-
print” for each DEM surface evaluated for this study. The ease of auto-
mation, swift replication and acceptable representation of an
expanded set of morphometric classes using geomorphons have
shown to be a suitable alternative to the basic 5-class Land Type discrete
relief models for South Africa. These geomorphons coincide well with
actual terrain geomorphological entities and present better opportuni-
ties for soil-landscape characterisation and topographic quantification
with considerable potential for future digital geomorphological applica-
tions for the central regions of KwaZulu Natal.
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