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Abstract

Beijing–Tianjin–Hebei is the largest urban agglomeration in northern China, but the spatio-
temporal patterns and risk factors concerning hepatitis B virus (HBV) incidence in this area
have been unclear. The present study aimed to reveal the spatiotemporal epidemiological fea-
tures of HBV infection and quantify the association between HBV infection and socio-eco-
nomic risk factors. The data on HBV cases in Beijing–Tianjin–Hebei from 2007 to 2012 was
collected for each county. The Bayesian space–time hierarchy model and the GeoDetector
method were used to reveal spatiotemporal patterns and detect risk factors. High-risk regions
were mainly distributed in the underdeveloped rural areas in the north and mid-south of the
study region, while low-risk regions were mainly distributed in the urban and western areas.
The HBV annual incidence rate decreased substantially over the 6-year period, dropping
from 7.34/105 to 5.51/105. Compared with this overall trend, 38.5% of high-risk counties
showed a faster decrease, and 35.9% of high-risk counties exhibited a slower decrease.
Meanwhile, 29.7% of low-risk counties had a faster decrease, and 44.6% of low-risk counties
exhibited a slower decrease. Socio-economic factors were strongly associated with the spatio-
temporal patterns and variation. The population density and gross domestic product per capita
were negatively associated with HBV transmission, with determinant powers of 0.17 and 0.12,
respectively. The proportion of primary industry and the number of healthcare workers were
positively associated with the disease incidence, with determinant powers of 0.11 and 0.8,
respectively. The interactive effect between population density and the other factors exerted
a greater influence on HBV transmission than that of these factors measured independently.

Introduction

Hepatitis B virus (HBV) causes the disease hepatitis B, which can result in cirrhosis and
hepatocellular carcinoma and increase the risk of pancreatic cancer [1, 2]. HBV is transmitted
via the blood or other bodily fluids through direct contact with an infected individual and may
be spread by intravenous drug use, sexual activity and occupational exposure.

Although a vaccine has been available since 1982, HBV remains a serious global public
health problem. Worldwide, two billion people have been infected, of which an estimated
360 million have chronic infections related to HBV [3]. More than 6 00 000 people die
every year due to HBV-related diseases, including cirrhosis and hepatocellular carcinoma [4].

AWorld Health Organization report indicated that East Asia had one of the highest rates of
hepatitis B prevalence in the world, with 5–10% of the adult population being chronically
infected [5, 6]. Other studies have reported that China has experienced an increasing HBV
risk. A serological epidemiological investigation of viral hepatitis was conducted throughout
the country in 1992. The results estimated that there were 120 million hepatitis B surface
antigen (HBsAg) carriers in China, that 20 million people suffered from chronic hepatitis
B, and that there were almost 300 000 deaths per year from HBV-related infections [7, 8].
The Chinese Centre for Disease Control and Prevention (CDC) carried out a hepatitis B
monitoring programme in 2006 in 18 counties from eight provinces. The results showed
that the incidence of hepatitis B was 23.37/105, with an incidence of 6.15/105 for acute hepatitis
B and of 15.69/105 for chronic hepatitis B [9].

There is a significant heterogeneity in the HBV infection rates in different population
groups and regions in China. HBV infections are higher in men compared with women,
and they are higher in underdeveloped rural areas compared with urban ones [10]. One
important factor influencing the heterogeneity of HBV infections is the difference in vaccin-
ation rates in different regions. The vaccination rate is influenced by spatial socio-economic
variants that lead to HBV transmission in environments with poor sanitation, poor medical
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resources and lower income and education levels. These socio-
economic factors impact efforts at disease prevention and control,
including vaccination [10].

The study region of Beijing–Tianjin–Hebei is unbalanced in
terms of socio-economic development. Beijing is one of the world’s
largest international metropolises. Around the area’s most pros-
perous cities, however, there are large underdeveloped regions.
Many migrants and rural workers are found in the cities and neigh-
bouring regions, complicating disease control. However, no studies
have been carried out to determine the spatiotemporal patterns
and to detect the risk factors of HBV infection in the region.

The present study reveals the spatiotemporal epidemiological
features of HBV and quantifies the association between HBV and
socio-economic risk factors to explore the determinant power of
these factors. These findings may inform risk assessments concern-
ing HBV transmission and guide the implementation of effective
immunisation policies to reduce the burden of this disease.

Methods

Data

The Beijing–Tianjin–Hebei region is the largest urban agglomer-
ation in northern China, with a population of 107 million cover-
ing an area of 210 000 km2. Beijing, with a population of 20.7
million, is China’s capital city, and it represents the centre of
Chinese political and cultural activities and international
exchanges. Tianjin is a municipality directly under the control
of the central government, and it has a population of 14.1 million.
Hebei province, with a population of 72.9 million, has a lower
economic level compared with Beijing and Tianjin (Fig. 1).

In this study, the HBV incidence [11], from 2007 to 2012 in
each county, was obtained from the CDC’s real-time surveillance
system for monitoring and reporting notifiable infectious diseases.
The surveillance system covers more than 90% of the country’s
hospitals, and the reporting rate of HBV is more than 91%
[12]. This study collected information on multiple risk factors,
both favouring and preventing disease spread, such as the social
environment, individual hygiene conditions, public health med-
ical facilities and vaccination rate (Fig. 2).

The availability of medical resources and good personal or
family hygiene will prevent the spread of HBV, but such elements
exhibit disparities between rural and urban areas, and they are
ultimately affected by various socio-economic factors. In this
study, the variable of healthcare workers per 1000 people was
used as the proxy variable for medical resources, the proportion
of primary industry was used as the proxy variable for rural
urban disparities, and the gross domestic product (GDP) per
capita was used as the proxy variable for the level of societal eco-
nomic development reflecting personal or family hygiene as they
usually present positive relationship. Another factor considered in
this study was population density, as it affects contact frequency
and, consequently, HBV transmission. These socio-economic fac-
tors will also influence differences in vaccination rates among
regions and population groups. The potential risk factors relating
to the socio-economic variables were collected from the Statistical
Yearbook [13–15]. These factors were stable for a year, but they
had apparent spatial heterogeneity.

Statistical analysis

The Bayesian space–time hierarchy model was used to assess
spatiotemporal variation in HBV incidence. The stable

spatiotemporal distribution of relative risk, presenting high- and
low-risk areas, was identified. Then the local temporal trend of
relative risk in each hot/cold spot was quantified. Finally, poten-
tial risk factors contributing to the spatiotemporal pattern and
their variants were quantified using the GeoDetector method.

The Bayesian space–time hierarchy model
The Bayesian space–time hierarchy model combines the Bayesian
hierarchy and the space–time interaction models. This system can
integrate population properties, sample information and prior
knowledge [16]. The approach does not rely only on sample infor-
mation. Parameters are estimated using a probability distribution,
potentially overcoming problems with sample bias. The spatial
and temporal relative risks and local trends in HBV infection
risk were estimated using this model.

We employed the Poisson and the log link regression function
in the model. The parameters yit and nit represent the cases of
HBV infection and the population in a county i (i = 1, 2, …,
208), in the year t (t = 2007, 2008, …, 2012). The parameter rit
represents the relative risk of HBV infection in county i in year
t, where the reference value is the average incidence in the entire
region within the study period.

yit � Possion (nitrit).

The logarithmic transformation of rit can be expressed as the
formula:

log(rit) = a+ si + (b0t∗ + vt) + b1it
∗ + 1it,

Fig. 1. The geographic location of the Beijing–Tianjin–Hebei area in China and the
average yearly hepatitis B virus (HBV) incidence from 2007 to 2012 in the study area.
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where α is the overall log of HBV risk during the study period,
and the posterior estimated exp (si) quantifies the spatial relative
risk of HBV in county i to that in the whole region, which is the
common spatial component. The posterior exp (b0t* + vt) is the
temporal relative risk, t* is the centring time in the middle of
the observation period and vt represents the additional Gaussian
noise describing a random time effect that allows for non-linearity
variation. The parameter b1i represents the local trends of county i
and measures the departure from the common spatiotemporal
variation. A positive estimate of b1i indicates that county i pos-
sesses a stronger temporal trend compared with the overall
trend of the country, and vice versa. The overdispersion parameter
ϵ1i captures the variation not yet explained by the model; it is
assumed to follow a normal distribution. The common spatial
component si and the local trend coefficient b1i are assigned by
the Besag, York, and Mollie spatial model (BYM) [17]. The
BYM considers both spatially structured random effects using a
convolution algorithm and spatially unstructured random effects
following a Gaussian distribution. The conditional autoregressive
prior is used to impose spatial structure. The spatial adjacency
matrix W is calculated by the size N ×N (with N being the num-
ber of counties), where its diagonal entries wij = 1 if the areas i and
j share a common boundary and wij = 0 if otherwise.

A county is a hot/cold spot if it has a persistently higher/lower
HBV risk than the region’s overall level. In the calculation process,
the hot/cold spot was assessed by comparing the disease incidence
in a local statistical unit with the mean incidence in the whole
study region. If a region has statistically significant higher/lower
incidence, it will be identified as hot/cold spot. Furthermore, tem-
poral trend over time also can be analysed in hot/cold spot. All
the counties were classified by the following rules [18].

In the first stage, a county was defined as a hotspot if the
posterior probability p(exp (si) >1|data) was >0.8; a county was
defined as a cold spot if the posterior probability p (exp (si) >1|
data) was <0.2. The other counties were defined as neither hotspots
nor cold spots.

In the second stage, a county was classified within each stage
1 risk category into three trend patterns based on the local slope

b1i, namely with a faster increase/decreasing trend than the overall
trend if p (b1i > 0|hi, data) > 0.8, with a slower increase/decreasing
trend relative to the common trend if p(b1i > 0|hi, data) < 0.2,
and with a trend of no difference from the overall trend if 0.2⩽
p (b1i > 0|hi, data)⩽ 0.8.

The model was implemented in WinBUGS [19], which is spe-
cifically designed for Bayesian analysis. Posterior distribution of
the model parameters was obtained through Markov chain
Monte Carlo (MCMC) simulations.

GeoDetector
The GeoDetector method was used to assess the non-linear asso-
ciations between HBV and potential risk factors. The core concept
of the GeoDetector method is that if a potential factor leads to a
disease, it will present similar spatial distributions. This method
can be used to measure the degree of the determinant power of
risk factors and to quantify the influence of the interaction rela-
tionships between two factors [20–22].

The determinant power of the GeoDetector method can be
measured by the q statistic:

q = 1−

∑L
h=1

Nhs
2
h

Ns2
,

s2 = 1
N

∑N
i=1

(Ri − R)2,

s2
h = 1

N

∑L
h=1

∑Nh

j=1

(Rh,j − Rh)2,

where R and Rh refer to the average incidence of disease within
the whole region and a specific zone stratified by Z, respectively.
The parameter Ri is the incidence of the i-th county, Rh,j is the

Fig. 2. The determinants of hepatitis B virus (HBV) infection and their proxies. GDP, gross domestic product per capita; BSTHM, Bayesian space–time hierarchy
model; GeoDetector, GeoDetector method.
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incidence of the j-th county in the h-th stratum (h = 1, 2,…, L).
The strata are determined by a classified algorithm. The number
of samples in the whole study region is represented by N, and L is
the number of stratum. The parameter σ2 represents the total
variance of disease incidence in all counties for the whole study
region, and s2

h is the stratified variance of disease incidence in
counties in the h-th stratum.

The q value represents the statistic association between two
variables. The value lies between 0 and 1, meaning that a factor
explains q × 100% with regard to the spatial pattern of the disease.
For example, if a factor completely determines the disease, the q
value is 1; if a factor is completely unrelated to the disease, the
q value is 0.

The significance level P of the GeoDetector q was calculated
based on a non-central F-distribution with the first df L− 1, the
second df N − L and the non-centrality λ [21]:

F∼ F(L−1, N−L; λ),

l = 1
s2

∑L
h=1

m2
h −

1
N

∑L
h=1

���
Nh

√
mh

( )2[ ]
,

P(q , x) = P F ,
N − L
L − 1

x
1 − x

( )
= 1− a,

where α is the probability of q⩾ x.
In the GeoDetector method, the interactive effect of two risk

factors x1 and x2 can also be assessed. The index can quantify
the determinant power of the interactive effect of two factors
and reveal whether two factors together have a stronger or weaker
effect on the disease than their independent effect. The interaction
relationships are catalogued as follows:

Enhance: if q(x1∩x2) > q(x1) or q(x2)
Enhance, bivariate: if q(x1∩x2) > q(x1) and q(x2)
Enhance, non-linear: if q(x1∩x2) > q(x1) + q(x2)
Weaken: if q(x1∩x2) < q(x1) + q(x2)
Weaken, univariate: if q(x1∩x2) < q(x1) or q(x2)
Weaken, non-linear: if q(x1∩x2) < q(x1) and q(x2)
Independent: if q(x1∩x2) = q(x1) + q(x2)

In this study, the GeoDetector method was implemented using
software from http://www.geodetector.cn.

Results

From 2007 to 2012 in the study region, the average annual
HBV incidence was 6.30/105, and the temporal trend of HBV
annual incidence showed a substantial decrease, from 7.34/105

to 5.51/105 (Fig. 3). The study results show that for the whole
study area, there was a sustained decline in HBV risk over the
6-year timeframe. However, there was a significant spatial hetero-
geneity of HBV risk, as some areas were identified as hotspots.
The local temporal trend also revealed significant diversity.
Socio-economic factors were strongly associated with the spatio-
temporal pattern and variance.

The spatiotemporal pattern

Figure 4 shows the common spatial pattern structure of HBV
infection risk in the study region from 2007 to 2012. The

estimated results suggest that the spatial distribution of the
HBV infection risk formed an explicit regional diversity. The
counties located around the metropolis and the surrounding
areas, such as Beijing and Tianjin, had the smallest value of com-
mon relative risk (exp (si) <1.0). This indicates that these counties
experienced a relatively low HBV infection risk. The highest value
of common spatial relative risk (exp (si) more than 2.0) in these
counties was mainly found in underdeveloped rural areas in the
north and mid-south of the study region (Fig. 4, S1). This indi-
cates that these counties had a relatively high HBV infection
risk compared with the overall level. The counties located in the
remaining regions, such as those in the west of the study region,
possessed an average level of HBV infection risk; the value of the
common spatial relative risk (exp (si)) was around 1.0.

The total relative HBV infection risk followed an overall
decreasing trend from 2007 to 2012 (Fig. 5). This is in accordance
with the temporal trend of HBV incidence over the study region.
Although the total overall decreasing trend in the country was
rapid, it varied in different counties (Fig. 6). Among the 208 total
counties, 78 (37.5%) and 74 (35.6%) counties were classified as hot-
spot and cold spot regions, respectively; the other 56 (26.9%) coun-
ties were identified as neither hotspot nor cold spot regions.

The hotspot regions were mainly distributed in the under-
developed rural areas in the north and mid-south of the study
region. From the spatial distribution of the local trend, we can
see that 30 counties (accounting for 38.5% of the hotspot coun-
ties) had a local trend representing a faster decrease compared
with the overall decreasing trend these areas will likely have a
lower risk or even stop being hotspots in the future. In contrast,
28 counties (accounting for 35.9% of the hotspot counties)
showed a slower decrease compared with the overall trend.
Finally, 20 counties (accounting for 25.6% of the hotspot coun-
ties) had a trend that was consistent with the common overall
trend.

The cold spots were mainly distributed in the urban and west-
ern areas of the study region (Fig. 7). A total of 22 counties
(accounting for 29.7% of the cold spot counties) exhibited a faster
decrease than the overall decreasing trend; these areas will likely
have lower risk and continue to be cold spots in the future.
Meanwhile, 33 counties (accounting for 44.6% of the cold spot
counties) showed a slower decrease compared with the overall
trend. Finally, 19 counties (accounting for 25.7% of the cold
spot counties) had a trend consistent with the common overall

Fig. 3. The incidence of hepatitis B virus (HBV) infection from 2007 to 2012.
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trend; in these counties, the current risk level will likely be
maintained.

The areas of neither hot nor cold spots were mainly distributed
in the northeast, mid-west and southern areas of the study region
(Fig. 8). The results indicate that 23 counties (accounting for
41.1% of neither hot nor cold spot counties) exhibited a faster
local decreasing trend than the overall trend; these areas will likely
become cold spots in the future. In addition, nine counties
(accounting for 16.1% of non-cold/hotspot counties) showed a
slower decrease compared with the overall trend. Lastly, 24 coun-
ties (accounting for 42.9% of non-cold/hotspot counties) had a
consistent trend compared with the common overall trend.

Risk factor detection

In this study, disease incidence was a dependent variable in the
GeoDetector approach. The selected potential socio-economic
factors were population density, GDP per capita, the proportion
of primary industry and the number of healthcare workers per
1000 persons. The determinant power of each factor and its inter-
action effects were quantified using the GeoDetector q-value.

The factor with the highest explanatory power was population
density, which had a q-value of 0.17 (P < 0.01). A high population
density was associated with a low incidence of HBV infection
(Table 1 and S1). The GDP per capita also had a relatively high
determinant power, with a q-value of 0.12 (P < 0.01), and a
high GDP per capita was associated with a low incidence of
HBV infection. The economically developed regions with high
population density had a low HBV infection risk compared
with the undeveloped regions. These results indicate that eco-
nomic level significantly influences HBV transmission.

A high proportion of primary industry was associated with a
higher incidence of HBV infection; the determinant power of
this factor was 0.11 (P < 0.01) (Table 1 and S1). This indicates
that the HBV infection risk in rural regions was high compared
with the risk in urban regions.

The number of healthcare workers per 1000 people was nega-
tively associated with HBV transmission, with a determinant
power of 0.08 (P < 0.01; Table 1 and S1). This implies that the
level of medical accessibility is another important factor influen-
cing HBV transmission.

The results of the GeoDetector interaction effect showed that any
two combined factors played a more important role in HBV trans-
mission than either one did independently. The determinant power
of the interaction effects between the proportion of primary industry

Fig. 4. The relative risk of hepatitis B virus (HBV) infection in Beijing–Tianjin–Hebei.
The posterior medians of the spatial relative risks (exp (si)) in the counties are shown.

Fig. 5. The overall HBV infection trend (the posterior medians of exp (b0t* + vt)) with
the 95% confidence interval (CI).

Fig. 6. Hotspots (high-risk areas) with a persistently high risk of hepatitis B virus
(HBV) infection from 2007 to 2012.
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and the population density was 0.33 (P < 0.01). This confirmed that
urban areas with low rural populations had a low rate of HBV trans-
mission. The determinant power of the interaction effect between
population density and the number of healthcare workers was 0.31
(P < 0.01). This implies that urban areas with a high number of
healthcare workers also had a low rate of HBV transmission.

The interaction effect of GDP per capita coupled with other
factors also had a high determinant power. The combination of
GDP per capita and the proportion of primary industry had a
q-value of 0.25 (P < 0.05). Meanwhile, the combination of GDP
per capita and the number of healthcare workers also exhibited
a high determinant power, with a q-value of 0.25 (P < 0.1).

Discussion

HBV remains a major public health concern in China. The
Beijing–Tianjin–Hebei region is one of the largest urban agglom-
erations in northern China, but there have been no previous stud-
ies focusing on the spatiotemporal patterns and the risk factors
for HBV in the area. This study explored the spatiotemporal pat-
tern and temporal change trends of the disease and detected the
risk factors associated with HBV infection. The results indicate
that the relative risk of HBV infection is generally decreasing,
and the high infection risk is mainly found in rural areas with
low population densities and low economic levels.

Although there presented interannual variation, the relative
risk of HBV infection in the whole region followed a decreasing
trend for 2007–2012. This result is consistent with the findings
from previous studies. For example, Zheng et al. used the data
from the national serosurvey conducted in 2006 and found that
the HBsAg prevalence in 1- to 14-year-old children in eastern,

central and western China has significantly decreased in recent
years [23]. Chen et al. analysed the prevalence of HBV in the
1- to 59-year-old population in six regions of China and found
an apparent decrease of HBV prevalence in all regions [24].
Dong et al. found that in the decades since 1996, the incidence
of HBV infection has decreased significantly, by 30% [10].

Routine hepatitis B immunisation of infants primarily
accounts for the decreasing temporal trend in HBV incidence.
Nationwide immunisation was recommended by the Ministry of
Health in 1992; at that time, parents paid for both the cost of
the vaccine and a user fee. In 2002, the hepatitis B vaccine was
fully integrated into the routine infant immunisation schedule;
as a result, parents only paid the user fee, while the vaccine was
made freely available. This current study implies that the immun-
isation programme has been effective.

Although the relative HBV risk has exhibited an overall
decreasing temporal trend, the local spatial trends have revealed
apparent heterogeneity. Hotspots were mainly located in regions

Fig. 7. Cold spots (low-risk areas) with a persistently low risk of hepatitis B virus
(HBV) infection from 2007 to 2012.

Fig. 8. Neither hot (high-risk) nor cold (low-risk) spots for hepatitis B virus (HBV)
infection from 2007 to 2012.

Table 1. The determinant power of single socio-economic factors and their
interactive effects on Hepatitis B virus (HBV) infection

PD GDP PI HW

PD 0.17***

GDP 0.29*** 0.12***

PI 0.33*** 0.25** 0.11***

HW 0.31*** 0.25* 0.24** 0.08***

PD, population density; GDP, gross domestic product per capita; PI, proportion of primary
industry (%); HW, number of healthcare workers per 1000 people.
***Significance level of 0.01; **significance level of 0.05; *significance level of 0.1.
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encompassing undeveloped rural areas, and the trends were dis-
tinct in different regions. This may have been caused by the spa-
tial heterogeneity of vaccine rates in different regions. For
example, the hepatitis B vaccination rate of children aged 1–14
years in all of China was 81.57%, and the rate in urban areas
was 87.36%; however, the vaccination rate was significantly
lower in rural areas, at 75.81% [23].

In addition to the vaccination rate, the disparities in economic
and medical resource levels also influence the spatiotemporal het-
erogeneity of the HBV risk, and these factors will further affect
the vaccination rate in different regions.

In the developed regions, there are many hospitals, and med-
ical facilities are much more accessible. HBV transmission can be
reduced by vaccination and timely treatment. People with a higher
economic level have the advantage of access to medical facilities,
as well as higher education and more healthcare knowledge. In
contrast, in the undeveloped rural regions, the higher HBV risk
may be related to the lack of proper healthcare and a decreased
public health awareness about HBV transmission.

The level of medical resources plays an important role in HBV
transmission. Areas with adequate medical resources and higher
medical levels can implement effective prevention and control
measures. Previous studies have reported that all pregnant
women in urban areas are screened for HBsAg, and the infants
of women with positive results receive the HBV vaccine and hepa-
titis B immunoglobulin within 24 h after birth [25]. This is con-
sistent with the findings of the current study that in urban areas
with a high level of medical resources, there is a lower HBV risk.

There were also some limitations in the study. Although the dis-
ease data in the study came from surveillance system which covers
almost all of the country’s hospitals, missing data would introduce
uncertainty in the results. Meanwhile, HBV infection is signifi-
cantly influenced by individual activities, such as sexual activity,
intravenous drug use, occupational exposure and household con-
tact [26, 27]. The spatial scale used in this study evaluated trans-
mission at the county level, which may have obscured some
factors via the ecological fallacy effect [28]. In future research,
more micro-factors should be considered in the statistical analysis.

In summary, the incidence of hepatitis B is markedly decreas-
ing in the Beijing–Tianjin–Hebei region; however, there is still sig-
nificant regional diversity for HBV infection risk. Further efforts
are needed to increase vaccine coverage in high-risk rural regions
with lower economic development and medical resource levels.
The findings of this study may guide the allocation of public
health resources and influence vaccination strategies according
to regional-specific conditions.
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