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Abstract
Understanding the spatial patterns of heavy metals is important for the protection and remediation of urban soil. Con-

sidering that the conventional Geostatistical methods, such as ordinary kriging (OK), are sensitive to dataset outliers, this

study converted the identified outliers into a discrete probability density function (PDF). Then, the PDF was used as soft

data in the Bayesian maximum entropy (BME) framework to perform a spatial prediction of soil Zn contents in Wuhan

City, Central China. By using OK as the reference method, the BME framework was found to produce an overall further

accurate prediction, and the PDF of BME predictions was further informative and close to the observed Zn concentrations.

An improved BME performance can be expected if soft data with high quality are provided. The BME is a promising

method in environmental science, where the so-called outliers that probably carry important information are common.

Keywords Bayesian maximum entropy � Soil Zn contents � Outliers � Discrete probability density function �
Soft data

1 Introduction

Soil contamination by heavy metals has been receiving

increasing attention worldwide in recent years, especially

in urban soils due to rapid industrialization and urbaniza-

tion. Heavy metals in soil can be hardly eliminated due to

their nonbiodegradable nature and long biological half-life

(Guo et al. 2012). Elevated concentrations of heavy metals

in urban soils may threaten the health of citizens, especially

the children, because these metals can be easily transferred

into human bodies through polluted food ingestion or direct

contact (Benhaddya and Hadjel 2014). Moreover, the pol-

luted urban soils may enter the atmosphere as dust (Meza-

Figueroa et al. 2007) and affect water quality due to surface

runoff and soil erosion (Helmreich et al. 2010), thereby

being further carried into sensitive environments. There-

fore, accurate knowledge of the spatial pattern of heavy

metals is vital for the risk assessment, protection, and

remediation of urban soil.

Geostatistical methods, mainly including the various

kriging techniques, have been widely applied in soil sci-

ences and are effective for quantifying the spatial features

of soil attributes, such as soil heavy metals (Webster and

Oliver 2007). A properly selected variogram model, which

depicts the spatial structure of the variable under study, is

the key for the successful application of kriging techniques.

However, the existence of outliers will greatly affect the

variogram form and cause the erratic behavior of the var-

iogram model (McGrath and Zhang 2003). A popular way

of managing outliers is to compute and fit the robust var-

iogram models, which are less sensitive to outliers (Cressie

and Hawkins 1980; Lark 2000). In fact, data for the con-

centrations of heavy metals often contain ‘‘outliers’’

probably due to potential contamination (Zhang et al.

2009). The ‘‘outliers’’ are supposed to come from a second

process (e.g., contamination) in the robust variogram
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models. This method seeks to weaken the influences of the

outliers, but these outliers probably carry critical infor-

mation that should be processed carefully and directly.

Bayesian maximum entropy (BME), which was intro-

duced in the 1990s (Christakos 1990, 2000), provides a

physically meaningful and formally rigorous framework

for synthesizing multisource data and knowledge, thereby

improving modeling and spatial prediction (Gao et al.

2014; Savelieva et al. 2005). A major characteristic of the

BME is that it utilizes data with uncertainty (hereinafter,

the soft data) in a flexible manner. For instance, setting the

prediction intervals as interval soft data is a common

practice, whereas the prediction intervals are often derived

from the empirical relationships between the target variable

and highly correlated auxiliary information (Douaik et al.

2005; Gao et al. 2014). Furthermore, the probability dis-

tribution of various forms can be constructed from a time

series with missing values and duplicated observations and

then be used as probability soft data (Reyes and Serre

2014; Savelieva et al. 2005). Puangthongthub et al. (2007)

regarded high outliers above the 99 percentile value of

measured PM10 concentrations as soft data. These outliers

were described by a Gaussian probability density function

(PDF) with a standard deviation (SD) that is equivalent to

the sampling method accuracy or sufficiently large to cover

the 99 percentile value.

In this study, soil Zn was selected as the experimental

trace element due to its ubiquity in urban soils and toxicity

to human health. Dataset outliers of soil Zn concentrations

were initially identified. Then, the discrete probability soft

data were constructed on the basis of the detected outliers

and used for BME modeling. The main objective of this

study was to test the capability of the BME method in the

spatial prediction of soil heavy metals with the existence of

outliers. For comparison, ordinary kriging (OK) based on

the robust variogram model was also applied to the same

dataset.

2 Materials and methods

2.1 Study area

Wuhan City, which is the capital of Hubei Province and the

largest city in central China, is located in the middle reach

of Yangtze River. This city had a population of approxi-

mately 10.22 million by the end of 2013 (Wuhan Bureau of

Statistics 2013). Wuhan is one of China’s four major

comprehensive transportation hubs with heavy traffic.

Wuhan is also an important industrial city that hosts

numerous ferrous smelters, metal work plants, and equip-

ment-manufacturing plants. Hundreds of lakes with various

sizes and several large rivers exist within the administrative

borders of the city, which account for nearly a quarter of

the total city area (Wuhan Government webpage, http://

www.wh.gov.cn). In this study, an area of 1016 km2,

which covers the seven core urban districts and part of

Caidian and Jiangxia districts, was selected as the study

area (Fig. 1).

2.2 Sampling and analysis of soil Zn
concentrations

The study area was divided into grid cells of 1 km 9 1 km

for sampling. A total of 467 topsoil samples (0–20 cm

depth) were collected inside these grid cells in November

2013. To acquire further qualified data in a short time with

less expense, all 467 soil samples were analyzed by X-ray

fluorescence (XRF, Niton XL2 600, Thermo Scientific,

USA). Then, 150 of the soil samples were carefully

selected and analyzed through inductively coupled plasma

atomic emission spectrometry (ICP-AES, VISTA-MPX,

VARIAN, USA). For XRF measurements, each soil sample

was blank corrected and detected for at least 90 s to ensure

data accuracy. For ICP measurements, three duplications

were performed for each soil sample, and blank samples

were also analyzed. To integrate soil Zn data obtained by

ICP-AES and XRF, a linear regression model (the R-square

value and correlation coefficient of the model were 0.895

and 0.946, respectively) was established on the basis of

pairwise concentrations of soil Zn at the 150 selected

sample sites. This model was used to rescale the XRF data

into those obtained by ICP-AES. ICP-AES and XRF failed

to measure the soil Zn concentrations at two soil samples;

therefore, the concentrations were discarded. Finally, a

total of 465 measurements of soil Zn were adopted in this

study. Figure 1 plots their spatial distribution. All soil

samples were analyzed at the Key Laboratory of Arable

Fig. 1 Study area and spatial locations of measured Zn concentrations

in soils of Wuhan city
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Land Conservation (Middle and Lower Reaches of Yangtze

River), Ministry of Agriculture of China. Thus, all Zn data

(465 measurements) used in the following analysis can be

considered accurate and free from error values. Additional

details about the sampling and chemical analysis of soil

heavy metals in this study area can be found in Zhang et al.

(2015).

2.3 Global outlier identification

Histogram is a simple and frequently used method for

demonstrating dataset distribution. This method can also

provide information about outliers. As the bins (class

intervals) used to count the frequencies are equally dis-

tributed, the outliers are located far away from majority of

the values and thus can be visually identified (Zhang et al.

2009).

A boxplot is a nonparametric method for depicting

dataset distribution through quartiles, which include the

lower (25th percentile), median, and upper (75th per-

centile) quartiles. The bottom and top of the box are called

the hinges, and the length of the box is the interquartile

range (IQR). Outliers identified by boxplot consist of ‘‘mild

outliers’’ and ‘‘extreme outliers’’; the former are those

values located between 1.5 9 IQR from the hinges, and the

latter are located beyond 3 9 IQR from the hinges (Zhang

et al. 2009). Only the ‘‘extreme outliers’’ from the boxplot

were adopted in this study to retain as much information

regarding the spatial variability of soil Zn as possible from

the original dataset.

2.4 Spatial outlier identification and prediction
by OK method

OK is adopted to identify the spatial outliers, and it is one

of the most frequently used geostatistical methods, which

aims to provide the best linear unbiased predictions of

regional variables on the basis of intrinsic assumption

(Matheron 1963; Olea 2006; Oliver and Webster 2014).

The prediction of OK at an unvisited location s0 is calcu-

lated by Eq. (1).

ẑOKðs0Þ ¼ kðs0ÞTz ð1Þ

where kðskÞ is an N � 1 vector holding the weights

assigned to the N observed data values z (soil Zn concen-

trations in this study). The prediction error variance can be

easily derived by Eq. (2).

r2OKðs0Þ ¼ c0 þ c1 � Cðs0ÞTkðs0Þ ð2Þ

Here, Cðs0Þ represents the N � 1 vector of covariance

values between s0 and N data points. A single covariance

CðhÞ between a certain pair of points with their Euclidean

distance being h is typically calculated from the variogram

models cðhÞ with their relationship as CðhÞ ¼ c� cðhÞ. c
denotes the so-called sill parameter and can be divided into

nugget (c0) and partial sill (c1), such that c ¼ c0 þ c1.

Three commonly used variogram models, i.e., exponential,

Gaussian, and spherical models, are defined by Eqs. (3),

(4), and (5), respectively.

cðhÞ ¼ c0 þ c1ð1� e�3h=rÞ ð3Þ

cðhÞ ¼ c0 þ c1ð1� e�3h2=r2Þ ð4Þ

cðhÞ ¼ c0 þ c1
3h

2r
� h3

2r3

� �
ðh\rÞ

c0 þ c1 ðh� rÞ

8<
: ð5Þ

where r refers to the range parameter.

As previously mentioned, the existence of the outliers

will greatly affect the variogram model; thus, the estimated

and observed values at the spatial locations of outliers tend

to differ considerably, and the prediction error variance is

also likely to be underestimated (Meklit et al. 2009). In this

situation, the standardized prediction error esðs0Þ (abbre-

viated as StdP_Err) can be used as the criterion to deter-

mine outliers, which is defined by Eq. (6).

esðs0Þ ¼
ẑOKðs0Þ � zOKðs0Þ

rOKðs0Þ
ð6Þ

The leave-one-out cross-validation of OK was used to

obtain ẑOKðs0Þ and rOKðs0Þ in Eq. (6). For the spatial

outliers, their corresponding absolute values of esðs0Þ will
be large. In this study, the high-value spatial outliers were

identified if esðs0Þ is smaller than - 1.96 (Meklit et al.

2009; Zhang et al. 2009).

In practice, the sample variogram, to which the theo-

retical variogram model is fitted, is calculated. In this

study, two types of sample variogram were used for dif-

ferent purposes. One is the most widely used estimator

proposed by Matheron (1963), which was denoted as ĉMðhÞ
and used for identifying spatial outliers. The other is the

robust variogram proposed by Cressie and Hawkins (1980),

which was denoted as ĉCHðhÞ and applied to the validation

and prediction of OK method with the existence of iden-

tified outliers. ĉMðhÞ and ĉCHðhÞ (Lark 2000) are defined by

Eqs. (7) and (8), respectively.

ĉMðhÞ ¼
1

2NðhÞ
XNðhÞ
i¼1

½zðsiÞ � zðsi þ hÞ�2 ð7Þ

ĉCHðhÞ ¼
1

NðhÞ
PNðhÞ

i¼1 zðsiÞ � zðsi þ hÞj j0:5
n o4

0:914þ 0:988
NðhÞ þ 0:09

N2ðhÞ
ð8Þ

where NðhÞ pairs of observations among the available data

are separated by lag h.
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Several other methods, such as local indicators of spatial

association (LISA), geographically weighted regression

(GWR), and probabilistic spatiotemporal approach based

on a spatial regression test (SRT-PS), can be applied to

identify the spatial outliers. However, LISA is sensitive to

its parameters, such as bandwidth, GWR requires an extra

element as the independent variable for outlier identifica-

tion (Zhang et al. 2009), and SRT-PS is suitable for spa-

tiotemporal dataset (Xu et al. 2014). A comparison of the

performances of these methods in identifying outliers is

beyond the scope of this study; thus, only the OK method

was adopted.

2.5 BME method

The BME framework provides a systematic and rigorous

approach for incorporating various physical knowledge

bases (hereinafter denoted as KB). In particular, BME

considers two types of KB: (a) the general KB, KG, which

includes physical laws and statistical moments; and (b) the

site-specific KB, KS, which consists of exact numerical

values across space (hard data) and soft data (Christakos

1990, 2000; Christakos and Li 1998).

The BME approach includes three main stages of syn-

thesizing and processing KG and KS, as follows:

(a) Prior stage Considering the vector of spatial random

variables Zmap ¼ ðZhard;Zsoft; Z0Þ, zhard and zsoft
denote the data values at the hard and soft data

points, respectively, and z0 is the unknown value at a

prediction location, such that zmap ¼ ðzhard; zsoft; z0Þ
refers to the values at all mapping points

smap ¼ ðshard; ssoft; s0Þ, where shard and ssoft corre-

spond to the hard and soft data points, respectively.

This stage aims to derive the multivariate prior PDF,

fGðzmapÞ, which accounts for the maximum amount

of information provided by KG. The BME method

borrows the concept of Shannon entropy to relate KG

with fGðzmapÞ as

InfoGðZmapÞ ¼ �
Z

fGðzmapÞ lnfGðzmapÞdzmap ð9Þ

where the operator ð�Þ is used to obtain the expec-

tation value. The general knowledge is explicitly

expressed as gaðzmapÞ, a set of functions of zmap, such
as the mean and covariance function. The specific

form of fGðzmapÞ can be derived by maximizing the

object function of the Lagrange multiplier method by

introducing the Lagrange multiplier la, as expressed
in Eq. (10).

L½fGðzmapÞ� ¼ �
Z

fGðzmapÞ lnfGðzmapÞdzmap

�
XNc

a¼0

la

Z
gafGðzmapÞdzmap � ga

� �

ð10Þ

(b) Meta-prior stage KS is organized in a proper way,

especially for zsoft. The two typical forms of zsoft are

the interval and probability data (Christakos and Li

1998). In this study, discrete probability data were

used as soft data, i.e., certain probability values #i

are known and constant in each interval, as defined

by Eq. (11).

zsoft ¼
�
zi;Pðzi 2 IjÞ ¼ #j; i ¼ N þ 1;

. . .;Nmap � 1; j ¼ 1; . . .;Nbinsg
ð11Þ

The 24 identified outliers of soil Zn concentra-

tions were submitted to the hist function (a generic

function from the basic R package graphics); then, a

histogram was automatically established with

Nbins = 9 (Eq. (11) and Fig. 5). Thus, this single

histogram is a representation of the probability

density of soil Zn concentrations for all 24 outliers

(the area of each bin equals #i) and can be regarded

as the PDF of soft data, which is denoted as fSðzsoftÞ.
(c) Integration (posterior) stage The prior PDF fGðzmapÞ

is updated into the posterior PDF fKðz0Þ that

characterizes Z0 through the operational Bayesian

conditioning rule (Christakos 2000), considering the

physical KB. In particular, fKðz0Þ based on proba-

bility data can be expressed by Eq. (12).

fKðz0Þ ¼
R
fGðz0; zdataÞfSðzsoftÞdzsoftR
fGðzdataÞfSðzsoftÞdzsoft

ð12Þ

fKðz0Þ provides a sufficient stochastic description of

the soil Zn concentration at s0. Various nonlinear

estimators can be easily derived from Eq. (12). The

mean estimator was adopted in this study and defined

as Eq. (13) with the prediction error variance defined

by Eq. (14).

ẑBMEðs0Þ ¼
Z

z0fKðz0Þdz0 ð13Þ

r2BMEðs0Þ ¼
Z

ðz0 � ẑ0Þ2fKðz0Þdz0 ð14Þ

In this study, the soil Zn distribution was represented by

the spatial random field ZnðsmapÞ ¼ ZnðsmapÞ þ eðsmapÞ,
where ZnðsmapÞ is the spatial trend of Zn concentrations in

the entire study area, and eðsmapÞ indicates the spatially

homogeneous residuals with zero mean (the local spatial

mean is also implicitly modeled when calculating kriging

Stochastic Environmental Research and Risk Assessment

123



weights in Eq. (1)). The software adopted in this study,

namely, SEKS–GUI (Yu et al. 2007), calculated ZnðsmapÞ
not only on the basis of hard data but also the soft data

derived from outliers. This method is a reasonable com-

promise for retaining the information in outliers. In par-

ticular, the histogram expectation (also fSðzsoftÞ) was used

to produce hard value approximations at ssoft, and then

smoothing moving window with a Gaussian kernel was

applied to the hard data. The approximated hard value from

soft data. eðshardÞ, to which the theoretical covariance

model was fitted, was thus obtained by subtracting the

trend from zdata at sdata. Therefore, the form of fGðzmapÞ in
this study was solved by Eq. (10) on the basis of KG, which

mainly consisted of the mean trend of Zn concentration and

covariance function of Zn residuals. Finally, the trend

value at s0 was added back to the estimated value of eðs0Þ
on the basis of Eq. (14) to acquire the final estimation of

the BME method.

2.6 Validation and comparison criteria

The outliers were identified through graphic methods

(histogram and boxplot) and OK cross-validation, and then

the Zn dataset without outliers was spatially randomly

divided into two parts: the hard dataset with 300 data points

and the validation set with 141 data points. OK and BME

methods were used to predict the Zn concentrations at the

validation sites, which provided pairs of predicted–ob-

served soil Zn values. Two commonly used quantitative

criteria were calculated from these pairs of values, namely,

the mean error (ME) and mean squared error (MSE), where

the error means the difference between the predicted and

observed Zn concentrations (the estimates minus the

measurements). The MSE can be divided further into three

components, which represent different aspects of the dis-

crepancy between the estimates and measurements (Douaik

et al. 2005), as denoted by Eq. (15).

MSE ¼ SBþ SDSDþ LCS ð15Þ

where SB, SDSD, and LCS are defined by Eqs. (16), (17),

and (18), respectively.

SB ¼ �̂z� �z
� �2 ð16Þ

SDSD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1
ẑi � �̂z
� �r

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1
ẑi � �zð Þ

r !2

ð17Þ

LCS ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1
ẑi � �̂z
� �r

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1
ẑi � �zð Þ

r
� 1� rð Þ

ð18Þ

where �̂z and �z represent the means of the predicted and

observed values at n validation sites and r represent the

Pearson correlation coefficient between the predicted and

observed Zn values.

Overall, an improved approach with relatively further

accurate predictions should place the ME close to zero, and

the MSE must be as small as possible. In detail, SB is the

square of bias (ME2), SDSD denoted the difference in the

degree of dispersion between the predicted and observed

values, and LCS refers to the lack of positive correlation

(1 - r) weighted by the SDs. A large value of SDSD and

LCS indicates that the model did not estimate the magni-

tude and degree of fluctuation among the measurements,

respectively (Douaik et al. 2005).

The OK method with robust variogram model was

applied in the R package georob. Whereas the OK cross-

validation to identify the spatial outliers was implemented

in ArcGIS (Version 10.0, ESRI Inc., USA). The power

parameters for Box-Cox transformation was estimated in

package forecast with the function BoxCox.lambda. The

BME method was adopted with SEKS-GUI v1.0.8 (Yu

et al. 2007). All maps were exported from ArcGIS, and

other figures were plotted in OriginPro (Version 9.0,

OriginLab Corporation, USA).

3 Results and discussion

3.1 Global outliers identified by graphic
methods

Figure 2 shows the histogram and basic statistics for Zn

concentrations in Wuhan City. The mean Zn value

(88.07 mg/kg) was higher than the corresponding natural

background value in Hubei, which is 83.6 mg/kg (China

National Environmental Monitoring Centre 1990). Eight

soil samples had Zn measurements above the correspond-

ing risk screening value for soil contamination of agricul-

ture land (250 mg/kg) (Ministry of Ecology and

Fig. 2 Histograms and boxplots for Zn concentration in soils of

Wuhan City. CV refers to the coefficient of variation. The circles

represent the 16 identified global outliers
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Environment of the People’s Republic of China 2018). This

result showed that Zn concentrations in soils of Wuhan

City were elevated. The large differences between the

maximum and median implied that potential high-value

outliers existed. Indeed, a positively skewed distribution

with a long tail extending toward the high-value side could

be observed from the raw data of soil Zn concentrations

(Fig. 2). Two broken bins with zero frequencies (400–450

and 450–500 mg/kg), which implied the existence of glo-

bal outliers, were also observed. However, the histogram

shape would be considerably different if the break values

changed. On the contrary, the boxplots provide clear cri-

teria for identifying outliers in raw data (Fig. 2). A total of

16 high-value ‘‘extreme outliers’’ were identified.

3.2 Spatial outliers identified through kriging
method

Prior to the establishment of the variogram model, a Box–

Cox transformation with a power parameter of - 0.5 was

used for Zn concentrations to solve the highly positive

skewed problem of raw data. A Gaussian model was used

to quantify the spatial structure of the entire Zn dataset.

Figure 3 shows the related parameters. The relatively high

nugget-to-sill ratio (0.63 = 0.00116/0.00185) indicates that

the existence of the spatial outliers will weaken the spatial

continuity of Zn concentrations in Wuhan City.

The modeled variogram in Fig. 3 was used for kriging

cross-validation analyses. Figure 4 presents the spatial

outliers identified using the kriging method. A total of 22

high-value outliers were found, whereas only one low-

value outlier was identified, indicating that the kriging

method was effective in high-value outlier identification

due to its smoothing effect (Zhang et al. 2009). Fourteen

high-value spatial outliers were collocated with those from

global outliers identified by boxplot. The collocated out-

liers were mainly located along the Yangtze River and

Donghu Lake, thereby depicting potential soil contamina-

tion of Zn at these sites.

A total of 24 outliers (16 global outliers and 22 spatial

outliers, with 14 duplicated outliers removed) were iden-

tified and transformed to soft data for BME modeling in

this study.

3.3 Soft data generation based on outliers

Figure 5 shows the histogram of the 24 identified outliers

(global and spatial outliers). These outliers were automat-

ically divided into nine groups; most of them lie in the

range of 150–300 mg/kg. The highest Zn concentration

(529.71 mg/kg) was isolated from that of other outliers.

A Gaussian distribution with a mean and SD parameter

equal to that of the Zn concentration of the outliers, which

was 224.73 and 87.23 mg/kg, respectively, was inadequate

to represent the outliers. Therefore, a discrete PDF was

used as soft data for BME modeling in this study, i.e., the

sum of the area of bins in the histogram is equal to one.

Fig. 3 Variogram of Box–Cox-transformed Zn concentration in soils

of Wuhan City

Fig. 4 Spatial outliers identified by cross-validation of kriging

method. The global outliers are also plotted (red solid circles)

Fig. 5 Discrete probability soft data based on the identified outliers

(N = 24). The number of outliers in each interval is displayed on the

corresponding bin. The mean value and SD of the outliers are also

shown
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3.4 Comparisons of OK and BME for spatial
prediction of soil Zn concentrations

After the outliers were identified and excluded, the robust

variogram for OK and covariance model for BME can be

fitted (Fig. S1) to perform the model validation and spatial

prediction of Zn concentrations. For the OK method, the

hard dataset (300 data points), along with the 24 outliers,

was submitted to the robust variogram estimator. For the

BME method, the hard and soft data (Fig. 5) were modeled

simultaneously to obtain the spatial estimates of Zn con-

centrations at validation sites. The performances of OK and

BME with the existence of outliers can then be compared

on the basis of the creation described in Sect. 0.

Table 1 presents the cross-validation criteria, namely,

ME and MSE. The ME value of the OK method was

positive (5.64 mg/kg), whereas that of the BME method

was negative (- 3.24 mg/kg). This result implied that OK

was likely to overestimate the Zn concentrations (the

positive errors were more than the negative errors),

whereas the BME method would underestimate the Zn

contents. However, the magnitude of the ME values was

relatively small compared with the sampling Zn concen-

tration, indicating that OK and BME were unbiased.

Nevertheless, the BME method produced a slightly

higher MSE (569.97 mg2/kg2) than the OK method

(554.47 mg2/kg2). The MSE components, which are listed

in Table 1 for their values and proportion to MSE values,

can provide additional information about the difference

between the estimated and observed values. BME produced

a larger SDSD than OK (306.35 mg2/kg2 for BME and

168.35 mg2/kg2 for OK), and this component (SDSD)

contributed most to the MSE of BME (53.75%), which

indicated that BME failed to estimate the magnitude of

fluctuation in the measured soil Zn at validation sites. This

result was expected because in OK, the outlier values were

directly used in the prediction process, and the weighted

estimates of OK would be elevated if the outliers were

searched and counted. In BME, the outliers were trans-

formed into discrete soft data (Fig. 5) with a mean of

224.73 mg/kg, which differs considerably with the largest

observed Zn content (529.71 mg/kg), and an SD of

87.23 mg/kg, which is relative large to its mean value.

Thus, the mean estimator adopted in this study (Eq. (13))

would correspond to the statistical characteristic of soft

data and provide a narrower range of predicted values than

OK at the validation sites (minimum and maximum pre-

dicted values of OK and BME in Table 1 and Fig. S2). The

LCS is the component that contributed the most to the MSE

of OK (63.90%), and its contribution was intermediate for

BME (44.41%). This result suggested that OK failed to

estimate the degree of fluctuation in the observed Zn

concentrations.

Figure 6a, b show the results of Zn concentration pre-

dicted on the basis of OK and BME. The general trends of

the spatial distribution of Zn generated using the two

techniques were similar, indicating that the Zn contents

were relatively high along the Yangtze River and decreased

gradually with the distance from the river (the city center is

along the river). However, the OK prediction is represented

by a continuous and smooth surface mainly due to its

smooth effect. On the contrary, some isolated circles could

be found in the BME predictions (Fig. 6b), which may be

the natural consequence of the substantial spatial hetero-

geneity of the Zn concentrations in the study area. To test

the spatial heterogeneity, the q-statistic of the GeoDetector

approach (Shi et al. 2015; Wang et al. 2016) was applied to

the BME predictions with strata partitioned by land use

types of Wuhan City (Fig. S3), which is an important

anthropogenic factor affecting the spatial distribution of

soil heavy metals. Results indicated the significant

(q = 0.15, p\ 0.001) effect of land use types on the spatial

heterogeneity of Zn concentrations.

A comparison of Fig. 6a, b shows that BME had a

considerably wider range of predicted values than OK, but

it is not in conflict with the results of model cross-valida-

tion. On the one hand, most of the BME predictions lie in

the range of 50–120 mg/kg, whereas that of OK is

60–130 mg/kg (Fig. S4). On the other hand, BME would

honor the observed values as much as possible, whereas

OK would probably generate smoothed results (the maxi-

mum value of BME prediction is 229.75 mg/kg, which is

considerably larger than that of OK, 133.60 mg/kg).

The prediction error SD offers a method for examining

the level of uncertainty in the resulting analyses. Figure 6c,

d depict the spatial distribution of the prediction error SD

generated by OK and BME. Figure 6c indicates that the

prediction error SD of OK (OK SD) depicted a border

effect (i.e., OK SD values were larger in the border region

than in the central region), which was likely because the

spatial extrapolation would occur as no data points exist

near the border for OK. For the prediction error SD of

Table 1 Quantitative criteria

for comparing the performances

of OK and BME at validation

sites

Method Min Max ME MSE SB SDSD LCS SB SDSD LCS

(mg/kg) (%)

OK 63.84 123.58 5.64 554.47 31.84 168.35 354.28 5.74 30.36 63.90

BME 57.61 102.21 - 3.24 569.97 10.50 306.35 253.12 1.84 53.75 44.41
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BME (BME SD) in Fig. 6d, no border effect was found.

Instead, a large BME SD was likely to occur in the region

where Zn predictions were high. This result is in accor-

dance with the previous study that the BME SD depends on

the specific set of data values considered, whereas OK SD

only depends on the data configuration (Christakos and

Serre 2000).

Considering the magnitude of the prediction error SD of

OK and BME (Fig. 6c, d), the BME SD was smaller than

the minimum value of OK SD (22.11 mg/kg) in a large

area, as indicated by the light color in Fig. 6d. However,

some regions had a BME SD larger than the maximum OK

SD (24.28 mg/kg), especially the two zones located along

the Yangtze River (dark red zones in Fig. 6d). The expla-

nation for these results is as follows. On the one hand, as

the OK method aims to minimize the mean squared esti-

mation error (Olea 2006; Oliver and Webster 2014), its

prediction SD should be maintained at a relatively low

level. On the other hand, the uncertainty distribution of

BME prediction is considerably affected by the quality of

soft data, and increased level of uncertainty would occur

when soft data with a large range were used (Christakos

et al. 2004; Christakos and Serre 2000). In this study, the

discrete soft data were characterized by a large SD (Fig. 5).

Figures 4 and 6d indicate that more outliers were located in

the two red zones in Fig. 6d than in other areas. Thus, soft

data converted from these outliers would be counted in the

BME prediction in the two red zones, thereby elevating the

BME prediction SD.

Nevertheless, the advantage of the BME method can

still be found by observing the PDF at selected validation

sites (Fig. 7). Figure 7a, b plot the PDF of OK and BME

predictions at the validation sites, where the minimum and

maximum BME SD occurred, respectively. The PDF peaks

for OK and BME predictions did not differ considerably,

but the PDF range of BME prediction was considerably

narrow (Fig. 7a). The PDF of BME predictions was con-

siderably close to the observed Zn contents (PDF peak and

vertical solid line) although the PDF range of OK predic-

tion was narrow (Fig. 7b). From Fig. 7c, the BME pre-

diction matched the observed Zn contents when the BME

prediction error was small. In Fig. 7d, the probability that

BME prediction covered the observed Zn contents was

considerably higher than that of OK prediction, although

the Zn concentration predicted using the BME method was

further away from that using the OK method. This result

indicates that the BME method can provide considerable

informative results through its posterior PDF by incorpo-

rating sufficient information provided by soft data. The

outliers are probably generated by the mechanisms differ-

ent from those of the other data, and the robust variogram

ĉCHðhÞ successfully utilizes this hypothesis, such that the

outliers are modeled as second processes (Lark 2000).

However, this mathematical solution to lower the effect of

outliers may only reduce the contribution of useful infor-

mation by outliers. On the contrary, the BME method

directly acquires the highly uncertain information carried

by outliers through soft data and therefore improves the

spatial prediction.

Fig. 6 Maps of prediction

results: a, b predicted Zn

concentrations by OK and BME

and c, d prediction error SD by

OK and BME across the study

area
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4 Conclusions

This study investigates the feasibility of the BME method

in the spatial prediction of soil heavy metals with the

existence of outliers. Estimation results indicated that the

BME method, which incorporates outliers as soft data,

could produce more accurate prediction results than the OK

method. In addition, the PDF of BME predictions was

further informative and matched the observed Zn concen-

trations well. However, in this case study, BME failed to

estimate the magnitude of fluctuation in the measured soil

Zn at validation sites, and its prediction SD was larger than

that of OK method in some of the regions of the study area.

This result was mainly caused by the relatively high

uncertainty of soft data. An improved performance of BME

could be expected if further appropriate forms of soft data

were supported by the software or if additional high-quality

soft data were constructed. Therefore, the BME method is

promising in managing environmental data where outliers

are relatively often encountered.
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