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Abstract: High concentrations of PM2.5 are universally considered as a main cause for haze 
formation. Therefore, it is important to identify the spatial heterogeneity and influencing fac-
tors of PM2.5 concentrations for regional air quality control and management. In this study, 
PM2.5 data from 2000 to 2015 was determined from an inversion of NASA atmospheric remote 
sensing images. Using geo-statistics, geographic detectors, and geo-spatial analysis meth-
ods, the spatio-temporal evolution patterns and driving factors of PM2.5 concentration in China 
were evaluated. The main results are as follows. (1) In general, the average concentration of 
PM2.5 in China increased quickly and reached its peak value in 2006; subsequently, concen-
trations remained between 21.84 and 35.08 μg/m3. (2) PM2.5 is strikingly heterogeneous in 
China, with higher concentrations in the north and east than in the south and west. In par-
ticular, areas with relatively high PM2.5 concentrations are primarily in four regions, the 
Huang-Huai-Hai Plain, Lower Yangtze River Delta Plain, Sichuan Basin, and Taklimakan 
Desert. Among them, Beijing-Tianjin-Hebei Region has the highest concentration of PM2.5. (3) 
The center of gravity of PM2.5 has generally moved northeastward, which indicates an in-
creasingly serious haze in eastern China. High-value PM2.5 concentrations have moved 
eastward, while low-value PM2.5 has moved westward. (4) Spatial autocorrelation analysis 
indicates a significantly positive spatial correlation. The “High-High” PM2.5 agglomeration ar-
eas are distributed in the Huang-Huai-Hai Plain, Fenhe-Weihe River Basin, Sichuan Basin, 
and Jianghan Plain regions. The “Low-Low” PM2.5 agglomeration areas include Inner Mongo-
lia and Heilongjiang, north of the Great Wall, Qinghai-Tibet Plateau, and Taiwan, Hainan, and 
Fujian and other southeast coastal cities and islands. (5) Geographic detection analysis in-
dicates that both natural and anthropogenic factors account for spatial variations in PM2.5 
concentration. Geographical location, population density, automobile quantity, industrial dis-
charge, and straw burning are the main driving forces of PM2.5 concentration in China. 
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1  Introduction 
PM2.5 is the most serious air pollutant in China, which shows typical regional and compound 
pollution characteristics. Concurrently with rapid urbanization and industrialization in China, 
energy consumption and car ownership have increased sharply. The airborne dust caused by 
urbanization, atmospheric pollution caused by coal burning, and emissions from automobile 
exhaust fumes have become more serious, which have led to a dramatic increase in total 
suspended particles (TSP) in the air (Hueglina et al., 2005; Stone, 2008; Huang, 2018). Haze 
has become increasingly frequent year after year, forming four geographic haze areas: the 
Huang-Huai-Hai Region, Yangtze River Delta, Sichuan Basin, and Pearl River Delta (Guo et 
al., 2011; Wu, 2012). China’s successive promulgation of a series of environmental protec-
tion laws and rules, long-term atmospheric prevention and control measures, and industrial 
and energy structural adjustment and upgrading during “the 11th Five-Year Plan” in 
2006–2010 and “the 12th Five-Year Plan” in 2011–2015 have resulted in a distinct reduction 
in SO2, SOx, and dust. However, it is widely recognized that PM2.5 (particulate matter with 
an aerodynamic diameter no greater than 2.5 μm) has become a striking challenge for 
China’s atmospheric pollution prevention and control. PM2.5 is closely related to human ac-
tivities inside the atmospheric boundary layer. PM2.5 lowers visibility and participates in 
chemical reactions in the atmosphere to generate new pollutants and severely affects human 
health. Medical studies have shown that PM2.5 enters the human respiratory system, which 
can result in various respiratory and cardiovascular diseases, an attenuation of lung function, 
destruction of the human immune system, and possible increases in risk of death in the ex-
posed population (Dockery et al., 1994; Pope et al., 1995; Laden et al., 2000; Pope, 2000; 
Samet et al., 2000; Delfino et al., 2005; Laden et al., 2006; Franklin et al., 2008; Kiou-
mourtzoglou et al., 2016). Long-term exposure to air pollution is responsible for the prema-
ture death of more than 1,250,000 persons annually, accounting for approximately 40% of 
such deaths in China (Wang et al., 2012). In 2013, the extreme concentration of PM2.5 in 
Beijing exceeded 1000 μg/m3, more than 40 times the health standard set by the World 
Health Organization (Cheng et al., 2011). The negative impact to residents’ physical and 
mental health in areas covered by smog cannot be estimated. In 2012, China promulgated a 
new Environmental Air Quality Standard (GB3095-2012) that lists PM2.5 as a regular key 
monitoring index. National monitoring of air quality conditions and the scope of pollution 
has continuously increased and the number of PM2.5 concentration monitoring points in-
creased from 612 in 2013 to 1436 in 2016. Clearly, PM2.5 will be a key point in the preven-
tion and control of air pollution in China in the future, and an important topic in interna-
tional atmospheric environmental research.  

At present, estimates of PM2.5 spatial concentrations and characteristics are generally de-
termined from the following data and methods (Chu et al., 2015). Remote sensing images 
retrieval for aerosol optical depth (AOD) can estimate PM2.5 concentration, while analysis 
techniques include real-time data space interpolation of monitoring points, weighted regres-
sion models and mixed models. Based on these data sources and models, researchers have 
investigated the origin, genetic mechanism, spatial heterogeneity, transboundary transmis-
sion, health effects and coping mechanisms of PM2.5. For example, scholars have con-
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structed a spatio-temporal distribution and derived relationships between PM10 and PM2.5 
using a geographically temporally weighted regression model and cluster analysis (Yang et 
al., 2016); represented the spatial distribution of PM2.5 using satellite retrieval for remote 
measurement of aerosol optical depth (AOD) (Liu et al., 2005; Xue et al., 2015); established 
a list of PM2.5 discharge sources (Cao et al., 2011; Zhang and Cao, 2015) using an inven-
tory-chemical mass balance model (Zhang et al., 2015), chemical mass balance method 
(Gramsch et al., 2006), and atmospheric diffusion model method (Austin et al., 2013); and 
revealed the spatial heterogeneity and cross-region transmission of PM2.5 concentration us-
ing a linear regression model and Comprehensive Air Quality Model Extensions (CAMx) air 
quality model for aerosol optical thickness (AOT) data (Wang et al., 2003; Xue et al., 2014). 
Additional studies have found that PM2.5 concentrations show distinctive seasonal changes, 
but also clear geospatial heterogeneity and spatial dependence (Chow et al., 2006; Gelencsér 
et al., 2007; Liu et al., 2009; Kloog et al., 2012; Beckerman et al., 2013; Lin et al., 2013). 
Furthermore, an economic growth mode with high energy consumption and a non-ecological 
urbanization mode are the main factors creating high PM2.5 in China and similar developing 
countries. Scholars have found that landform, meteorology, dust, transportation, biomass 
and coal burning were key factors affecting the spatial distribution of PM2.5 pollution. The 
large-scale spatio-temporal distribution of PM2.5 is mainly affected by global climatic 
change, landform and topography, population density, land utilization, economy, and traffic 
intensity (Charron and Harrison, 2005; Henderson et al., 2007; Merbitz et al., 2012; Gao et 
al., 2015), whereas small-scale spatio-temporal changes in PM2.5 are controlled by the dis-
tances from monitoring points to pollution sources (e.g., urban centers, bus stations, airports, 
factories) (Hoek et al., 2002).  

In summary, PM2.5 studies have mainly focused on source analysis, pollution characteris-
tics, and health evaluation, while largely neglecting the spatio-temporal evolution of PM2.5 
and its driving forces. Furthermore, existing studies have focused on seasonal and spatial 
changes in PM2.5 concentration from case studies of international metropolises or pollu-
tion-sensitive cities, such as Los Angeles, London, and Beijing; and covered relatively short 
time spans (Bell et al., 2007). A comprehensive analysis of the spatio-temporal distribution 
characteristics, influencing factors, and driving forces of PM2.5 concentration based on large 
scales and long time frames has not been undertaken for several reasons. (1) It is difficult to 
obtain large-scale and long-term PM2.5 pollution data, and continuous monitoring data may 
not be available. For China, the National Atmospheric Environment Monitoring System has 
only included PM2.5 concentration in the monitoring index system since 2012, and no public 
national PM2.5 monitoring data is available prior to 2012. (2) In European and American 
countries with complete PM2.5 monitoring systems, PM2.5 pollution does not occur nation-
wide, but only appears in polluted island cities, such as Los Angeles, London and adjacent 
areas; large-scale, continuous pollution areas have not formed. From 2000 to 2015, China 
was in a period of rapid urbanization and industrialization. Based on average PM2.5 concen-
tration data from 1999 to 2016 provided by the United States National Aeronautics and 
Space Administration (NASA), it is possible to analyze the spatial-temporal distribution and 
influencing factors of PM2.5 concentration in continuous polluted areas of China. These data 
should provide an accurate, macroscopic, and long time series, reflecting changes in PM2.5 
pollution in China during this period. To a certain extent, this dataset also addressed the 
problem of missing macroscopic PM2.5 concentration monitoring data during the Chinese 
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development from 2000 to 2012. Our findings can help forming policies to adjust energy 
structure, guide industrial layouts, and avoid risk of pollution in the next 10–20 years. Fur-
thermore, such a dataset can be used to resolve PM2.5 cross-regional pollution problems, 
which take the administrative unit as the main body although there are isolated air pollution 
prevention model, and provide spatial decision references for national cross-regional pollu-
tion linkage governance. 

2  Data and methods 

2.1  Data sources 

The research data were obtained from three sources. (1) PM2.5 concentrations from remote 
sensing retrieval. This research adopts the raster data of global atmospheric PM2.5 concen-
tration from 1998 to 2016 published by NASA as basic research data (website) with a reso-
lution of 0.1° (http://earthdata.nasa.gov). Because the aerosol optical depth (AOD) product 
from satellite remote sensing retrieval has advantages of low cost, wide spatial coverage and 
high simulation accuracy, and is an important index of ground PM2.5 concentration, it has 
been widely applied to remote monitoring of near-surface PM2.5. The high correlation be-
tween AOD determined by the MODIS/Terra AOD product and PM2.5 concentration has 
been verified by a variety of studies. The original data are three-year average values. To 
calculate data reliability and stability, this study adopted intermediate year substitution; for 
example, the average PM2.5 concentration from 2014 to 2016 is taken as the average PM2.5 
concentration of 2015. (2) Basic geographic information data and spatial administrative 
boundaries were derived from 1:4 million Chinese basic geographic information data pro-
vided by the National Basic Geographic Information Center. Taking the full territory of the 
People’s Republic of China (including Mainland of China, Hong Kong, Macao and Taiwan) 
as the research area, the grid data was then extracted using the research area vector boundary 
as a mask. The average PM2.5 concentration was calculated for each year in each 
county-level administrative unit, which established the spatio-temporal database for PM2.5 
concentration in China based on the county-level administrative region boundaries. (3) So-
cioeconomic data, car ownership, population density, and straw burning were obtained from 
the China City Statistical Yearbook, China Urban Construction Statistical Yearbook, China 
Region Statistical Yearbook, and China Rural Statistical Yearbook in each corresponding 
year from 2000 to 2016; some missing data were supplemented from data of corresponding 
provinces (autonomous regions) and municipalities. 

2.2  Methodology 

2.2.1  Gravity model 

Tobler’s first law of geography considers that geographical things or properties are mutually 
related in terms of spatial distributions, i.e., clustering, random, and regularity. Specifically, 
neighbouring objects and properties are more related than distant objects, termed spatial 
autocorrelation (Wang et al., 2015). To thoroughly analyze the spatio-temporal distribution 
patterns and characteristics of PM2.5, this study first introduces the concept of center of 
gravity and a calculation method to reveal the PM2.5 spatial migration process. This gravity 
model is used as a representation of changing spatial cluster characteristics of PM2.5, and 
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Moran’s I index is used as a representation of the spatial agglomeration characteristics of 
PM2.5. The coordinates X and Y of the center of gravity of PM2.5 pollution are calculated as: 
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where X is the longitude of PM2.5 pollution gravity. Y is the latitude of PM2.5 pollution 
gravity. n indicates the raster quantity and i indicates the raster number. Xi and Yi indicate the 
longitude and latitude of the geometric center of raster i, respectively. Si indicates the area of 
raster i, and Wi indicates the annual average PM2.5 concentration of raster i. 

2.2.2  Spatial autocorrelation  

This study applies global Moran’s index (Global Moran’s I) to test the global spatial auto-
correlation of PM2.5 concentration. If the Global Moran’s I index is greater than 0, the re-
search object has a positive spatial autocorrelation, and a larger value indicates a stronger 
spatial agglomeration of the observed PM2.5 value. When the Global Moran’s I index is less 
than 0, the PM2.5 concentration presents a negative spatial autocorrelation, and a smaller 
value indicates a stronger spatial dispersion of the observed value. The Global Moran’s I 
index is calculated as: 
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where n indicates the quantity of spatial units (county-level administrative units are adopted 
in this study). Xi and Xj are the annual average PM2.5 concentration of units i and j, respec-
tively, and X  indicates the average value of all units. Wij indicates the spatial weight ma-
trix of units i and j; if there is a common edge between spatial units i and j, then Wij = 1, 
otherwise, Wij = 0. To test the significance of the Global Moran’s I index, the standardized 
normalization value of the Global Moran’s I index, Z(I), is defined as follows: 
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where E(I) indicates the mathematical expectation of the Global Moran’s I index, and Var(I) 
indicates the variance in the Global Moran’s I index.  

The Local Moran’s I index is applied to extract the local spatial autocorrelation of at-
mospheric PM2.5 pollution and identify spatial agglomeration and heterogeneity. For the 
spatial unit i, the Local Moran’s I index is defined as: 
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where Z(I) still indicates the significance level of the Local Global Moran’s I index, calcu-
lated from equation (4). Z(I) values are compared at different levels by dividing spatial units 
into four types of spatial autocorrelation based on threshold (p=0.05 in this study). When I is 
significantly positive and Z(I) > 0, it is termed a “high-high” type and indicates that the PM2.5 
concentration of this unit and adjacent units are relatively high, i.e., a hot spot. When I is 
significantly positive and Z(I) < 0, it is termed a “low-low” type and indicates that the PM2.5 
concentration of this unit and adjacent units are relatively low, i.e., a cold spot. When I is 
significantly negative and Z(I) > 0, it is termed a “high-low” type and indicated that high 
concentration of PM2.5 units are surrounded by low adjacent units. When I is significantly 
negative and Z(I) < 0, it is termed a “low-high” type and indicates that low concentration of 
PM2.5 units are surrounded by high adjacent units. A significantly positive I indicates that 
there is significantly local spatial positive autocorrelation and spatial clustering. A signifi-
cantly negative I indicates that there is significantly local negative spatial autocorrelation 
and spatial dispersion. 

2.2.3  Geographic detector 
Geographic detection is a set of statistical methods to detect the spatial heterogeneity and 
reveal driving forces; it is an important method for detecting the causes and mechanism of 
spatial patterns of geographical factors and has been applied to the studies of disease risk 
detection, socio-economy, and eco-environment (Liu et al., 2012; Wang et al., 2017; Lind-
ner, 2018). The factor detector in the model is used to identify a specific geographical factor 
and quantify the spatial distribution difference by comparing the total variance of this index 
in different types of areas and in the whole area. The model is defined as: 
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where PD,H indicates the explanatory power of the influencing factor of PM2.5; D indicates 
the factors influencing annual average PM2.5 concentration; n and σ2 indicate the overall 
sample quantity and variance of the research area, respectively; m indicates the number of 
categories for the factors; and nD,i indicates the number of D indices on category-i samples. 
PD,H ranges from 0 to 1, and a larger value indicates a stronger explanatory power of this 
factor for a change in PM2.5 concentration. When the value is 0, the classification factor is 
completely unrelated to the change in PM2.5 concentration. When the value is 1, the classifi-
cation factor can completely explain the change in the spatial distribution of PM2.5 concentration. 

3  The spatio-temporal evolution characteristics of PM2.5 pollution 

3.1  Time series characteristics of PM2.5 

Based on a comprehensive time analysis and Spearman rank correlation coefficient analysis, 
the annual average PM2.5 concentration in China rose steadily from 2000 to 2015, a trend 
that was not identified in the monitoring data (Figure 1). The annual average PM2.5 concen-
tration increased from 21.84 μg/m3 in 2000 to 35.08 μg/m3 in 2006, with an average annual 
increase of 1.66 μg/m3; this was a significant rising trend in this stage (p=0.05). The PM2.5 
concentration has generally fluctuated around 32.57 μg/m3 since 2006, and the significant 
upward trend leading to 2006 has stabilized to a certain degree. This indicates that 2006 was 
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a turning point in PM2.5 annual average 
concentration change in China. This result 
is consistent with results published by 
China’s Ministry of Environmental Protec-
tion in 2007. The national ecological civi-
lization construction, ecological supple-
ment points, pollution survey and the 
achievement of environmental protection 
policies, the adjustment of industrial struc-
ture and improvements in energy efficiency 
have restrained the PM2.5 emissions to a 
certain extent. However, the annual average 
PM2.5 concentration in China still remained 
high. The raster of annual PM2.5 concentra-
tion in 2015 increased by 39.76% com-
pared to 2000. Furthermore, 13.20% of rasters had annual average concentrations that ap-
proximately doubled, indicating that PM2.5 pollution continues to expand across the national 
land space.  

Based on the annual average concentration limit of PM2.5 in the Ambient Air Quality 
Standard (GB3095-2012) of China (Samet et al., 2000), the annual average PM2.5 concentra- 
tion was divided into seven intervals and the area proportion of each interval was analyzed 
for the study period (Figure 2). Four important results were obtained. (1) The proportion of 
annual average PM2.5 concentration lower than 15 μg/m3 (the first-order concentration limit) 
decreased continuously from 28.95% in 2000 to 91.21% in 2015. (2) The proportion of an- 
nual average PM2.5 concentration higher than 35 μg/m3

 (the second-order concentration limit) 
increased from 17.78% in 2000 to 32.89% in 2015. (3) The proportion of high-pollution areas 
with annual average PM2.5 concentration higher than 70 μg/m3 increased greatly from 0.04% 
in 2000 to 4.06% in 2015, and the increase was more than 100 times larger. (4) The 
high-pollution areas with annual average PM2.5 concentration higher than 100 μg/m3 
 

 
Figure 2  Variations in PM2.5 concentration by range in China from 2000 to 2015 

 
Figure 1  Overall PM2.5 concentration trend in China 
from 2000 to 2015 
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emerged in large numbers from 2006 to 2007 and from 2010 to 2015, and the proportion in 
other years was lower than 0.50%. These results indicate that low-pollution areas with an-
nual average PM2.5 concentration lower than 15 μg/m3 decreased continuously, while 
high-pollution areas with annual average PM2.5 concentration higher than 70 μg/m3 in-
creased. High-pollution areas and extremely high-pollution areas showed a rapid expansion 
in the national space. 

3.2  Characteristics of spatio-temporal patterns in China 

3.2.1  Spatial variations 

Identifying the PM2.5 spatial evolution characteristics and distribution and exploring changes 
in PM2.5 concentrations in the national space have importance implications for controlling 
cross-regional linkage pollution in China. The primary spatial characteristics of PM2.5 in 
China for 2000–2015 were obtained by analyzing the PM2.5 grid data. In areas with annual 
average PM2.5 concentration higher than 100 μg/m3, the pollution was extremely serious 
(Figure 3), which only appeared in counties, such as Xinxiang and Yanjin in Henan Province, 
in 2000. However, serious pollution began to extend into and cover parts of northern Henan 
and southern Hebei provinces in 2008 and was distributed sporadically in the Fenhe-Weihe 
Basin and Sichuan Basin. High-pollution areas with annual average PM2.5 concentration 
higher than 70 μg/m3 were distributed continuously in the North China Plain, Fenhe-Weihe 
Basin and Sichuan Basin. The high-pollution area in the North China Plain was the largest 
and spread across the midstream and downstream plains of the Yangtze River. In addition to 
the densely populated and economically developed areas, high-pollution areas were distrib-
uted sporadically in the Tarim Basin. With the exceptions of Heilongjiang, Yunnan, Fujian, 
Taiwan, and Hainan, the annual average PM2.5 concentration in areas east of the 
Heihe-Tengchong Line generally exceeded 35 μg/m3; the annual average PM2.5 concentra-
tion in the most densely populated areas in China did not meet the secondary standard of the  

 
Figure 3  PM2.5 spatial characteristics in China in specific years from 2000 to 2015 
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Ambient Air Quality Standard. Finally, in the areas west of the Heihe-Tengchong Line, with 
the exception of the Tarim Basin, which is subject to the influences of airborne dust from the 
Taklimakan Desert in spring, the annual average PM2.5 concentration is generally lower than 
35 μg/m3. Areas with relatively serious PM2.5 pollution are mainly concentrated in North 
China and the Yangtze River Basin area. The PM2.5 pollution had close relationships with 
geographically low-lying plains and population density and economic activity. 

3.2.2  Spatio-temporal evolution 

To describe the spatial characteristics of PM2.5 concentration change and pollution, the 
county-level administrative division was used as the basic unit and grids were used to cal-
culate detailed statistics for 2853 counties for four stages, 2000–2004, 2004–2008, 
2008–2012 and 2012–2015. Changes in concentrations, i.e., rise (R) and decline (D), for the 
four stages were used to divide the variation in PM2.5 concentrations into 16 types of time 
sequences for evaluation (Table 1 and Figure 4). During the research period, the 
county-level units with continuous increases in PM2.5 accounted for 7.15% of the total units 
and were mainly distributed in Tibet and Northeast China, where PM2.5 pollution was not as 
serious. These regions had relatively good eco-environment, but the air quality deteriorated 
continuously, which is worthy of national attention. From 2000 to 2008, the county-level 
research units with continuous increases in degree of PM2.5 pollution accounted for 82.55% 
of all units, indicating PM2.5 pollution aggravation in most regions of China. This has been 
characterized as one of the fastest industrialization and urbanization periods in China. The 
distributions of time sequence trends showed clear spatial agglomeration; for example, 
D-R-D-R was concentrated in the Shaanxi, Gansu and Ningxia regions, whereas D-D-R-R 
was generally distributed in the Southern Xinjiang region. Only four counties showed con-
tinuously falling PM2.5, which were distributed in Jiuquan, Gansu Province. 

Table 1  Distribution chart of 16 types of time sequences of PM2.5 concentration evolution in China 

No. Change type Quantity % No. Change type Quantity % 

1 D—D—D—D 4 0.17 9 R—D—D—D 38 1.59 

2 D—D—D—R 5 0.21 10 R—D—D—R 71 2.97 

3 D—D—R—D 11 0.46 11 R—D—R—D 120 5.02 

4 D—D—R—R 1 0.04 12 R—D—R—R 68 2.85 

5 D—R—D—D 45 1.88 13 R—R—D—D 811 33.93 

6 D—R—D—R 13 0.54 14 R—R—D—R 801 33.51 

7 D—R—R—D 36 1.51 15 R—R—R—D 190 7.95 

8 D—R—R—R 5 0.21 16 R—R—R—R 171 7.15 

Note: R indicates rise, and D indicates decline. 

3.2.3  Movement of center of gravity 

The center of gravity movement for PM2.5 in China from 2000 to 2015 calculated from 
equation (5) showed significant trends. During the study period, the center of gravity was 
located at the juncture of Shaanxi and Henan provinces (Figure 5). However, the center of 
gravity moved southward at an average of 24.97 km annually from 2000 to 2004, showing a 
clear increase in PM2.5. The movement slowed after 2005 and the average annual movement 
distance decreased to 15.04 km. In 2001, the center of gravity for high concentration PM2.5  
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Figure 4  The evolution of PM2.5 concentrations for the 16 time sequences in China (see Table 1 for time  
sequence definitions) 

moved rapidly from southwest to northeast and 
was located in Shaanxi Province. It subsequently 
moved quickly to Henan Province with an average 
annual distance of 156.09 km from 2001 to 2003. 
After 2004, it returned to Shaanxi Province, but 
the movement distance rapidly dropped to 40.71 
km after 2004, showing a relatively steady state. 
In contrast, the center of gravity for low concen-
tration PM2.5 moved westward rapidly. The center 
of gravity was located in Inner Mongolia for a 
long time and showed a common direction with 
the high concentration center of gravity. The av-
erage annual movement distance before 2004 was 
86.37 km, which decreased to 37.84 km from 
2005 to 2015. Generally, the center of gravity for 
the overall and high concentration PM2.5 showed 
movement to the northeast, while the center of 
gravity for low concentration PM2.5 moved west-
ward. All three centers of gravity moved rapidly 

 

 
Figure 5  Changes in PM2.5 concentration  
center of gravity in China from 2000 to 2015 
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before 2004 and tended to stabilize after 2005. This change is closely related to the en-
hancement of national ecological civilization construction, industrial transfer (eastern to 
central and western regions), and higher thresholds for environmental protection in eastern 
China. These results are in agreement with those presented in section 3.1, indicating that the 
PM2.5 pollution in the eastern region was higher than that in the western region and higher in 
the northern region than in the southern. 

3.3  Spatial autocorrelation analysis 

3.3.1  Global spatial autocorrelation 

The Global Moran’s I index of the annual average PM2.5 concentration in each county-level 
unit from 2000 to 2015 was positive and passed the significance test (p=0.05). Therefore, the 
annual average PM2.5 concentration presented a significant positive spatial autocorrelation 
and showed an agglomerated spatial pattern. From the time sequence, the Global Moran’s I 
index reached a maximum in 2006 and then generally decreased year after year. This turning 
point is consistent with the turning point in annual average concentration, indicating that the 
spatial agglomeration of the annual average PM2.5 concentration first increased and then de-
creased, and the degree of spatial agglomeration reached its peak in 2006. 

3.3.2  Local spatial autocorrelation 

Based on local spatial autocorrelation analysis results (Figure 6), the county-level units pre-
senting significant local spatial autocorrelation were divided into four types: high-high, 
low-low, high-low, and low-high. The high-high areas with high annual average PM2.5 con-
centration, i.e., the hot spots for PM2.5 pollution, were continuously distributed in the North 
China Plain, Fenhe-Weihe Basin, Sichuan Basin, and Jianghan Plain regions. The number of 
county-level administrative units contained in the hot spots was generally unchanged from 
2000 to 2004, but increased greatly from 2006 to 2009, and then decreased in 2008. The 
low-low areas with low annual average PM2.5 concentration, i.e., the cold spots for PM2.5  

 
Figure 6  Local spatial autocorrelation analysis results for PM2.5 in China from 2000 to 2015 
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pollution, were distributed continuously in the northern part of Northeast China, Taiwan, 
Yunnan, Qinghai-Tibet Plateau, Xinjiang, the northern part of Inner Mongolia, and other 
border areas. The number of county-level administrative units contained in the cold spots 
was similar to the number of hot spots in terms of change over time; generally, unchanged 
before the distinctive increase in 2012 and then dropped to a minimum in 2015. The other 
county-level administrative units did not present significant local spatial autocorrelation. 
During the research period, no county-level administrative units of high-low or low-high 
local spatial autocorrelation types were identified, indicating that the annual average PM2.5 
concentration had strong local positive spatial autocorrelation characteristics. 

4  Driving forces of PM2.5 pollution 
Spatial variations in PM2.5 concentration in China were significant. However, the origins are 
complicated and the factors affecting changes in pollution concentrations are diverse and 
include natural factors, such as atmospheric circulation, volcano ash, forest fires, flying dust 
in bare desert areas, wind direction and frequency, and rainfall. Anthropogenic factors in-
clude industrial flue dust discharge, coal combustion, straw burning, exhaust from motor 
vehicles, flying dust from construction site. To analyze the factors contributing to changes in 
PM2.5 concentrations more comprehensively, we selected panel data for 287 prefecture-level 
cities in 2000, 2006, and 2011, including a total of 27,839 samples. We adopted the geo-
graphical detector method to detect characteristics of spatial differentiation and identify the 
driving forces. We chose the following 11 index factors as contributing to high PM2.5 con-
centrations in the data sources described in the methods section: natural geographical re-
gionalization (X1), per capita GDP (X2), population density (X3), proportion of secondary 
industry (X4), proportion of built-up areas (X5), urban greening ratio (X6), urban residents’ 
car ownership (X7), sown area (X8), industrial flue dust discharge (X9), average energy con-
sumption intensity (X10), average iron and steel output of lands (X11). We then calculated 
their degrees of influence on the spatial distributions of PM2.5 in 287 prefecture-level Chi-
nese cities (Table 2). 

Table 2  Geographical detection results for PM2.5 in China for 2000, 2006, and 2011 

2000 2006 2011 
Detection indices 

P Q P Q P Q 

Natural geographical regionalization (X1) 0.7047 0.0000 0.7447 0.0000 0.7196 0.0000 

Per capita GDP (X2) 0.0077 0.9191 0.0062 0.9079 0.0068 0.8659 

Population density (X3) 0.4320 0.0000 0.4372 0.0000 0.4120 0.0000 

Proportion of the secondary industry (X4) 0.0984 0.0000 0.0665 0.0031 0.0917 0.0000 

Proportion of built-up areas (X5) 0.0853 0.0030 0.0753 0.1033 0.1025 0.0282 

Urban greening ratio (X6) 0.0280 0.1503 0.0625 0.0319 0.0359 0.1083 

Urban residents’ car ownership (X7) 0.0259 0.8637 0.0913 0.0226 0.1074 0.0080 

Sown area (X8) 0.1396 0.0557 0.1487 0.0000 0.1046 0.0000 

Industrial flue dust discharge (X9) 0.0709 0.1537 0.0936 0.0000 0.0531 0.2766 

Energy consumption intensity of lands (X10) 0.3109 0.0000 0.4124 0.0000 0.4143 0.0000 

Average iron and steel output of lands (X11) 0.2869 0.0000 0.3373 0.0000 0.3217 0.0000 
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4.1  Natural factors affecting PM2.5 spatio-temporal evolution 

The geographical detection results indicate that changes in PM2.5 concentrations are closely 
related to regional natural factors. Natural geographical regionalization (X1) has the most 
significant influence on PM2.5. In the three selected years (2000, 2006, and 2011), its detec-
tion and explanatory power P for PM2.5 were 0.7047, 0.7477, and 0.7196, respectively, in-
dicating large-scale regional differentiation and significant influence from landform, climate, 
hydrology, soil and vegetation on the formation mechanism of PM2.5. Among the four areas 
suffering serious PM2.5 pollution, also recognized in section 3.2.1 in this paper, the change 
of PM2.5 in Taklimakan Desert was closely related to the regional atmospheric circulation 
and local sand-dust weather. Observations from 88 monitoring stations in Xinjiang from 
2000 to 2011 show that the Taklimakan Desert and its southern edge were sand-dust weather 
frequently observed area with sand-dust days 2.7 times more in Southern Xinjiang than in 
the Northern (Jiang et al., 2013); therefore, PM2.5 concentrations showed spatial coupling 
characteristics that were higher in Southern Xinjiang than in the Northern. The overall in-
crease in vegetation coverage and change in rainfall in Xinjiang also affected the change in 
PM2.5 in the Taklimakan Desert to a certain degree. Moreover, influenced by ocean currents, 
the southeast monsoon, warm and humid climate, high precipitation, dense population, and 
industrial agglomeration, the Pearl River Delta and island regions (e.g., coastal Fujian, Tai-
wan and Hainan) showed relatively low annual average PM2.5 concentration and were not 
severely polluted. Similarly, regions such as the Qinghai-Tibet Plateau, Inner Mongolia Pla-
teau, and Yunnan-Guizhou Plateau with rugged landforms had few human activities; thus, 
the PM2.5 concentrations have remained relatively low. 

4.2  Socio-economic factors affecting the spatio-temporal evolution in PM2.5 

Increases in human activity has a strong impact on air pollution, including flying dust arising 
from urbanization, emissions due to more private cars, increases in energy consumption, 
coal-fired heating facilities due to sharp rises in population, and straw burning caused by 
agricultural production. Excluding Xinjiang, which is strongly affected by natural factors, 
the three regions with high PM2.5 concentration were generally consistent with the spatial 
distribution of population density in China. The geographical detection results indicate that 
the regions suffering serious PM2.5 pollution were mainly concentrated in densely populated 
regions, including the North China Plain, with Beijing-Tianjin-Hebei region as the center; 
Shandong Peninsula; Hunan-Hubei Plain; and Chengdu-Chongqing Basin. A quantitative 
analysis of each factor influencing PM2.5 concentration is as follows. 

(1) Driven by urban construction. Based on geographical detection, the detected p val-
ues for urban development and construction influence on PM2.5 concentration in 2000, 2006, 
and 2011 were 0.4320, 0.4372, and 0.4120, respectively. Population density contributed the 
most to the changes in PM2.5 concentration, characterized by an inverted U-shaped pattern. 
The detected p values for the proportion of built-up areas (X5) in 2000, 2006, and 2011 were 
0.0853, 0.0753, and 0.1025 respectively, and their contributions to the changes in regional 
PM2.5 concentration increased gradually with the acceleration in urban construction. The 
detected p values for the urban greening ratio (X6) in 2000, 2006, and 2011 were 0.0280, 
0.0625, and 0.0359, respectively, and their contributions to changes in regional PM2.5 con-
centration were also characterized by an inverted U-shaped pattern. Urban greening can 
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mitigate dust and relieve its effect on PM2.5 in the atmosphere to a certain degree; however, 
the influence was minor. Similarly, per capita GDP (X2) had a relatively small influence. 

(2) Driven by industry and energy (coal) consumption. In 2000, 2006 and 2011, the 
detected p values for the proportion of secondary industry (X4) were respectively 0.0984, 
0.0665, and 0.0917; those of the average energy consumption intensity of lands (X10) were 
respectively 0.3109, 0.4124, and 0.4143, and those of the average iron and steel output of 
lands (X11) were respectively 0.2869, 0.3373, and 0.3217. Both industry and coal consump-
tion were significant factors in PM2.5 pollution (significance level = 0.01), indicating that 
emission of particulate pollutants in cities is the dominant source of pollution to most cities 
and regions. From 2000 to 2011, the total energy consumption in China increased by 2.39, 
and the proportion of coal to total energy consumption only decreased from 69.21% in 2000 
to 68.42% in 2011; that is, coal remained the primary source of energy in China. In 2015, 
coal still accounted for 68% of all energy consumed with no substantial decline. Total coal 
consumption in high polluted areas, such as Shandong, Inner Mongolia, Shanxi, Hebei, He-
nan, and Jiangsu exceeded 200 million tons. From 2000 to 2011, the iron and steel industry 
consumed a huge quantity of coal resources in China, primarily in three regions, the Yangtze 
River Delta, North China Plain, and Sichuan Basin; these areas are iron and steel industry 
concentrated areas. In these regions, ten provinces and cities, including Hebei, Tianjin, 
Shandong, Shaanxi, Jiangsu, Liaoning, Shanghai, and Sichuan, host the majority of iron and 
steel industries in China. In 2011, the crude steel output of these ten provinces and cities was 
4945 million tons, accounting for 70.44% of the national output in that year. Therefore, coal 
consumption and spatial distribution of iron and steel industries are key factors affecting 
changes in PM2.5 concentration. 

(3) Driven by the exhaust emissions of motor vehicles. In 2000, 2006 and 2011, the 
detected p values for civil car ownership (X7) were 0.0984, 0.0665, and 0.0917, respectively, 
and car ownership had insignificant effects on PM2.5 concentration in 2000 and 2006. How-
ever, with the sharp increase in the number of cars after 2006, the effect of car ownership 
became significant in 2011. From 2000 to 2011, civil car ownership in China increased by 
5.82 times and private car ownership increased by 11.72 times. The growth in car ownership 
was far higher than economic growth (4.77 times), per capita income (4.48 times), and 
highway mileage (2.45 times). In provinces and cities suffering serious haze pollution, e.g., 
Beijing, Hebei, Jiangsu, Zhejiang, and Shandong, the total numbers of civilian vehicles all 
exceed 4,000,000 per region. 

(4) Driven by straw burning. In 2000, 2006 and 2011, the detected p values for the in-
fluence of sown area of farm crops (X8) on PM2.5 were 0.1396, 0.1487, and 0.1046, respec-
tively. These were also characterized by an inverted U-shaped change pattern and the influ-
ence of straw burning on regional PM2.5 concentration reached a maximum in 2006. The 
total agricultural straw in China was 6×108 t, and 18.59% of straw was burnt in open space 
in rural areas. The pollution arising from straw burning was less than 5% of total PM2.5. 
However, the locations were agglomerated primarily in Eastern and Northern China regions 
with developed agriculture, and the time of burning was concentrated, with the peak occur-
ring around October for 1–2 days. Therefore, PM2.5 arising from straw burning possibly ac-
counted for 30% or 40% of the total PM2.5 in the air on specific days and had significant 
influence on regional air pollution (Lu et al., 2011).  
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5  Conclusions and implications 

5.1  Conclusions 

(1) Time sequence and Spearman rank correlation coefficient analysis shows that the an-
nual average PM2.5 concentration in China was high throughout the study period. From 2000 
to 2015, the PM2.5 concentration in China first increased rapidly and then became stable; 
2006 was identified as a turning point for the overall change in PM2.5 concentration in China. 
However, the annual average PM2.5 concentration in China was high and presented a trend of 
obvious diffusion in national land space. In 2011, the proportion of annual PM2.5 concentra-
tion raster to total raster increased by 75.12% compared to 2000, and the raster with growth 
rates showing a doubling of annual average concentration accounted for 13.20%. 

(2) Spatial analysis shows that northern and eastern China had higher concentrations than 
southern and western China; the Heihe-Tengchong Line is the significant dividing line. 
PM2.5 pollution concentration areas and extremely polluted areas showed clear expansion. 
The areas with average concentrations less than 15 μg/m3 decreased while areas with aver-
age concentrations more than 70 μg/m3 increased. Areas with high PM2.5 pollution concen-
trations were distributed in the North China Plain, and were related to low-altitudes. Coun-
ty-level administrative analyses indicate that PM2.5 pollution rose in 76.23% county-level 
administrative units from 2000 to 2006. The increase of PM2.5 pollution during this period 
was the general trend in most regions. 

(3) The center of gravity for PM2.5 pollution in China is located in eastern Shaanxi; from 
2000 to 2004, the center of gravity moved eastward at 24.97 km annually. After 2004, the 
center of gravity for high-pollution-concentration areas moved eastward, while the 
low-pollution center of gravity moved westward. The movement in opposite directions in-
dicates that PM2.5 pollution in the eastern regions clearly increased in this period and eastern 
PM2.5 pollution increased more than western. Spatial autocorrelation analysis shows that the 
annual average PM2.5 concentration was strongly characterized by local spatial positive au-
tocorrelation. The “high-high” PM2.5 agglomeration areas were distributed continuously in 
the North China Plain, Fenhe-Weihe Basin, Sichuan Basin and Jianghan Plain regions; 
“low-low” PM2.5 agglomeration areas were distributed in northern Inner Mongolia and Hei-
longjiang; the southeast coastal and island regions, e.g., Taiwan, Hainan, and Fujian; and the 
border areas, e.g., the Qinghai-Tibet Plateau and northern Xinjiang. 

(4) An evaluation of the driving forces of PM2.5 pollution in China indicates that natural 
factors and human economic activities have both affected the spatial characteristics and 
concentrations of PM2.5. The influence of natural geographical division on PM2.5 is most 
significant, and the detected p values for the three stages of the study period were higher 
than 0.7240. In addition, atmospheric condition, population growth (population density), 
industrial emission, straw burning, energy consumption growth, increases in motor vehicle 
ownership increased, and increases in car exhaust over the short term are the main driving 
forces for changes in PM2.5 concentration in China.  

5.2  Implications 

Quantitatively identifying the spatial variation and regularity of PM2.5 concentrations and 
evaluating the driving forces and mechanism of changes in PM2.5 concentration are keys to 



268  Journal of Geographical Sciences 

 

developing the economy while protecting the environment. These efforts can relieve resi-
dents’ psychological fear that “haze is to be even more dreaded than tigers,” while also pro-
viding a scientific basis for regional atmospheric linkage prevention and control, a spatial 
configuration for heavy-polluting industries, designing urban landscapes (wind pipe, green-
way), and adjusting industrial and energy structures. Due to data limitations, studying the 
large-scale evolution in PM2.5 concentrations began late in China. Existing studies have been 
primarily based on data from environmental monitoring locations and involved analyses of 
quarterly and daily changes using one-year segment data. This study used average PM2.5 
concentration data from 1999 to 2016 provided by NASA to address the problems created by 
limitations in large-scale PM2.5 data from 2000 to 2015 in China, i.e., the limited monitoring 
stations in the central and western regions and limited research on regional information dis-
tortion. The spatial distribution patterns in PM2.5 concentrations presented here are consis-
tent with previous studies (Zhang, 2015; Wang, 2015) and agree with the spatial characteris-
tics of monitoring points in the sparse areas, although for a longer period. However, the fac-
tors affecting PM2.5 concentration in China are complicated. Natural factors include atmos-
pheric circulation, extreme weather, landform, and regional transfer. Anthropogenic factors 
include industrial pollution, coal burning, motor vehicle emission, dust, biomass burning, 
car exhaust and waste burning, which are the most important driving forces. Due to the large 
gap between industrial structure, energy structure and consumption structure in various re-
gions or cities, China is in a key period of economic transformation described as “adjusting 
structure, stabilizing growth and development in green.” Predicting the complexity of at-
mospheric pollutants to provide long-term administration includes key scientific issues, such 
as “reasons and control of atmospheric haze” and “the relationship between haze and health” 
that the country must address and are also the focus of future research and exploration. 
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