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Soil fertility should be explored from a productivity perspective because the most important function of the soil
is to ensure crop yield. This study presents an integrated and scientific approach to exploring soil fertility based
on rice (Oryza sativa L.) yields, using Jinxian County as an example. The main soil types are Haplic Acrisols and
Hydragric Anthrosols. Five soil fertility indicators (p-Value < 0.05) were selected according to the generalized
additive model (GAM) hypothesis test between the rice yield and each indicator. Furthermore, these indicators
were used to assess the quality of soil fertility via Takagli and Sugeno (T-S) fuzzy neural networks models.
Finally, the geodetector model was used to explore the restricting indicators of soil quality that can influence rice
yields. The results indicate that continuous fertilization for decades has improved the surface soil organic matter
(SOM) concentrations in the study area. However, the surface total potassium (Ky) was still low at a mean value
of 13.95 + 4.74mg/kg. The determination power (DP) of exchangeable magnesium (0-20cm) and Kr
(20-40 cm) of 0.067 and 0.061, respectively, revealed that the proper use of potassium and magnesium ferti-
lizers can increase rice yields. This integrated soil fertility exploration could scientifically assess the soil fertility
and identify mainly restricting indicators of soil fertility in the study area. Moreover, these effective models with
minor adjustments could be applied to assess soil fertility in other typical areas.

1. Introduction

Soil fertility represents the capacity of soil productivity, ensures
crop yield, and establishes a foundation for sustainable agriculture
(Merrill et al., 2013; Yao et al., 2015; Kaniu and Angeyo, 2015). Crop
growth and production status is one of the most important character-
istics for assessing soil fertility (Juhos et al., 2016; Vasu et al., 2016). A
restricting indicator analysis of soil quality could provide the theore-
tical basis and technical support for sustainable agricultural production
and management. Therefore, to integrally and thoroughly explore soil
fertility from a productivity perspective, a soil fertility assessment and
the restricting indicator analysis should be undertaken (Zhang et al.,
2016; Rojas et al., 2016).

The first step in a soil fertility assessment is the selection of soil
fertility indicators. A number of traditional approaches for selecting
indicators have been proposed, such as the Delphi method (Nelson
et al., 2009), multiple linear regression, and principal component
analysis (Qi et al., 2009). Multiple linear regression and principal
component analysis are commonly used. Multicollinearity may exist
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among the interpreted variables of a multiple linear regression, and it
often severely affects parameter estimation, which increases the model
error and invalidates the robustness of the model (Toebe and Filho,
2013). Although the principal component regression method can
eliminate multicollinearity via a complicated calculation process to
reshape the variables, it is more reliable and accurate for identifying the
most informative independent variable (Rahmanipour et al., 2014). The
reshaped variable is not the same as the dependent variables; thus, the
relationship of the dependent and independent variables may be irre-
levant, which leads to unreasonable results. The generalized additive
model (GAM) which was proposed by Hastie and Tibshirani (1986), can
circumvent the problems above. The advantage of GAM is that raw data
can determine the essence of independent variables and dependent
variables rather than requiring early assumptions. More dependent
variables result in more accurate results. Because it is especially useful
for analyzing and complex problems, such as various ecological pro-
blems (Amosa and Majozi, 2016; Yi et al., 2016), this model could also
efficiently and accurately describe the corresponding relationship be-
tween rice (Oryza sativa L.) yield and soil fertility indicators. Then,
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significant correlation indicators could be extracted to represent the soil
fertility indicators.

Based on the selected soil fertility indicators, a soil fertility quality
assessment can be achieved (Raiesi, 2017; Liu et al., 2016). However,
soil quality is an uncertain or fuzzy environmental issue in a complex
natural ecosystem. Fuzzy mathematical theories can provide more
rigorous and realistic estimations for imprecise and complex nonlinear
systems (Rodriguez et al., 2016), which can lead to more reliable and
objective assessments (Blanes et al., 2017). Common assessment models
have been combined with fuzzy inference systems, such as fuzzy
mathematics (Yan and Luo, 2016), fuzzy logic systems (Rodriguez et al.,
2016), and Takagli and Sugeno (T-S) fuzzy neural networks (Zhang,
2012), etc. The advantage of the T-S fuzzy neural networks model is its
ability to simulate complex nonlinear systems with fewer rules and the
continuous modification of the membership function of fuzzy subsets
(Xu et al., 2013).

An important component of soil fertility is exploring restricting in-
dicators based on determination power (DP) analysis. DP analysis can
be performed by traditional statistical methods, such as dimensionality
reduction, correlation, and fitting, which can provide suggestions for
soil regionalization and agricultural production. Along with the devel-
opment of remote sensing (RS), geographic information system (GIS),
and global position system (GPS) technology, spatial statistics analysis
from assumption of spatial dependency have played an important role
in environmental research (Wang and Xu, 2017). The geodetector
model presented by Wang et al. (2010) has obvious advantages when
evaluating the DP of geographic issues affected by the spatial dis-
tribution of environmental indicators (Hu et al., 2014). Therefore,
geodetector models are superior for analyzing the DP of soil fertility
indicators that affect crop yield from a productivity perspective.

The Poyang Lake Plain is a well-known rice cultivation area in
China. Since the 1980s, many studies have examined the quality of soils
and conducted restricting indicator analyses in the Poyang Lake region,
and they have demonstrated that certain indicators, such as acidifica-
tion and the potassium deficiency, could influence rice production in
this area (Lai et al., 1989; Jiang et al., 2010; Yao et al., 2015). Thus, a
scientific assessment of soil quality and an exploration of restricting
indicators based on rice yields could provide a theoretical basis for
further improving land productivity. Jinxian County, located on the
Poyang Lake Plain in southeast China, was selected as the study area.
The primary purpose of this study was to perform an integrated soil
fertility exploration in Jinxian County. The detailed purpose were: (1)
to use GAM hypothesis test to select soil fertility indicators in combi-
nation with rice yields in Jinxian County; (2) to provide an integrated
fuzzy assessment of quality of soil fertility based on the above in-
dicators; and (3) to analyze the restricting indicators of soil fertility that
affect the rice yield.

2. Materials and methods
2.1. Description of the study area and sampling

Jinxian County is affiliated to Nanchang City, Jiangxi Province,
southeast China. It is located in the southern area of Poyang Lake be-
tween latitudes 28°09’41” and 28°46’13”N and longitudes 116°01’15”
and 116°33’38”E, with a total area of 1971 km? (Fig. 1). The study area
is a typical hilly lakeside area. Low hills and plains are located in the
central and western area, and alluvial plains occur near the water in the
northern area. The mean annual sunshine is 1936 h, the mean annual
temperature is 17.5°C, and the mean precipitation is 1587 mm. The
main soil types are Haplic Acrisols and Hydragric Anthrosols (WRB,
2015). Fluvic Cambisols and Haplic Phaeozems are also present in this
area (WRB, 2015). Agricultural soil accounts for approximately
43,067 ha and the main crop is rice.

The distributions of soil sampling sites (Fig. 1) were planned based
on the soil types, spatial distribution uniformity, and yield distribution.
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To avoid the influence of fertilization on rice cultivation and yield
prediction, soil samples were collected after the rice harvest and before
the beginning of the next tillage, in October 2012. The total number of
soil samples was 103. In addition, the cutting ring samples were col-
lected to determine the soil bulk density. The geographic coordinates of
the sampling sites were recorded using a handheld GPS (GARMIN
GPSMAP® 64 st).

We combined rice yields in the study area to perform an integrated
soil fertility assessment that was representative and and biologically
relevant. According to the phenological patterns of rice growth,
Landsat-7 Enhanced Thematic Mapper Plus (ETM+) and Landsat-8
Operational Land Imager (OLI) imagery were used to interpret the rice
planting area. All satellite imageries used in this study were obtained
from the United Stated Geological Survey (http://earthexplorer.usgs.
gov/). Then, the normalized difference vegetation index (NDVI) in the
study area was acquired. Finally, using the established fitting model of
the measured rice yields and the corresponding normalized NDVI, rice
yields of the entire study area was measured.

2.2. Chemical analysis

Soil bulk density (BD) was calculated by the ratio between soil dry
mass and core volume (Viana et al., 2014). The soil particle composi-
tion included clay (particle size < 0.002 mm), silt (particle size range
between 0.05-0.002 mm), and sand (particle size range between 2-
0.05 mm), and it was measured via the pipette method (Lu, 2000). Soil
pH was measured using potentiometry ((Huang et al., 2006). The
concentration of soil organic matter (SOM) was measured using the
Walkley-Black method (Nelson et al., 1996). The cation exchange ca-
pacity (CEC) was measured using the ammonium acetate method, and
the exchangeable calcium (Ex.Ca), sodium (Ex.Na) and magnesium
(Ex.Mg) were determined based on extraction with ammonium acetate
and ethylene diamine tetraacetic acid (EDTA) and measured according
to the inductively coupled plasma (ICP) method (Fan et al., 2017). The
total nitrogen (Nt) concentration was measured using the Kjeldahl
method (Liu et al., 2017); briefly, the soil samples were digested using
an acid mixture of HF, HClO,4, and HCl for analysis of total phosphorus
(P1) and total potassium (Kr). Then, the digested sample solutions were
analyzed using the Mo-Sb colorimetric method and flame photometry
method, respectively (Zhang et al., 2016). The available phosphorous
(Pay) concentration was measured using NaHCO; extraction and the
Mo-Sb colorimetric method (Wolde and Haile, 2015); the available
potassium (K,y) concentration was measured with ammonium acetate
extraction and the ICP method (Zhang et al., 2016). The available nu-
trition trace elements of copper (Cu), iron (Fe), manganese (Mn), and
zinc (Zn) were measured by diethylenetriaminepentaacetic acid (DTPA)
extraction and inductively coupled plasma atomic emission spectro-
metry (ICP-AES) (Fan et al., 2017).

2.3. Analysis method and algorithm

2.3.1. Generalized additive model to select soil fertility indicators

GAM is an extended model based on the generalized linear model, it
uses a link function to handle the nonlinear relationship between re-
sponse variables and a smoothing function of multiple explanatory
variables, and it does not require presupposed parameters (Yi et al.,
2016). This model is more flexible and suitable for variable data types
and for statistical distributions of characteristics. The equation of the
model is as follows (Wu et al., 2015):

P
g) = by + Y f,()

Jj=1 (€]
where u = E[Y 1X], g(u) is the link function, by is the constant intercept
item, and fj (x;) is the smoothing function for describing the relationship
between g(u) and the explanatory variables of number j.
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Fig. 1. Geographic positions of the soil sampling sites and the rice yield in the study area.

Table 1
Generalized additive model (GAM) hypothesis test results between the rice
yield concentration and single indicators.

Explanatory variables F p-Value R?

Total potassium (0-20 cm) 9.4 0.003 ** 0.08
Exchangeable magnesium (0-20 cm) 6.5 0.012 * 0.05
Exchangeable sodium (0-20 cm) 8.4 0.005 ** 0.07
Total potassium (20-40 cm) 9.3 0.003 ** 0.07
Exchangeable sodium (20-40 cm) 6.1 0.015 * 0.05
DTPA-Mn (20-40 cm) 2.4 0.018 * 0.14

DTPA-Mn Available manganese (Mn) was measured by diethylene-

triaminepentaacetic acid (DTPA);
0-20 cm : Soil layer 0-20 cm (surface soil);
20-40 cm : Soil layer 20-40 cm (subsurface soil).

We used the function ‘gam’ of package ‘mgcv’ in R 3.2.3 developed
by Wood (2006) to model the response of rice yields to the various soil
physical and chemical parameters. Six indicators were identified as
explanatory variables that had a significant influence on rice yields (p-
value below 0.05) in Table 1. Ky (0-20 cm), Ex.Na (0-20 cm), and K¢
(20-40 cm) had significant influences (p-value below 0.01). In contrast,
the p-values of the other indicators were above 0.5, indicating no sig-
nificant influence. The degree of freedom values of all of the selected
variables were 1, meaning that all of the soil fertility indicators had a
linear relationship with rice yields.

Generalized additive model (GAM) hypothesis test results between
the rice yield concentration and single indicators.

2.3.2. Determination of the assessment criteria

The key to modeling realistic conditions was to determine subjec-
tion functions and turning points with biological relevance. The stan-
dard core functions and cutoff values were measured through the re-
lationship between remote sensing images and the rice yield. The
distribution was established according to a scatterplot and the trend
line of the average rice yield with the soil fertility indicators (Fig. 2).
Then, the lower (L) and upper (U) limit values were confirmed by the
standard deviation of curves multiplied by -1 and 1, respectively. The
trend of DTPA-Mn (20-40 cm) with the rice yield was inconsistent with
the actual trend, and it was likely to be affected by multiple other in-
dicators. Therefore, we removed DTPA-Mn (20-40 cm) from the in-
dicators in the soil fertility assessment. Within a certain range, the
higher indicators corresponded to higher yields, and when the indicator

exceeded a certain threshold, the crop yield did not increase. The
classification criteria based on the above screening process and divi-
sions are listed in Table 2. According to the criteria, we assessed the soil
fertility quality of Jinxian County and separated the soil into three
grades. Grade I represented the best level, and grade III represented the
worst level.

2.3.3. Assessment based on the T-S fuzzy neural network model

The T-S fuzzy neural network model not only updates automatically
but also corrects the membership functions of fuzzy subsets. This model
provides rapid convergence and explicit physical meaning because it
combines the characteristics of the fuzzy logic system and neural net-
work.

The T-S fuzzy logic system uses the "IF-THEN" form to define rules.
When the rule was R', the fuzzy inference was as follows (Hou, 2011;
Song et al., 2018):

R:ifx is Al % is Al,.,x is Althen y =pl + pix + ..+pix

where A/ is the fuzzy set of fuzzy systems, p,(k = 1, 2, ...,j) represents
the fuzzy system parameters, y; is the output based on the fuzzy rules. In
addition, the input is the fuzzy part, and the output is the certain part.
This fuzzy inference indicates that the output is the first combination of
inputs. The inference includes four layers: the input layer, blurring
layer, inference layer, and output layer.

Layer 1: Assumedinput x = [x3, X%, ...,Xk] 2)

Layer 2: We calculate the membership degree of x; based on the
fuzzy rule:

- q)

: k=1,2.j;i=1,2,..n
by

my = exp[
3

where ¢/ and b} are the center and width of the membership functions,
respectively; k represents the input parameters; and n is the number of
fuzzy subsets.

Layer 3: The membership degree is fuzzy calculated by continued
multiplication with the fuzzy operator:

wi = map(a) = ma2(6) * ..maj(Co) i=1,2..,n )
Layer 4: The above fuzzy model is used, to calculate the output y;:

n : : : : n N
V= Zi=l w'(py + pyXat-.+pexi)/ Zz=1 ' 5)
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Fig. 2. Statistics of the measured rice yield with different levels and cutoff values of fitting functions of soil fertility indicators in Jinxian County.

Table 2

Assessment standard of soil fertility quality.
Indicator Grade I Grade II Grade III
Total potassium (0-20 cm) (22.8, + ) (14.2,22.8) (014.2)
Exchangeable magnesium (0-20 cm) (0.71, + ) (0.38,0.71) (0,0.38)
Exchangeable sodium (0-20 cm) (0.192, + ) (0.132,0.192) (0,0.132)
Total potassium (20-40 cm) (23.4, + ) (13.6,23.4) (013.6)
Exchangeable sodium (20-40 cm) (0.190, + ) (0.124,0.190) (0,0.124)

0-20 cm : Soil layer 0-20 cm (surface soil);
20-40 cm : Soil layer 20-40 cm (subsurface soil);

The learning algorithm of the T-S neural network is as follows:
1) Error calculation:

Loy
6_2(yd -yL) (6)

where yj4 is the expected output of the model, y. is the actual output of
the model, and e is the error of the expected output against the actual

output.
2) Coefficient modification:
ics ifs ae
pk(])=Pk(] - 1)_aa -
. @
%

e

Pk ®
where p/ is the coefficient of the neural network, a is the learning rate
of the network, X, is the input parameter, and o' is the continued
multiplication of the input parameters.

3) Parameter modification:

d

) . 3,
() =aql—-1— ﬁT
o 9
ics ifs ae
b () =b(G—1) - 5?
b (10)

where ¢! and b} are the center and width of the membership functions,
respectively.

2.3.4. Geodetector model

The distribution of most geographic variables and their indicators
on the spatial scale obeyed a certain rule. A similar spatial distribution
pattern between a geographic variable and an indicator indicates a
direct or indirect relationship between the indicator and the geographic
variable. Then, the DP of the indicator on the spatial distribution of the
geographic variable can be calculated. According to the mechanism, the
geodetector model was first applied to detect the characteristics af-
fecting endemic disease (Wang, et al., 2010).

In the present study, this model was used to the detect DP for the
rice yield based on the soil fertility indicators. Both the rice yield and
the soil fertility indicators were polygon data that had different spatial
units. To match the two variables in space, our uniformly dispersed the
rice yield in the spatial zone was overlaid with the distribution of in-
dicators, and then each discrete point of the dependent variable and
independent variable values was extracted (Wang and Xu, 2017).

In the study area, a 1 km X 1 km grid was set in ArcGIS 10.0. Then,
we extracted the measured value of the rice yield in the grid (Figure
S1a). After the points without value were eliminated, each point was set
to Y in Figure S1b. Soil fertility indicators, as X variables of the model,
should be interpolated and extracted by the Y. The X variables were the
five soil fertility indicators selected by GAM. These indicators were
divided into three groups according to their classification information.
In the present study, we set the total potassium (Kt) as an example of X
variable to interpolate and divide it into grades I, II, and III based on
Table 2 and then extract by the rice yield points (Y) (Figure S1c).

To analyze the spatial relationship between Y and X, we first
overlaid the layers in Figures S1b and 1c. The variances of Ky in grades
L, 11, and III were represented by Var,,, Vary,, and Var,,, respectively.

The DP value of Ky to the rice yield can be expressed as follows:

1 m
Phy=1- E Zi:l DGy, an
where Py is the DP of Ky to the rice yield; np; is the number of Ky
samples in grades I, II, or III; n is the number of samples in the whole
study area; m is the number of grade areas (m = 3 in this example); o
is the variance of the rice yield in the whole zone; and crjm is
Varg,, Varg., and Varg.,. By assuming that aﬁm # 0, the model was
established. Pp y = 1 means that the rice yield is completely affected by
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Table 3
Statistics of soil characteristics in Jinxian County.
Item Range® Mean * SD° CV(%) Range Mean *= SD CV (%)
Surface soil (0-20 cm), —Subsurface soil (20-40 cm)——

pH 4.32-6.14 4.80 = 0.29 6.04 4.41 -7.14 5.52 = 0.54 9.86
SOM (g/kg) 11.37 - 47.03 33.63 £ 6.71 19.96 4.06 - 44.97 15.49 = 7.67 49.47
Nt (mg/kg) 1.14 - 2.96 1.96 + 0.42 21.62 0.32 - 2.46 0.98 = 0.40 40.91
Pr (mg/kg) 0.44 - 1.19 0.66 = 0.16 23.77 0.22 - 1.08 0.44 = 0.14 31.67
Ky (mg/kg) 7.62 - 31.71 13.95 += 4.74 33.96 7.26 - 30.69 14.10 = 4.78 33.94
Pav (mg/kg) 10.35 - 134.27 36.77 + 20.65 56.16 2.10 - 40.09 11.45 = 8.36 73.03
Kav (mg/kg) 22.50 - 235.50 60.71 = 33.80 55.69 17.75 - 168.32 52.08 + 32.96 63.29
CEC (cmol/kg) 6.31 - 16.32 10.23 = 2.12 20.77 3.73 - 13.97 8.90 = 2.11 23.75
Ex.Ca (cmol/kg) 1.29-7.11 3.01 + 1.19 39.50 1.00 - 64.59 4.46 *+ 6.14 137.66
Ex.Mg (cmol/kg) 0.16 - 1.41 0.55 = 0.21 38.38 0.18 - 8.91 0.83 = 0.85 101.93
Ex.Na (cmol/kg) 0.08 - 0.30 0.15 = 0.04 28.82 0.07 - 0.27 0.14 = 0.04 28.74
DTPA-Fe (mg/kg) 88.33 - 447.93 255.72 = 77.03 30.12 6.51 - 411.93 89.08 + 81.40 91.38
DTPA-Mn (mg/kg) 4.09 - 201.91 39.76 + 39.06 98.23 6.03 - 239.91 57.19 + 45.45 79.48
DTPA-Cu (mg/kg) 1.22 - 8.54 3.69 = 1.11 30.17 0.24 - 8.46 2.07 = 1.35 65.19
DTPA-Zn (mg/kg) 0.65 - 5.75 2.23 = 0.98 43.75 0.19 - 3.93 0.83 = 0.74 89.13
BD (g/cm?) 0.76 - 1.39 1.08 + 0.13 12.08 1.03 - 1.76 1.51 + 0.15 9.77
Silt/Clay (%) 0.33 - 4.27 2.51 = 0.62 24.58 0.90 - 5.18 2.39 = 0.63 26.36

Range : Minimum value - maximum value;

SD : Standard deviation;

CV : Coefficient of variation;

SOM : Soil organic matter;

Nr, Pr and Ky : Total concentrations of nitrogen, phosphorus and potassium;
Pav and Kuy: Available concentrations of phosphorous and potassium;

CEC : Cation exchange capacity;

Ex.Ca, Ex.Mg and Ex.Na: Exchangeable of calcium, magnesium and sodium;

DTPA-Fe, DTPA-Mn,: DTPA-Cu and DTPA-Zn : Available nutrition trace elements of iron (Fe), manganese (Mn), copper (Cu), and zinc (Zn) were measured by

diethylenetriaminepentaacetic acid (DTPA).
BD : Soil bulk density.
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Fig. 3. Soil fertility quality classification based on the rice yield assessment standard.

Kr, and Py = 0 indicates that the rice yield is distributed randomly;
generally, the value of P ; is between 0 and 1. A higher value indicates
a greater influence of Ky on the rice yield.

The geodetector was used to identify the interaction between soil
fertility indicators and the rice yield. Indicators X1 and X2 together
might have an influence on Y (the rice yield) or affect Y independently.
DP (X;), DP (X5), and DP (X;nX5) are indicated in Table S1.

3. Results and discussion
3.1. Descriptive statistical analyses

The chemical and physical characteristics of the studied soils are
summarized in Table 3. The mean value ( = SD) of the surface soil pH
was 4.80 ( = 0.29), with the lowest coefficient of variation (CV) of
6.04%. The mean value ( = SD) of the subsurface soil pH was 5.52
( + 0.54), with a CV of 9.86%, which indicates the universal acid-
ification of soil in Jinxian County. The mean value of the surface SOM
concentration in the study area was 33.63 *+ 6.71 g kg~ !, which was
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relatively higher than that of the second national soil survey of Jinxian
County in 1985 with a mean of 25.93 + 7.78 g kg~ ' (Soil of Jinxian
County, 1985). Surface Ky was 13.95 + 4.74, which indicated po-
tassium deficiency in this area (Table S2). The concentration of soil
exchangeable base cations was relatively low in the topsoil, with a
mean CEC value of 10.23 = 2.12cmol kg™ '. The CV of Mn was the
highest (98.23%) among all the topsoils, indicating the strongest spatial
variation in this area. The BD of surface soil was slightly loose, while it
was very compact in the subsurface soil. The soil in the study area was
sticky, as the average silt/clay ratio of the surface soil was up to 2.51%

and remained at 2.39% in the subsurface soil. The soil had serious soil
acidification in the study area, and the SOM accumulated strongly in
these soils.

3.2. Assessment of the soil fertility quality

Using the T-S fuzzy neural network model, an accurate and in-
tegrated soil fertility assessment was obtained (Fig. 3). We defined the
soil samples with values under 1.5 as grade I, the soil samples with
values between 1.5and 2.5 as grade II, and the soil samples with values
higher than 2.5 as grade III. A total of 58% of the soil samples collected
from Jinxian were categorized as grade III, which were located in the
northeast and southeast of the study area. The results indicated that the
soil fertility is poor in the eastern area, and is the poorest in south-
eastern area. Approximately 24% of the samples were in grade II, re-
presenting moderate soil fertility quality in Jinxian County. The re-
maining 18% of the soil samples that belonged to grade I with the best
level of soil fertility quality, which were distributed in the southwest
corner of the study area.

According to the test of the T-S fuzzy neural network model, the
forecasted output was almost equal to the actual output and the error
was between -0.05 and 0.05, indicating the excellent accuracy of the
model (Figure S2). The spatial distribution of soil fertility quality was
similar to that of the rice yield (Fig. 4). The lowest yield was observed
in the southeastern area, and the highest was observed in the
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Table 4
Interactive influence between pairs of indicators on rice yields.
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Variable Graphic form Interaction Correlation value
Ex.Mg (0-20 cm) N K (20-40 cm) ——— Yoo Double indicator increase 0.0925
Ex.Mg (0-20 cm) n Ex.Na (20-40 cm) —— Y Double indicator increase 0.0780
Ex.Mg (0-20 cm) n Ky (0-20 cm) e aVae. Double indicator increase 0.0737
Ex.Mg (0-20 cm) n Ex.Na (0-20 cm) — Y. Double indicator increase 0.0813
Kt (20-40 cm) n Ex.Na (20-40 cm) — Y. Nonlinear increase 0.1060
K (20-40 cm) N Ky (0-20 cm) e aVae. Double indicator increase 0.0678
Kr (20-40 cm) n Ex.Na (0-20 cm) ¥ Nonlinear increase 0.0908
Ex.Na (20-40 cm) n Ky (0-20 cm) —————¥e Nonlinear increase 0.0623
Ex.Na (20-40 cm) n Ex.Na (0-20 cm) —o—e Yoo Double indicator increase 0.0393
Kt (0-20 cm) N Ex.Na (0-20 cm) — ¥ Nonlinear increase 0.0549

eMin[DP(X,) and DP(X,)] eMax[DP(X,) and DP(X,)] *DP(X))+DP(X,) ¥DP(X,NX,).
southwest. The results indicated that the soil fertility assessment based
on the T-S fuzzy neural network model was not only statistically sig-
nificant but also biologically relevant.

Furthermore, it was indicated that the selected soil fertility in-
dicators were scientifically reliable based on GAM hypothesis test. The
essential macro elements had no significant influence on the rice yield
due to the excessive amounts of organic matter, nitrogen and phos-
phorus caused by long-term fertilization (Table S2). According to the
CV values, pH and BD were rather uniformly distributed within the
study area. Previous studies reported that an increase in BD would lead
to soil compaction and a decrease in soil pH causes a major loss of soil
potassium, calcium and magnesium (Letey, 1985; Xu et al., 2012; Najafi
and Jalali, 2016). Hence, the decrease in the rice yield might partly be
due to increasing and decreasing of soil BD and pH, respectively. Be-
sides, pH and BD were not identified as explanatory variables which
have no influence on the rice yield (p-value above 0.05). Although pH
and BD were found to indirectly affect rice yields, they were not the
main indicators affecting the distribution of rice yields in the study
area. Therefore, these elements were not selected as fertility indicators.

3.3. Restricting indicators of soil fertility based on the geodetector model

The DP of the indicators can be ranked as follows (Fig. 5): Ex.Mg
(0-20cm) (0.067) > Ky (20-40cm) (0.061) > Ex.Na (20-40cm)
(0.029) > Kt (0-20 cm) (0.025) > Ex.Na (0-20 cm) (0.022). This result
indicates that the rice yield was mainly influenced by Mg in the surface
soil and by Kr in the subsurface soil. Mg is the core element of chlor-
ophyll, which is very important for plant photosynthesis (Farhat et al.,
2016). Since the study area is rich in precipitation and potassium is
easily loss, topsoil K deficiency was observed.

According to Table 4, the influence of two indicators on the spatial
distribution of the rice yield was greater than the influence of a single
indicator. The DP of Ex. Na (20-40 cm) n Kr (20-40 cm) on the rice
yield had the highest value (Pp, y = 0.1060); the DPs of Ex.Mg
(0-20 cm) N Kt (20-40 cm) and Ex.Na (0-20 cm) N Ky (20-40 cm) were
0.0925 and 0.0908, respectively. Na* is a beneficial element, for in-
stance by replacing K* as a vacuolar osmoticum; furthermore, the K*
and Na* ions could be transported across the plasmalemma and in-
ternal membranes with high or low ionic selectivity (Nievescordones
et al., 2016). When potassium is scarce, this reabsorption is likely to
result in increased root K* and Na™ concentrations and thereby favor
root growth in response to abiotic stresses (Gaymard et al., 1998). A
nonlinear increase between sodium and potassium also indicated that
different degrees of potassium deficiency were one of the most im-
portant reasons for the differences in the rice yield distribution. The
uptake of nutrients in leaves, straw and grain was increased by K and
Mg treatment (Brohi et al., 2000; Narendrababu et al., 2012; Ortas,
2017). The DP value of Ex.Mg (0-20 cm) n Kt (20-40 cm) also sug-
gested that proper use of potassium and magnesium fertilizers could
increase rice yields in the study area.

4. Conclusion

An integrated soil fertility assessment and restricting indicator
analysis of soil quality based on the rice yield were established in the
study area.

Five indicators were selected using the GAM, including Kr
(0-20 cm), Ex.Mg (0-20 cm), Ex.Na (0-20cm), Kt (20-40 cm), and
Ex.Na (20-40 cm). The selected soil fertility indicators were scientific
and reliable for representing soil fertility from the productivity per-
spective. The assessment error of soil fertility was within = 0.05. The
result indicated that the spatial distribution of the soil fertility quality
assessment based on the T-S fuzzy neural network model was similar to
the spatial distribution of the rice yield.

Continuous fertilization for decades has improved the surface SOM
concentrations in Jinxian County. However, this area still lacks po-
tassium. Based on the results of the geodetector model, the rice yield
could be increased by proper use of potassium and magnesium fertili-
zers in the study area.

These efficient and accurate models could help to fully understand
the soil fertility quality in the study area and provide a theoretical basis
for soil management and sustainable utilization. These models also can
be used in other typical areas with appropriate calibrations.

Acknowledgment

The authors are grateful for the financial support from the National
Key Technology R&D Program of China (grant number
2012BADO05BO05).

Appendix A. Supplementary data

Supplementary material related to this article can be found, in the
online version, at doi:https://doi.org/10.1016/j.still.2019.104322.

References

Amosa, M.K., Majozi, T., 2016. GAMS supported optimization and predictability study of
a multi-objective adsorption process with conflicting regions of optimal operating
conditions. Comput. Chem. Eng. 94, 354-361.

Blanes, V.V., Cantuaria, M.L., Nadimi, E.S., 2017. A novel approach for exposure as-
sessment in air pollution epidemiological studies using neuro-fuzzy inference sys-
tems: comparison of exposure estimates and exposure-health associations. Environ.
Res. 154, 196-203.

Brohi, A.R., Karaman, M.R., Topbas, M.T., AKTAS, A., SAVASLI, E., 2000. Effect of po-
tassium and magnesium fertilization on yield and nutrient content of rice crop grown
on artificial siltation soil. Turk. J. Agric. For. 24, 429-436.

Farhat, N., Elkhouni, A., Zorrig, W., Smaoui, A., Abdelly, C., Rabhi, M., 2016. Effects of
magnesium deficiency on photosynthesis and carbohydrate partitioning. Acta
Physiol. Plant. 38, 145.

Fan, Y.N., Yao, L.P., Qu, M.K., Hu, W.Y., Huang, B., Zhao, Y.C., 2017. Yield-based soil
fertility quality assessment and constraint factor-based zoning of paddy soil—a case
study of Jinxian County. Acta Pedologica Sinica 54, 1157-1169 (in Chinese).

Gaymard, F., Pilot, G., Lacombe, B., Bouchez, D., Bruneau, D., Boucherez, J., Michaux-
Ferrie're, N., Jean-Baptiste Thibaud, J.B., Sentenac, H., 1998. Identification and
disruption of a plant shaker-like outward channel involved in K™ release into the


https://doi.org/10.1016/j.still.2019.104322
http://refhub.elsevier.com/S0167-1987(18)30407-0/sbref0005
http://refhub.elsevier.com/S0167-1987(18)30407-0/sbref0005
http://refhub.elsevier.com/S0167-1987(18)30407-0/sbref0005
http://refhub.elsevier.com/S0167-1987(18)30407-0/sbref0010
http://refhub.elsevier.com/S0167-1987(18)30407-0/sbref0010
http://refhub.elsevier.com/S0167-1987(18)30407-0/sbref0010
http://refhub.elsevier.com/S0167-1987(18)30407-0/sbref0010
http://refhub.elsevier.com/S0167-1987(18)30407-0/sbref0015
http://refhub.elsevier.com/S0167-1987(18)30407-0/sbref0015
http://refhub.elsevier.com/S0167-1987(18)30407-0/sbref0015
http://refhub.elsevier.com/S0167-1987(18)30407-0/sbref0020
http://refhub.elsevier.com/S0167-1987(18)30407-0/sbref0020
http://refhub.elsevier.com/S0167-1987(18)30407-0/sbref0020
http://refhub.elsevier.com/S0167-1987(18)30407-0/sbref0025
http://refhub.elsevier.com/S0167-1987(18)30407-0/sbref0025
http://refhub.elsevier.com/S0167-1987(18)30407-0/sbref0025
http://refhub.elsevier.com/S0167-1987(18)30407-0/sbref0030
http://refhub.elsevier.com/S0167-1987(18)30407-0/sbref0030
http://refhub.elsevier.com/S0167-1987(18)30407-0/sbref0030
User
高亮

User
高亮


H. Wang, et al.

xylem sap. Cell 94, 647-655.

Hastie, T., Tibshirani, R., 1986. Generalized additive models. Technometrics 1, 297-310.

Hou, T., 2011. The application of fuzzy neural network based on T-S model in SanChuan
Water quality evaluation. Energy Energy Conserv. 6, 54-56 (in Chinese).

Hu, D., Shu, X., Yao, B., Cao, Q., 2014. The evolvement of spatio-temporal pattern of per
capita grain Possession in counties of Jiangxi Province. Areal Res. Dev. 33, 157-162
(in Chinese).

Huang, B., Shi, X., Yu, D., Oborn, L., Blombck, K., Pagella, T.F., Wang, H., Sun, W.,
Sinclair, F.L., 2006. Environmental assessment of small-scale vegetable farming sys-
tems in peri-urban areas of the Yangtze River Delta Region, China. Agr. Ecosyst.
Environ. 112, 391-402.

Jiang, X.Y., Zhang, Q., Xie, Z.D., 2010. Distribution and abundance or deficiency as-
sessment of the surface soil nutrient elements in Poyang Lake and its surrounding
economic area. Geol. Surv. Res. 33, 226-231 (in Chinese).

Juhos, K., Szabd, S., Ladanyi, M., 2016. Explore the influence of soil quality on crop yield
using statistically-derived pedological indicators. Ecol. Indic. 63, 366-373.

Kaniu, M.I., Angeyo, K.H., 2015. Challenges in rapid soil quality assessment and oppor-
tunities presented by multivariate chemometric energy dispersive X-ray fluorescence
and scattering spectroscopy. Geoderma 241-242, 32-40.

Lai, Q.W., Liu, X., Huang, Q.H., 1989. The genesis of paddy soil gleization and its
amendment strategy in Poyong-Lake Region, China. Scientia Agricultura Sinica 22,
65-74 (in Chinese).

Letey, J., 1985. Relationship between soil physical properties and crop production.
Advances in Soil Science. Springer, New York.

Liu, J., Wu, L.C., Chen, D., Li, M., Wei, C.J., 2017. Soil quality assessment of different
Camellia oleifera stands in mid-subtropical China. Appl. Soil Eco. 113, 29-35.

Liu, Y., Wang, H., Zhang, H., Liber, K., 2016. A comprehensive support vector machine-
based classification model for soil quality assessment. Soil Till. Res. 155, 19-26.

Lu, R.K., 2000. Analytical Methods of Agricultural Chemistry in Soil. China Agricultural
Scientech Press, Beijing, China (in Chinese).

Merrill, S.D., Liebig, M.A., Tanaka, D.L., Krupinsky, J.M., Hanson, J.D., 2013. Comparison
of soil quality and productivity at two sites differing in profile structure and topsoil
properties. Agr. Ecosyst. Environ. 179, 53-61.

Najafi, S., Jalali, M., 2016. Effect of heavy metals on pH buffering capacity and solubility
of Ca, Mg, K, and P in non-spiked and heavy metal-spiked soils. Environ. Monit.
Assess. 188, 1-11.

Narendrababu, B., Kumar, S.A., Sudhir, K., 2012. Effect of graded doses of potassium with
sulphur and/or magnesium on yield of potato and cabbage and soil nutrient status.
Mysore Journal of Agricultural Sciences 46, 274-280.

Nelson, D.W., Sommers, L.E., Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H.,
Soltanpour, P.N., Tabatabai, M.A., Johnston, C.T., Sumner, M.E., 1996. Total carbon,
organic carbon, and organic matter. Methods Soil Analysis 9, 961-1010.

Nelson, E., Mendoza, G., Regetz, J., Polasky, S., Tallis, H., Cameron, D.R., et al., 2009.
Modeling multiple ecosystem services, biodiversity conservation, commodity pro-
duction, and tradeoffs at landscape scales. Front. Ecol. Environ. 7, 4-11.

Nievescordones, M., Al Shiblawi, F.R., Sentenac, H., 2016. Roles and transport of sodium
and potassium in plants. Met. Ions Life Sci. 16, 291-324.

Ortas, I., 2017. Influence of potassium and magnesium fertilizer application on the yield
and nutrient accumulation of maize genotypes under field conditions. J. Plant Nutr.
41, 1-10.

Qi, Y., Darilek, J.L., Huang, B., Zhao, Y., Sun, W., Gu, Z., 2009. Evaluating soil quality
indices in an agricultural region of Jiangsu Province, China. Geoderma 149, 325-334.

Rahmanipour, F., Marzaioli, R., Bahrami, H.A., Fereidouni, Z., Bandarabadi, S.R., 2014.
Assessment of soil quality indices in agricultural lands of Qazvin province, Iran. Ecol.
Indic. 40, 19-26.

Soil & Tillage Research 194 (2019) 104322

Raiesi, F., 2017. A minimum data set and soil quality index to quantify the effect of land
use conversion on soil quality and degradation in native rangelands of upland arid
and semiarid regions. Ecol. Indic. 75, 307-320.

Rodriguez, E., Peche, R., Garbisu, C., Gorostiza, 1., Epelde, L., Artetxe, U., Irizar, A., Soto,
M., Becerril, J.M., Etxebarria, J., 2016. Dynamic quality index for agricultural soils
based on fuzzy logic. Ecol. Indic. 60, 678-692.

Rojas, J.M., Prause, J., Sanzano, G.A., Arce, O.E.A., Sanchez, M.C., 2016. Soil quality
indicators selection by mixed models and multivariate techniques in deforested areas
for agricultural use in NW of Chaco, Argentina. Soil Till. Res. 155, 250-262.

Song, L.K., Wen, J., Fei, C.W., Bai, G.C., 2018. Distributed collaborative probabilistic
design of multi-failure structure with fluid-structure interaction using fuzzy neural
network of regression. Mech. Syst. Signal Pr. 104, 72-86.

Toebe, M., Filho, A.C., 2013. Multicollinearity in path analysis of maize (Zea mays L.). J.
Cereal Sci. 57, 453-462.

Vasu, D., Singh, S.K., Ray, S.K., Duraisami, V.P., Tiwary, P., Chandran, P., Nimkar, A.M.,
Anantwar, S.G., 2016. Soil quality index (SQI) as a tool to evaluate crop productivity
in semi-arid Deccan plateau, India. Geoderma 282, 70-79.

Viana, R.M., Ferraz Jr, J.B.S., A.F.N, Vieira, G., Pereira, B.F.F., 2014. Soil quality in-

Wang, J.F., Xu, C.D., 2017. Geodetector: principle and prospective. Acta Geographica
Sinica 72, 116-134 (in Chinese).

Wang, J.F., Li, X.H., Christakos, G., Liao, Y.L., Zhang, T., Gu, X., Zheng, X.Y., 2010.
Geographical detectors-based health risk assessment and its application in the neural
tube defects study of the heshun region. China. Int. J. Geogr. Inf. Sci. 24, 107-127.

Wood, S., 2006. Generalized additive models: an introduction with R. J. Stat. Softw.
6, 1-3.

Wolde, Z., Haile, W., 2015. Phosphorus sorption isotherms and external phosphorus re-
quirements of some soils of southern Ethiopia. Afr. Crop Sci. J. 23, 89-99.

WRB, 2015. World Reference Base for Soil Resources 2014, Update 2015. International
Soil Classification System for Naming Soils and Creating Legends for Soil Maps.
World Soil Resources Reports No. 106. FAO, Rome.

Wu, J., Yang, P., Zhang, X., Shen, Z., Yu, C., 2015. Spatial and climatic patterns of the
relative abundance of poisonous vs. non-poisonous plants across the Northern
Tibetan Plateau. Environ. Monit. Assess. 187, 491.

Xu, R.K., Zhao, A.Z., Yuan, J.H., Jiang, J., 2012. pH buffering capacity of acid soils from
tropical and subtropical regions of China as influenced by incorporation of crop straw
biochars. J. Soil Sediment 12, 494-502.

Xu, Z., Wang, F., Han, Y., Zhang, G., Wang, J., 2013. Regional agriculture drought risk
assessment based on T-S fuzzy neural network. Int. J. Appl. Environ. Sci. 8,
2295-2307.

Yan, X., Luo, X., 2016. Assessment of the soil quality by fuzzy mathematics in farmland
around a uranium mill tailing repository in China. Radioprotection 51, 37-41.

Yao, L.P., Huang, B., Sun, W.X., 2015. Limiting soil factors on rice yield in typical Area of
Poyang Lake Region, China. Soil 47, 675-681 (in Chinese).

Yi, Y., Sun, J., Zhang, S., Yang, Z., 2016. Assessment of Chinese sturgeon habitat suit-
ability in the Yangtze River (China): comparison of generalized additive model, data-
driven fuzzy logic model, and preference curve model. J. Hydrol. 536, 447-456.

Zhang, Y., 2012. Application of T-S fuzzy neural network based on declination compen-
sation in soft sensing. Math. Comput. Simulat. 86, 92-99.

Zhang, G., Bai, J., Xi, M., Zhao, Q., Lu, Q., Jia, J., 2016. Soil quality assessment of coastal
wetlands in the Yellow River Delta of China based on the minimum data set. Ecol.
Indic. 66, 458-466.

Soil of Jinxian County, 1985. Agricultural Zoning Committee of Jinxian County, Jiangxi
Province (in Chinese). .



http://refhub.elsevier.com/S0167-1987(18)30407-0/sbref0030
http://refhub.elsevier.com/S0167-1987(18)30407-0/sbref0035
http://refhub.elsevier.com/S0167-1987(18)30407-0/sbref0040
http://refhub.elsevier.com/S0167-1987(18)30407-0/sbref0040
http://refhub.elsevier.com/S0167-1987(18)30407-0/sbref0045
http://refhub.elsevier.com/S0167-1987(18)30407-0/sbref0045
http://refhub.elsevier.com/S0167-1987(18)30407-0/sbref0045
http://refhub.elsevier.com/S0167-1987(18)30407-0/sbref0050
http://refhub.elsevier.com/S0167-1987(18)30407-0/sbref0050
http://refhub.elsevier.com/S0167-1987(18)30407-0/sbref0050
http://refhub.elsevier.com/S0167-1987(18)30407-0/sbref0050
http://refhub.elsevier.com/S0167-1987(18)30407-0/sbref0055
http://refhub.elsevier.com/S0167-1987(18)30407-0/sbref0055
http://refhub.elsevier.com/S0167-1987(18)30407-0/sbref0055
http://refhub.elsevier.com/S0167-1987(18)30407-0/sbref0060
http://refhub.elsevier.com/S0167-1987(18)30407-0/sbref0060
http://refhub.elsevier.com/S0167-1987(18)30407-0/sbref0065
http://refhub.elsevier.com/S0167-1987(18)30407-0/sbref0065
http://refhub.elsevier.com/S0167-1987(18)30407-0/sbref0065
http://refhub.elsevier.com/S0167-1987(18)30407-0/sbref0070
http://refhub.elsevier.com/S0167-1987(18)30407-0/sbref0070
http://refhub.elsevier.com/S0167-1987(18)30407-0/sbref0070
http://refhub.elsevier.com/S0167-1987(18)30407-0/sbref0075
http://refhub.elsevier.com/S0167-1987(18)30407-0/sbref0075
http://refhub.elsevier.com/S0167-1987(18)30407-0/sbref0080
http://refhub.elsevier.com/S0167-1987(18)30407-0/sbref0080
http://refhub.elsevier.com/S0167-1987(18)30407-0/sbref0085
http://refhub.elsevier.com/S0167-1987(18)30407-0/sbref0085
http://refhub.elsevier.com/S0167-1987(18)30407-0/sbref0090
http://refhub.elsevier.com/S0167-1987(18)30407-0/sbref0090
http://refhub.elsevier.com/S0167-1987(18)30407-0/sbref0095
http://refhub.elsevier.com/S0167-1987(18)30407-0/sbref0095
http://refhub.elsevier.com/S0167-1987(18)30407-0/sbref0095
http://refhub.elsevier.com/S0167-1987(18)30407-0/sbref0100
http://refhub.elsevier.com/S0167-1987(18)30407-0/sbref0100
http://refhub.elsevier.com/S0167-1987(18)30407-0/sbref0100
http://refhub.elsevier.com/S0167-1987(18)30407-0/sbref0105
http://refhub.elsevier.com/S0167-1987(18)30407-0/sbref0105
http://refhub.elsevier.com/S0167-1987(18)30407-0/sbref0105
http://refhub.elsevier.com/S0167-1987(18)30407-0/sbref0110
http://refhub.elsevier.com/S0167-1987(18)30407-0/sbref0110
http://refhub.elsevier.com/S0167-1987(18)30407-0/sbref0110
http://refhub.elsevier.com/S0167-1987(18)30407-0/sbref0115
http://refhub.elsevier.com/S0167-1987(18)30407-0/sbref0115
http://refhub.elsevier.com/S0167-1987(18)30407-0/sbref0115
http://refhub.elsevier.com/S0167-1987(18)30407-0/sbref0120
http://refhub.elsevier.com/S0167-1987(18)30407-0/sbref0120
http://refhub.elsevier.com/S0167-1987(18)30407-0/sbref0125
http://refhub.elsevier.com/S0167-1987(18)30407-0/sbref0125
http://refhub.elsevier.com/S0167-1987(18)30407-0/sbref0125
http://refhub.elsevier.com/S0167-1987(18)30407-0/sbref0130
http://refhub.elsevier.com/S0167-1987(18)30407-0/sbref0130
http://refhub.elsevier.com/S0167-1987(18)30407-0/sbref0135
http://refhub.elsevier.com/S0167-1987(18)30407-0/sbref0135
http://refhub.elsevier.com/S0167-1987(18)30407-0/sbref0135
http://refhub.elsevier.com/S0167-1987(18)30407-0/sbref0140
http://refhub.elsevier.com/S0167-1987(18)30407-0/sbref0140
http://refhub.elsevier.com/S0167-1987(18)30407-0/sbref0140
http://refhub.elsevier.com/S0167-1987(18)30407-0/sbref0145
http://refhub.elsevier.com/S0167-1987(18)30407-0/sbref0145
http://refhub.elsevier.com/S0167-1987(18)30407-0/sbref0145
http://refhub.elsevier.com/S0167-1987(18)30407-0/sbref0150
http://refhub.elsevier.com/S0167-1987(18)30407-0/sbref0150
http://refhub.elsevier.com/S0167-1987(18)30407-0/sbref0150
http://refhub.elsevier.com/S0167-1987(18)30407-0/sbref0155
http://refhub.elsevier.com/S0167-1987(18)30407-0/sbref0155
http://refhub.elsevier.com/S0167-1987(18)30407-0/sbref0155
http://refhub.elsevier.com/S0167-1987(18)30407-0/sbref0160
http://refhub.elsevier.com/S0167-1987(18)30407-0/sbref0160
http://refhub.elsevier.com/S0167-1987(18)30407-0/sbref0165
http://refhub.elsevier.com/S0167-1987(18)30407-0/sbref0165
http://refhub.elsevier.com/S0167-1987(18)30407-0/sbref0165
http://refhub.elsevier.com/S0167-1987(18)30407-0/sbref0170
http://refhub.elsevier.com/S0167-1987(18)30407-0/sbref0170
http://refhub.elsevier.com/S0167-1987(18)30407-0/sbref0175
http://refhub.elsevier.com/S0167-1987(18)30407-0/sbref0175
http://refhub.elsevier.com/S0167-1987(18)30407-0/sbref0180
http://refhub.elsevier.com/S0167-1987(18)30407-0/sbref0180
http://refhub.elsevier.com/S0167-1987(18)30407-0/sbref0180
http://refhub.elsevier.com/S0167-1987(18)30407-0/sbref0185
http://refhub.elsevier.com/S0167-1987(18)30407-0/sbref0185
http://refhub.elsevier.com/S0167-1987(18)30407-0/sbref0190
http://refhub.elsevier.com/S0167-1987(18)30407-0/sbref0190
http://refhub.elsevier.com/S0167-1987(18)30407-0/sbref0195
http://refhub.elsevier.com/S0167-1987(18)30407-0/sbref0195
http://refhub.elsevier.com/S0167-1987(18)30407-0/sbref0195
http://refhub.elsevier.com/S0167-1987(18)30407-0/sbref0200
http://refhub.elsevier.com/S0167-1987(18)30407-0/sbref0200
http://refhub.elsevier.com/S0167-1987(18)30407-0/sbref0200
http://refhub.elsevier.com/S0167-1987(18)30407-0/sbref0205
http://refhub.elsevier.com/S0167-1987(18)30407-0/sbref0205
http://refhub.elsevier.com/S0167-1987(18)30407-0/sbref0205
http://refhub.elsevier.com/S0167-1987(18)30407-0/sbref0210
http://refhub.elsevier.com/S0167-1987(18)30407-0/sbref0210
http://refhub.elsevier.com/S0167-1987(18)30407-0/sbref0210
http://refhub.elsevier.com/S0167-1987(18)30407-0/sbref0215
http://refhub.elsevier.com/S0167-1987(18)30407-0/sbref0215
http://refhub.elsevier.com/S0167-1987(18)30407-0/sbref0220
http://refhub.elsevier.com/S0167-1987(18)30407-0/sbref0220
http://refhub.elsevier.com/S0167-1987(18)30407-0/sbref0225
http://refhub.elsevier.com/S0167-1987(18)30407-0/sbref0225
http://refhub.elsevier.com/S0167-1987(18)30407-0/sbref0225
http://refhub.elsevier.com/S0167-1987(18)30407-0/sbref0230
http://refhub.elsevier.com/S0167-1987(18)30407-0/sbref0230
http://refhub.elsevier.com/S0167-1987(18)30407-0/sbref0235
http://refhub.elsevier.com/S0167-1987(18)30407-0/sbref0235
http://refhub.elsevier.com/S0167-1987(18)30407-0/sbref0235
http://refhub.elsevier.com/S0167-1987(18)30407-0/sbref0240
http://refhub.elsevier.com/S0167-1987(18)30407-0/sbref0240
User
矩形


	An integrated approach to exploring soil fertility from the perspective of rice (Oryza sativa L.) yields
	Introduction
	Materials and methods
	Description of the study area and sampling
	Chemical analysis
	Analysis method and algorithm
	Generalized additive model to select soil fertility indicators
	Determination of the assessment criteria
	Assessment based on the T-S fuzzy neural network model
	Geodetector model


	Results and discussion
	Descriptive statistical analyses
	Assessment of the soil fertility quality
	Restricting indicators of soil fertility based on the geodetector model

	Conclusion
	Acknowledgment
	Supplementary data
	References




