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ABSTRACT
The Chinese chestnut (Castanea mollissima Blume) is an essen-
tial and highly nutritious nut crop, and income from selling 
chestnuts is important for small producers. Despite chestnuts 
being widely planted, chestnut yields are decreasing in northern 
China. The hypothesis of this paper is that yield reduction is 
the result of complex topographic conditions, insufficient soil 
nutrients, unscientific fertilization, and limited availability of 
productive land. The objective was to create a plant social geo-
spatial model–geographical detector for analyzing the strength 
of the association between chestnut yields and their potential 
determinants. In this model system, we used measured data 
from chestnut to highlight how a geospatial model can be used 
to identify complex relationships among soil, plants, and geo-
spatial location. Four geographical detectors (i.e., risk, factor, 
ecological, and interaction) were proposed on the basis of spa-
tial variation analysis. The model was then applied to Qianxi 
County of Hebei Province in China. Soil parent material, soil 
texture, and total power of farm machinery were found to be the 
key factors. The interactive effect of any two factors increased 
chestnut yield, and the interaction between parent material and 
total power of farm machinery resulted in the highest yield. 
The study’s approach and findings make it possible to introduce 
effective and practical measures to increase chestnut yield. Strat-
egies to increase chestnut yield need to be designed with spatial 
variables being considered.

Core Ideas
• Identifying chestnut yield limiting factors is essential to precision 

chestnut tree management.
• Four geographical detectors were applied to explore the key factors 

and interactive effects of geographical and socio-economic factors 
on chestnut yield using the power of the determinant concept.

• Soil parent material is a major factor in the spatial variation in 
chestnut yield, whereas aspect was not found to cause any obvious 
differences in chestnut yield. Among the eight parent materials, the 
gneiss soil results in the highest chestnut yield within the study area. 

• The interaction between soil type and total power of farm machin-
ery resulted in the highest chestnut yield.

• Our approach is a useful target for further research on increasing 
other crop yield or exploring the effect of factors on other crop yield.

The Chinese chestnut is an economically and eco-
logically important species distributed in across Asia, 
Europe, Africa, and parts of the Americas. China is 

responsible for approximately 38% of the cultivated land and 
75% of the world yield of this species (Gounga et al., 2008; 
Cheng et al., 2011). However, poor planting environments 
(Gómez-del-Campo, 2013; Mota et al., 2016), a low level of man-
agement (Martins et al., 2010), diseases (Gouveia et al., 2005) 
and unscientific fertilizing (Tang et al., 2010) have decreased the 
chestnut yield. As part of ongoing efforts to increase yields, the 
potential factors limiting yields must be identified.

Previous research has focused on the nutrient status and 
biological properties of the soil (Arrobas et al., 2018; Mota et al., 
2018). Arrobas et al. (2018) showed that yields were limited by 
soil properties, available nutrients, and leaf nutrient concentra-
tion, whereas Mota et al. (2018) reported that yields were lim-
ited by the availability of high quality water. Other researchers 
studied the effects of the understory vegetation on greenhouse 
gas emissions (Zhang et al., 2014), net N mineralization, and 
net nitrification rates (Matsushima and Chang, 2007), thin-
ning treatments (Shen et al., 2018), and vegetation removal on 
the soil’s physical and chemical properties (Zhao et al., 2011). 
Matsushima and Chang (2007) found that N fertilization 
affects soil nitrogen cycling in chestnut plantations and net N 
mineralization rates. Soil water content, N, and soil organic 
C did not differ between the wet and dry seasons (Zhao et al., 
2011). However, Shen et al. (2018) noticed that soil N, P, and 
K contents decreased with increasing soil depth between low-
intensity and high-intensity thinning treatments. This suppres-
sion may be caused by a reduction in soil nutrients such as N, 
P, and Ca returning to the soil through leaf litter through the 
thinning process. The responses of CO2 and N2O emissions 
in Chinese chestnut plantations to various fertilization treat-
ments have also been studied (Zhang et al., 2013). Moreover, 
the effects of climatic stress, geographic location, elevation, and 
terrain on Chinese chestnut have been reported (Vázquez et al., 
2001; Burke, 2011; Álvarez-Lafuente et al., 2018).

However, most previous studies on chestnut have not evalu-
ated the interactions between multiple factors (Pereira et al., 
2011; Mota et al., 2018). Previous studies have found that the 
biological properties of soil are important for chestnut yield (Wu 
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et al., 2010; Xu et al., 2010; Arevalo et al., 2011), but few studies 
have estimated the influences of soil texture (e.g., loam, sandy 
loam, sand, and light loam) on chestnut yield. Chestnuts pri-
marily grow near water (Liu, 1999; Martins et al., 2010) but the 
effect of the distance from water on chestnut yield is unknown. 
Therefore, research is needed to investigate how interactions 
among climate, soils, and management affect chestnut growth 
and development (Afif-Khouri et al., 2011). Although numer-
ous studies have quantified the effects of factors such as genome, 
age, gender, disease status, and pruning on the Chinese chest-
nut, few have considered the effects of geographical conditions, 
such as altitude, slope, and distance to a water source. It is also 
unknown whether chestnut yield varies with the total farm 
machinery power in an area. Moreover, to the best of our knowl-
edge, few studies have been conducted on chestnut yield even 
in the main growing region of the Chinese chestnut, where the 
chestnut plantation history extends over more than 2000 yr. 

Pearson’s correlation coefficients (Mu et al., 2018), multiple 
linear regression (Olaya-Abril et al., 2017), logistic regression 
(Abbaszadeh Afshar et al., 2018), spatial regression (Rodrigues 
et al., 2014), spatial panel models (Zhou and Wang, 2018), the 
analytic hierarchy process (Azizkhani et al., 2017), principal 
component analysis, and fuzzy membership functions (Li et al., 
2008) have been proposed as techniques to evaluate the com-
plex relationships between cultural and environmental factors. 
Usually, classic regression methods have been applied, such as 
logistic regression and spatial panel models, to measure poten-
tial factors (Armenian et al., 1997; Wang and Haining, 2017; 
Olaleye and Beke, 2017; Wang et al., 2010). Haining (2003) 
proposed the use of the spatial linear regression and conditional 
logistic regression methods to identify the potential factors 
through use of the t-values of the regression coefficients. Li et al. 
(2008) examined the uncertainties of the variables in terms of 
probabilities using fuzzy membership functions. However, these 
methods involve many assumptions (i.e., homoscedasticity and 
normality) and violations of such assumptions can have a major 
impact on a model’s validity. When too many categorical vari-
ables exist, the classic models become impractical for analyzing 
the potential factors. Moreover, interactions between variables 
are difficult to interpret; if a study is not specifically designed to 
assess interactions, their inclusion can make it difficult to esti-
mate other effects. Therefore, we need to develop a more suitable 
and effective model that reveals potential factors better and 
identifies their influence on chestnut yield.

In this study, we investigate the relationship between chestnut 
yield patterns and potential factors by using a novel geographical 
detector model. As a spatial analysis technique, the geographical 
detector technique does not require any assumptions or impose 
any restrictions with respect to explanatory and dependent vari-
ables (Wang et al., 2010). This technique has been widely used 
in the public health fields, especially for analyzing of the effects 
of potential factors on local disease risk (Hu et al., 2011; Huang 
et al., 2014). The geographical detector includes four detectors, 
namely the factor detector, the risk detector, the ecological detec-
tor, and the interaction detectors. It is used to explore which 
potential factors are important and how the factors interact with 
each other. The method has also been applied in mechanism 
research on built-up land expansion (Ju et al., 2016) and housing 
prices (Wang et al., 2017). In addition, the detector recognizes 

the spatial patterns of potential factors and associates them with 
chestnut yield, which is difficult to model with traditional meth-
ods. We first identified and mapped the spatial distribution of 
chestnut yield at the village level, then we acquired other relevant 
physical and social factors, such as elevation, soil parent material, 
and the distance to water source. Finally, we used the geographi-
cal detector to analyze the relationship between chestnut yield 
and these factors, and we discuss the results here.

MATERIAL AND METHODS
Study Area

The study area, Qianxi County (39°57´N–40°27´N, 
118°6́ E–118°37´E), is located south of the Yanshan Mountains 
in northeastern Hebei Province of China (Fig. 1). Qianxi County 
covers approximately 1459.52 km2, includes 417 villages, and has a 
population of 354,000 (approximately 242 people per km2).

The geomorphology is mountainous and hilly with water-
sheds. The altitude of the area is between 50 and 900 m a.s.l., 
and its average altitude is 230 m a.s.l. The area has a warm tem-
perate continental monsoon climate and four distinct seasons. 
The annual mean temperature is 10°C, and the annual mean 
precipitation is 804.2 mm each year. Agriculture is the primary 
human activity and chestnuts are the principal cash crop in this 
area. Qianxi County is the largest chestnut-producing county in 
China, and it is famously known as the “Town of the Chinese 
Chestnut”. Chestnut yield is the main source of income for the 
local farmers. However, problems such as insufficient fertilizer 
use, terrain conditions, and climatic conditions affect chestnut 
yield and quality. Chestnuts planted in Qianxi County have a 
good reputation and are called the “Oriental Pearl” in domestic 
and international markets.

Determinants of Chestnut  
Yield and Data Collection

The study area has unique environmental and social charac-
teristics that make it more suitable for chestnut yield than other 
areas. Because the environmental and social characteristics affect 
the chestnut yield (Afif-Khouri et al., 2011; Pandit et al., 2011; 
Portela et al., 2011), we considered both of these factors in our 
study. On the basis of a literature review and available data, 10 
potential environmental and socioeconomic factors were selected 
as proxy variables to run in the geographical detector. One of 
the most important factors affecting chestnut yield is the local 
geography (Martins et al., 2011). We chose elevation, slope, and 
aspect as proxies of the geography. Another important factor that 
can affect chestnut yield is the soil condition (Portela et al., 2015), 
including physical and chemical properties such as soil parent 
material, texture, and chemical composition. Li et al. (2014) and 
Bauman et al. (2017) considered soil and nutrients as the primary 
factors affecting Chinese chestnut plantations. The third factor 
we considered was the climatic conditions, which can influence 
chestnut tree growth and fruit development (Wilczyński and 
Podlaski, 2007). The results of fieldwork have indicated that 
water is considered one of the primary factors affecting chestnut 
yield (Deb et al., 2012; Mota et al., 2016). Consequently, in this 
small region, we assumed that studying the distance to water was 
more meaningful than studying precipitation and relative humid-
ity. After a literature review, we found that solar radiation was an 
important factor affecting chestnut yield; thus solar radiation was 
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selected as a proxy variable for climatic conditions. The last fac-
tor we considered was the productivity condition (Martins et al., 
2011), which also has a significant influence on chestnut yield. To 
express productivity quantitatively and spatially, the labor force 
and total power of agricultural machinery were selected as prox-
ies. The proxy variables associations of potential factors affecting 
the chestnut yield are shown in Fig. 2.

Based on these selection factors, the data used in the study 
included a digital elevation model (DEM), waters, soil parent 
material and soil texture, chemical composition, total power of 
agricultural machinery, and labor force.

A DEM from the 1:10,000 topographic database and vector 
data on the main rivers and administrative boundaries for 2016 
were collected from the database of the national geographic 
condition monitoring of China. The national geographic condi-
tions monitoring of China is a key national project, spearheaded 
by the National Administration of Surveying, Mapping, and 
Geoinformation of China. The DEM data are in raster format, 
with a 1-m resolution.

The elevation, slope, aspect, and solar radiation were extracted 
from the DEM. Elevation was directly extracted from the DEM 
as the value of points extracted with ArcGIS software version 
10.3 (Environmental Systems Research Institute, Inc., Redlands, 
CA) Slope was defined by a plane tangent to a topographic sur-
face, as modeled by the DEM at a given point. Slope is defined as 

the percentage of change in vertical elevation (height) over a cer-
tain horizontal distance and can be calculated in degrees. Aspect 
refers to the orientation of the sloping surface. Aspect affects 
chestnut growth, which can affect chestnut yield. The solar radia-
tion was calculated via the solar radiation analysis method. This 
approach incorporates slope, hill shade, and peak aspect reduc-
tion and produces an accurate solar radiation map, allowing 
modifications of the coefficient of atmospheric transmissivity.

A spatial buffer method was used to create polygons around 
the main water sources that extended for a specified distance. Five 
hundred meters was specified as the interval distance in our study 
area, and buffers were drawn around the main water sources with 
ArcGIS version 10.3 software (Environmental Systems Research 
Institute, Inc.) to calculate the water buffer region factor.

The soil data were obtained from the Bureau of Agriculture and 
Animal Husbandry in China’s Hebei Province. In this study, the 
soil is defined by the soil parent material, texture, and chemical 
composition. The soil parent materials primarily include flood 
alluvial, loess substance eluvial brown soil, limestone, conglom-
erate, gneiss, talus leached drab, and other types. Soil texture is 
divided into four classes: sandy loam, loam, light loam, and sand.

There are nine composition types: Zn, Pb, K, Mn, P, Cu, 
Fe, organic matter, and total N (TN). Common interpolation 
methods are the regression inverse distance weighting method, 
polynomial interpolation, Kriging, and the spline interpolation 

Fig. 1. Map of the study area.

Fig. 2. Relationship between the determinants of chestnut yield and their proxies.
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method (Wang 1999). These methods were used for discretizing 
chemical elements and estimating soil chemical composition 
spatially in our study. Cross-validation can used to determine 
which model provides the best assessment (Goovaerts 1997). 
To ensure accuracy, the quintiles and probability depend on the 
interpolated SEs as much as the predictions. Of these methods, 
the regression inverse distance weighting method was selected to 
estimate soil chemical composition. With this method, the mean 
SEs were 2.31 and were close to the root mean squared predic-
tion error, which was 1.52. In addition, the root mean squared 
standardized error was 1.18, which is close to 1. Moreover, this 
model provides unbiased optimal estimates for regionalized vari-
ables in a limited area (Blanda et al., 2018; Lu and Wong, 2008).

Socioeconomic data from 417 villages of Qianxi County 
in 2016 were collected, including the labor force and the total 
power of agricultural machinery. The data were collected from 
tables of the national economy of Qianxi by village and sourced 
from the Bureau of Statistics of Qianxi. (Bureau of Statistics of 
Qianxi, 2016). The labor force and the total power of agricul-
tural machinery in each village for the 417 villages were pro-
vided in table format. On the basis of fields having the village 
name in common as an attribute, the table data were linked to 
the administrative boundaries of the village in vector form.

The selected factors needed to be reclassified into several 
classes after they had been collected, extracted, and calculated. 
For a specified number of classes, different methods gener-
ally define the cutting values differently. In this study, instead 
of other methods such as equal intervals, quantiles, the and 
K-means algorithm, the natural breaks method was used. This 
method determines the cutting values by minimizing within-
class variance and maximizing between-class variance over an 
iterative series of calculations (Brewer and Pickle 2002). The 
selected factors were reclassified according to the natural breaks 
method and their maps are shown in Fig. 3.

Several steps were followed to achieve the purpose of the 
study (Fig. 4). According to the input requirements of the 

geographical detector model, all of the data were projected 
or reprojected to the Albers conical equal area projection 
(Krasovsky spheroid) and resampled to a grid size of 500 by 500 
m, resulting in 5829 grids in Qianxi County in the database. 
Next, the grids were overlaid with layers of the selected limit-
ing factors to obtain the chestnut yield values and the attribute 
information of the limiting factor layers in each grid. The chest-
nut yield data and the related factor data in the grids were then 
used as input to the factor detector and the ecological detector 
model, respectively. After that, the model output in the previous 
step was used as an input for the interactive detector and the 
risk detector. Based on the results of these steps, the key factors 
that significantly affected chestnut yield, the auxiliary factors 
that were affected by other factors, and the appropriate types 
and ranges of the limiting factors were selected.

Geographical Detector

The data analysis was performed by following a geographical 
detector approach (Wang et al., 2010). Basically, a geographical 
detector measures the correspondence of the spatial distribution of 
the dependent variables to that of the explanatory variables. This 
approach can handle both quantitative and nominal data with-
out any assumptions or restrictions with respect to the variables. 
Here, we refer to the geographical detector (Wang et al., 2010) and 
assume that if chestnut yield is influenced by a particular potential 
factor, then the spatial distribution of the factor and chestnut yield 
will be similar within a geographical space. This assumption has 
two implications: (i) the potential factor might positively affect 
chestnut yield, or (ii) the spatial distribution of the factor might 
have a negative relationship with chestnut yield.

As shown in Fig. 5, in our study region, the entire geographi-
cal space was denoted as Q and the spatial distribution of the 
chestnut yield was denoted C. The entire geographical space was 
divided by a regular grid system (G) consisting of gi units (1, 2… 
n) divided into nG units that covered all of Q; the chestnut yield 
in each grid unit was denoted Ci (1 ≤ i ≤ nG). A potential factor 

Fig. 3. Maps of chestnut yield and geographical factors. (a) Chestnut yield; (b) slope; (c) water buffer region; (d) solar radiation; (e) soil 
parent material; (f) soil texture.
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that impacted chestnut yield was denoted F in the space and 
this factor was divided into nF subzones. After intersecting C 
and F, there were nF subzones in Q. Every subzone had , F mn  (1 ≤ 
m ≤ nF) grids and , 

1

Fn

G F m
m

n n
=

=∑ . The chestnut yield in every grid 

in the subzone was defined as Cm,i (1 ≤ m ≤ nF, 1 ≤ i ≤ nF,m). 
The average chestnut yield in Q was easily calculated as GC  and 
the dispersion variance in chestnut yield in Q was 2

Gσ . A similar 
calculation over the subzones (Fi) was performed to obtain the 
average value ( ,m iC ) and the dispersion variance (

,

2
m iCσ ) of C. 

These are calculated as follows:
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Factor Detector
The relationship of the effect of each potential factor on 

chestnut yield was measured with a factor detector that used 
the power of the determinant (PD) quantified here. The whole 
geographical space Q was divided into several subzones by F and 
the overall resulting variance was calculated as 2

GFσ . The PD 
wasw computed as follows:

,
2 2

,
1 1,

1 ( )
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where , ,
1

Fn

G F F m
m

n n
=

=∑ . In general, the PD value lies between 0 

and 1. The influence of each factor on chestnut yield is directly 
proportional to the value of PD: if chestnut yield is completely 
influenced by the factor, then would PD equal 1; if the factor is 
irrelevant to chestnut yield, then PD = 0.

Risk Detector

When 
imC  and 

jmC  differ between subzones, then the chest-
nut yield in these two subzones may differ. We tested the signifi-
cance of differences between 

imC  and 
jmC  with t-tests (Press et 

al., 1992); the degree of freedom is shown as df. The formulas are 
as follows:
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To test the null hypothesis that 
imC  = 

jmC , the confidence 
level α (generally 5%) can be used. The null hypothesiscan then 
be rejected when |

m mi jC Ct
− | > tα ÷ 2, thus showing that the chest-

nut yield in these two subzones is significantly different; other-
wise, the observed difference may be caused by an error.

Ecological Detector

Assuming that the two factors are Fi and Fj, the overall vari-
ance of these two potential factors is 2

GFi
σ  and 2

GFj
σ , respectively. 

The F-test was used to compare the differences between 2

GFi
σ and

2

GFj
σ as follows:

2
, ,

2
, ,

( 1)

( 1)
i i GFi

j j GF j

G F G F

G F G F

n n
F

n n

σ

σ

−
=

−
. [7]

The distribution of this statistic is F ( ,G Fi
n –1, ,G Fj

n –1) and its 
degree of freedom was 

,G Fi
n ,

,G Fj
n . To test the null hypothesis 

2

GFi
σ  = 2

GFj
σ , we used a significance level of α = 5% and calculated 

the confidence level. When H0 is rejected at this confidence 
level α, then these two factors have a significant impact on chest-
nut yield and the factor Fi (or Fj) is a more significant determi-
nant than Fj (or Fi).

Interactive Detector

An interactive detector quantifies the interactive effect of 
two or more potential factors on chestnut yield. Two potential 
factors, Fi and Fj, may be independent or have a combined 
effect on chestnut yield, and the combined effect may weaken 
or strengthen each factor. The geographical layers Fi and Fj are 
overlaid to create a new layer. The PDs of Fi, Fj, and L are calcu-
lated via Eq. [4], then the power of the determinants was used as 
input into Eq. [7] for evaluation. The expressions are as follows:

Enhance: PD (Fi ∩ Fj) > PD (Fi) or PD (Fj);

Enhance, bivariate: PD (Fi ∩ Fj) > PD (Fi) and  
PD (Fj);

Fig. 4. Technique flowchart.
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Enhance, nonlinear: PD (Fi ∩ Fj) > PD (Fi) + PD (Fj);

Weaken: PD (Fi ∩ Fj) < PD (Fi) + PD (Fj);

Weaken, univariate: PD (Fi ∩ Fj) < PD (Fi) or  
PD (Fj);

Weaken, nonlinear: PD (Fi ∩ Fj) < PD (Fi) and  
PD (Fj); and

Independent: PD (Fi ∩ Fj) = PD (Fi) + PD (Fj).

RESULTS

Given that multiple independent variables were included in 
the model, multicollinearity among the potential factors was 
examined via the variance inflation factor. According to the 
standard values suggested by the statistician Gujarati (1995), 
if the variance inflation factor is less than 5, then the model 
can be considered to exhibit multicollinearity, which can cause 
the instability of the estimated values of the coefficients and 
the inaccuracy of the results of the analysis. In this study, the 
variance inflation factor values for the aspect, Zn, Pb, K, P, 
Cu and organic matter were greater than 13, and the variance 
inflation factor values among the other variables were less than 
5.7. Therefore, we chose elevation, slope, water buffer region of 
water, solar radiation, soil parent material, soil texture, labor 
force quantity, total power of farm machinery, and chemical 
compositions (Fe, Mn, and TN) as the explanatory variables.

The results of the aforementioned geographical detectors are 
listed below. The factor detector was used to evaluate which 
determinants were responsible for chestnut yield. These results 
were ranked by PD value as follows: soil parent material (0.28) > 
soil texture (0.25) > total power of farm machinery (0.23) > Fe 
(0.19) > water buffer region (0.17) > labor force quantity (0.14) > 
Mn (0.12) > TN (0.11) > elevation (0.10) > slope (0.04) > solar 
radiation (0.03). The ranking results showed that the first three 
factors (with PD > 0.20) can be considered as the primary poten-
tial factors that explain the spatial variability of chestnut yield.

The risk detector was used to calculate the geographical domain 
area and to analyze the effect of several soil parent material vari-
ables on chestnut yield. The order of the corresponding average val-
ues was as follows: gneiss (44.58 Mg) > flood alluvial (27.56 Mg) 
> other types (24.58 Mg) > conglomerate (22.39 Mg) > deposit 
leached drab (22.07 Mg) > limestone (15.49 Mg) > loess substance 
eluvial brown (12.32 Mg) > aeolian sandy (9.70 Mg). The results 
of the significance tests between chestnut yield and soil parent 
material that are significant at a confidence of 95% are listed in 
Table 1. The results indicate that the gneiss soil parent material 
significantly affected chestnut yield at a magnitude approximately 
five times greater than that of the aeolian sandy type.

The significant differences among all four soil textures are 
shown in Table 2. The order of the corresponding mean values 
is as follows: sandy loam (39.90 Mg) > light loam (28.29 Mg) > 
loam (18.80 Mg) > sand (11.17 Mg). These results suggest that 
the sandy loam category significantly affected chestnut yield, at 
a level more than threefold that of sand. There was no signifi-
cant difference between loam and sand.

The total power of farm machinery also strongly affected 
chestnut yield. As the total power of farm machinery increased, 
chestnut yield increased when the total power was less than 

Fig. 5. Division of the study area (Q), the regular grid (G), the geographical zones of a potential factor (F), and the N, G, and F features 
overlaid onto the statistical parameters.
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approximately 3000 kW. When the total power exceeded ~3000 
kW, chestnut yield decreased. The geographical detector showed 
that higher chestnut yield was not always associated with increased 
value. The following order was found as the total power of farm 
machinery increased: Level 1 (9.30 Mg) < Level 5 (11.64 Mg) < 
Level 2 (17.34 Mg) < Level 3 (27.39 Mg) < Level 4 (38.54 Mg). 
Chestnut yield first increased and then decreased after reaching an 
inflection point of approximately 3000 kW. A similar analysis can 
be conducted to analyze the correlations among other potential 
factors and chestnut yield with the risk detector.

As Table 3 shows, the ecological detector revealed that the 
variations in PD values between slope, Mn, Fe, and TN were 
not statistically significant; however, the differences among soil 
parent material, labor force quantity, the total power of farm 
machinery, water buffer region, and elevation were more signifi-
cant than the other five potential factors. None of the remain-
ing factors was statistically significant.

The interactive detector was used to analyze whether the 
potential factors operated independently or were interconnected 
and to examine the combined impact of two or more potential 
factors on chestnut yield with the interactive PD value. From 
Table 4, the interactive PD value of soil parent material × total 
power of farm machinery was greater (PD = 0.37) than that of 
the soil parent material alone (PD = 0.28). Most interactive PD 
values of multiple potential factors were higher than the PD 
value of any single potential factor. Combinations of the above-
mentioned potential factors can effectively explain the spatial 
variability of the chestnut yield in the study area. Although few 
interconnected effects reduced the PD value, the slope × TN 
interaction (PD = 0.05) reduced the effect of TN alone.

DISCUSSION

The identification of the factors that play the greatest role in 
chestnut productivity is important. With the four detectors, we 
found that soil parent material, soil texture, and total power of 
farm machinery were primarily responsible for chestnut yield, 
where gneiss soil and a high total power of farm machinery 
exhibited the highest yield. Additionally, the interactive effects 
of soil parent material × soil texture, soil parent material × 
total power of farm machinery and soil texture × total power of 
farm machinery are even stronger than are their separate effects. 
Nevertheless, although slope, solar radiation, and chemical com-
position have weak effects on chestnut yield, they contributed 
significantly to productivity when interacting with soil parent 
material, soil texture, or total power of farm machinery, indicat-
ing the importance of these three factors.

Chestnut yield can be only partially explained by geographic, 
climatic, nutritional, or other single factors. The results often 
indicated the combined effect of the mixtures and interactions 
of multiple factors. One finding was that chestnut yield did 
not always increase with the total power of farm machinery. 
This finding was demonstrated by a higher amount of chestnut 
yield at Level 4 (1775–3191 kW), which gradually decreased 
at Level 5 (>3191 kW). As a result, Level 4 was associated with 
the highest concentration of chestnut yield, which indicates 
that below the inflection point of 3191 kW, the total power 
of farm machinery plays a more important role than the labor 
force, but above the inflection point, the labor force ratio is a 
decisive factor (a higher value indicates higher potential chest-
nut yield). This observation indicates that merely increasing the 
total power of farm machinery would be insufficient to increase 
chestnut yield significantly in practice.

Our study has some limitations. The first limitation is the 
discretization of quantitative data. The geographical detector is 
useful for analyzing qualitative data, such as soil parent material 
and aspect, wherea quantitative data, such as labor force and solar 

Table 1. Average chestnut yield, according to soil parent material.†
Zone DLD FA L G Con AS LSEB OT
DLD – – – – – – – –
FA N – – – – – – –
L N Y – – – – – –
G Y Y Y – – – – –
C N Y Y Y – – – –
AS Y Y N Y Y – – –
LSEB N Y N Y Y N – –
OT N N Y Y N Y Y –
† DLD, deposit leached drab; FA, flood alluvial; L, limestone; G, gneiss; 
Con, conglomerate; AS, aeolian sandy; LSEB, loess substance eluvial 
brown; OT, other types; Y, the difference between the two factors is 
significant at a confidence level of 95%; N, nonsignificant difference. 

Table 2. Difference in average chestnut yield among four soil tex-
ture categories.†
Difference Loam Sandy loam Sand Light loam
Loam – – – –
Sandy loam Y – – –
Sand N Y – –
Light loam Y Y Y –
† Y, the difference between the two factors is significant at a confi-
dence level of 95%; N, nonsignificant difference.

Table 3. Statistically significant differences among the factors according to the ecological detector.†
Difference LFQ TPOFM WBR E SL SR SPM STT Mn Fe TN
LFQ – – – – – – – – – – –
TPOFM N – – – – – – – – – –
WBR N N – – – – – – – – –
E N N Y – – – – – – – –
SL N N N N – – – – – – –
SR N N Y N N – – – – – –
SPM Y Y Y Y N Y – – – – –
STT Y N Y Y N Y N – – – –
Mn N N N N N N N N – – –
Fe N N N N N N N N N – –
TN N N N N N N N N N N –
† LFQ, labor force quantity; TPOFM, total power of farm machinery; E, elevation; SL, slope; WBR, water buffer region; SR, solar radiation; SPM, soil parent 
material; STT, soil texture; TN, total N; Y, the difference between the two factors is significant at a confidence level of 95%; N, nonsignificant difference.
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radiation, must first be discretized and classified into different 
zones. Our study compared the natural break, quantile break, 
equal interval break, and K-means methods and revealed no 
significant difference among them. Therefore, we chose the natu-
ral break method to discretize the quantitative data. The issue 
of discretizing quantitative data effectively must be solved in the 
future. The second limitation was that not all potential factors 
were present in our research. In our study area (a small region), 
no significant variations occurred in temperature, which could 
affect chestnut yield, although chestnut was influenced by meteo-
rological and climatic parameters. Thus some limiting factors for 
chestnut planting on a small scale, such as the mean temperature, 
rainfall, and relative humidity, were not included in our model for 
lack of data. We analyzed the interactive influences of two factors 
only on chestnut yield. Therefore, we intend to study the com-
bined effects of multiple factors on chestnut yield in future work.

CONCLUSIONS
In this study, four geographical detectors were applied to 

explore the key factors and interactive effects of geographical, 
water, soil, climatic, and productivity conditions on chestnut 
yield via the PD concept. To the best of our knowledge, this study 
is the first to examine the effect of potential factors on chestnut 
yield in the largest chestnut-growing area of China. We also used 
the geographical detector technique to analyze the effects of the 
selected potential factors on chestnut yield and obtained some 
interesting results. Our study shows that the soil parent material 
is a major factor in the spatial variation of chestnut yield, whereas 
aspect was not found to cause any obvious differences in chestnut 
yield. Among the eight parent materials, the gneiss soil resulted in 
the highest chestnut yield within the study area. The findings are 
consistent with an evaluation of chestnut planting suitability (Li 
et al., 2014; Zhang et al., 2015), who also showed that soil parent 
material and texture were the key factors limiting chestnut yield 
and that among the soil parent materials, the gneiss type resulted 
in the highest chestnut yield. We also found that the total power 
of farm machinery played a greater role in chestnut yield than the 
labor force. Although the PD value of the water buffer region was 
small, the combination of this factor with chemical composition 
significantly enhanced chestnut yield.

Our results are useful for providing information that can be 
used to increase yield. To improve yield and expand the local chest-
nut economy, effective and flexible approaches to increase chestnut 
yield are provided in our study, such as adjusting the soil parent 

material and soil texture, by rationally developing gneiss regions, 
cultivating sandy loam soil, and increasing the total power of farm 
machinery on the basis of sufficient irrigation or being close to 
water sources, as well as the knowledge that yields flourish in gneiss 
and sandy loam soil under good water conditions.
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