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Abstract

Background: Various neglected tropical diseases show spatially changing seasonality at small areas. This
phenomenon has received little scientific attention so far. Our study contributes to advancing the understanding of
its drivers. This study focuses on the effects of the seasonality of increasing social contacts on the incidence
proportions at multiple district level of the childhood hand-foot-mouth disease in Da Nang city, Viet Nam from
2012 to 2016.

Methods: We decomposed the nonstationary time series of the incidence proportions for the nine spatial-temporal
(S-T) strata in the study area, where S indicates the spatial and T the temporal stratum. The long-term trends and
the seasonality are presented by the Fourier series. To study the effects of the monthly average ambient
temperature and the period of preschooling, we developed a spatial-temporal autoregressive model.

Results: Seasonality of childhood hand-foot-mouth disease incidence proportions shows two peaks in all spatial
strata annually: large peaks synchronously in April and small ones asynchronously during the preschooling period.
The peaks of the average temperature are asynchronous with the seasonal peaks of the childhood hand-foot-
mouth disease incidence proportions in the period between January and May, with the negative values of the
regression coefficients for all spatial strata, respectively: βS1T11 ¼ −0:18� 0:07; βS2T11 ¼ −0:25� 0:09; βS3T11 ¼ −0:14� 0:
05. The increasingly cumulative preschooling period and the seasonal component of the incidence proportions are
negatively correlated in the period between August and December, with the negative values of the regression
coefficients for all temporal strata, respectively: βS1T32 ¼ −0:40� 0:01; βS2T32 ¼ −0:29� 0:00; βS3T32 ¼ −0:25� 0:01.

Conclusions: The study shows that social contact amongst children under five years of age is the important
driving factor of the dynamics of the childhood hand-foot-mouth disease outbreaks in the study area. The
preschooling season when children’s contact with each other increases stimulates the geographical variation of the
seasonality of childhood hand-foot-mouth disease infections at small areas in the study area.

Keywords: Health seasonality, NTDs, Childhood HFMD, STAR, Fourier analysis, Disease, dynamics, health geography,
small area analysis.
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Background
Neglected tropical diseases (NTDs) have shown evidently
seasonal patterns with various timings, amplitudes and types
[1–3]. NTDs remain socio-economic burdens in developing
countries, especially in low-income communities in Asia and
Africa. The considerable seasonality of these NTDs is af-
fected by seasonal changes of both environmental and social
risk factors [4, 5]. Understanding the regularity or irregular-
ity of NTDs’ outbreaks is necessary to obtain optimal control
over the disease spread [6], to reduce their burdens and to
reach the UN sustainable development goals for health [7].
Amongst others, the infections of Coxsackievirus A16

(CA16) and human Enterovirus 71 (EV71) that mainly
cause hand-foot-mouth disease (HFMD) in children
under 5 years of age (U5s) have been recognized as an
emerging public health problem in North East and
South East Asian countries [8, 9]. So far, studies of the
seasonal variations of childhood HFMD infections have
mainly focused on climatic driving factors such as
temperature, humidity and rainfall [9]. The effects of
seasonally changing social contacts on the dynamics of
childhood HFMD for small areas have been overlooked,
even though HFMD viruses are mainly transmitted by
directly physical contacts between infected and non-
infected children [10]. Additional research has been
done for northeastern Asian countries [11–13], whereas
some studies were also done for southeastern Asian re-
gions [14, 15]. Despite the increasing application of
mathematical models to understand the epidemiology of
infectious diseases, spatial-temporal statistical methods
(STS) have not yet been well recognized and leveraged
for studying seasonality of NTDs, i.e. to quantitatively
explain the spatial-temporal dynamics of the disease out-
breaks [16], especially for small geographical areas.
In this research, we study the seasonality of childhood

HFMD in Viet Nam and its geographical variations at
small areas as affected by seasonally changing weather
and the social contacts. The study of Horby et al. in Viet
Nam in 2011 [17] shows that the physical contact
amongst U5s themselves is the most intensive, especially
during the period at preschool. Hence, the social contact
amongst U5s is measured by the annually cumulated
period of time they spend at preschool since their first
day at preschool. We distinguish between the trend and
the seasonality. The trend establishes the long-term
changing pattern of the mean level, whereas the season-
ality represents yearly periodic variations. We propose a
two stage STS analysis to extract the seasonal patterns
and to identify the driving factors of the incidences of
childhood HFMD infections in Da Nang city, Viet Nam
as an application. In so doing, we aimed to identify and
understand the effects of seasonally changing social con-
tacts of U5s on the dynamics of HFMD outbreaks at
multiple district level.

Methods
Study area and data
Da Nang city (Fig. 1), the biggest city on the south central
coast of Viet Nam has an area of 1,285 km2 and a population
of more than 1 million people in 2016 [18]. Approximately
8% of Da Nang city’s population consists of U5s [18]. Ac-
cording to the guideline from the Vietnamese Ministry of
Health on diagnosis and treatment of HFMD, a confirmed
HFMD case is defined when a child has a positive RT-PCR
assay for CA16 or EV71. Weekly counts of new cases, i.e.
the incidences from seven mainland districts of the city from
2012 to 2016 were obtained from the published reports of
Da Nang city Preventive medicine center (https://ksbtda-
nang.vn/). Because these weekly counts have many small
number of cases (< 5 cases per week), statistics based upon
them are not reliable. To avoid this small number problem,
the monthly count of new cases that is the sum of the
weekly counts of new cases from this month was analyzed
in this study. Note that the first and last weeks of the
months can include 1 to 3 days of the previous or the next
months. The demographical data were obtained from the
demographic statistics of Da Nang city. The monthly popu-
lation of U5s was interpolated from the yearly data with the
assumption of a constant monthly growth rate. The monthly
meteorological data from 2012 to 2016 were obtained from
the Viet Nam institute of meteorology, hydrology and
climate change (http://www.imh.ac.vn).

Spatial-temporal heterogeneity analysis
To analyze the spatial-temporal heterogeneity and identify
the predominant risk factors of HFMD, we compared the q-
statistic of the nine spatial-temporal stratification to that of
without stratification:

q ¼ 1−

XH
h¼1

Nhσ2h

Nσ2

[19]; where: N is the

total number of HFMD cases in the study area and σ2 is the
corresponding total variance, Nh and σ2h are those of various
spatial-temporal strata that are considered in the statistical
test, H is the total number of these strata. The q-statistic for
heterogeneity analysis regarding covariates was provided by
the geodetector library of R [19, 20].

Spatial-temporal stratification
To evaluate the effects of U5s as the population at risk on
the magnitude of the seasonality of the childhood HFMD
incidences, we stratified the districts by the density of U5s.
This classification resulted into three spatial strata (Fig. 1):
S1 is an urban stratum with the highest density of U5s (>
500 per km2), S3 is the rural stratum having the lowest
density (< 100 per km2) and S2 is located in between.
We transformed the monthly counts of HFMD inci-

dences to the monthly HFMD incidence proportions in
order to correct the effects of the internal heterogeneity of
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the population at risk within the spatial strata. Let i = 1:12
index the months, j = 1:5 the years, d = 1:7 the districts and
s = 1:3 the spatial strata. IRs

ij is used to denote the incidence

proportion at spatial stratum s in month i of year j. To ac-
count for unequal numbers of days in months, the IRs

ij were

adjusted as: IRs
ij ¼

365:25�
X
s

Idij

12�Di�
X
s

Nd
ij � 1; 000

[21], where Idij is

the monthly incidence proportion, Nd
ij is the population of

U5s, Di is the number of days per month,
X
s

Idij is the sum

of HFMD incidences of the districts and
X
s

Nd
ij is the total

population of U5s belonging to the stratum s. This adjust-
ment removes the false variations of IRs

ij attributed to the

variations of the at-risk populations and the length of time
unit, partly due to the use of the weekly reported data. IRs

ij

therefore equals the number of infected U5s per 1,000 U5s
at risk per month, provided that removing the infected
children from the population at risk only has a marginal
correction effect.

Modelling seasonality
The seasonality of IRs

ij was diagnosed by using the seasonal

index (SI). The original value of IRs
ij for each stratum s in

month i in year j was represented as the percentage of the
mean value of the IRs

ij for stratum s in year j. SI of stratum

s in month i equals the median of the percentages from all

5 years: SIsi ¼ medianð IRs
ij

12−1
X12
i¼1

IRs
ij

� 100; j ¼ 1 : 5Þ [22].

The median allows for the inclusion of the effects of

extreme values over the years. The standard error of SI
was derived from the bootstrap confident interval assum-
ing a normal distribution. A value of SIsi > 100% indicates
that the incidence proportion is above the yearly average
incidence proportion and vice versa.
For the analysis of the dynamics, we applied to IRs

ij an

additive conceptual model with three main components:
a trend (μ), a seasonality (ξ) and random noises (ε):

IRs
ij ¼ μ IRs

ij

� �
þ ξ IRs

ij

� �
þ ε IRs

ij

� �
: ð1Þ

We used the Fourier series to represent different oscil-
lations of μðIRs

ijÞ and ξðIRs
ijÞ in (1) by a linear combin-

ation of sinusoidal functions with different frequencies,
magnitudes and phases [23]:

μ IRs
ij

� �
¼ μs0 þ

XP
p¼1

As
μp sin2π

kp
60

tij þ
XP
p¼1

Bs
μp cos2π

kp
60

tij; kp ¼ 1 : P;

ð2Þ
ξ IRs

ij

� �
¼ ξs0 þ

XQ
q¼1

As
ξq sin2π

kq
12

tij þ
XQ
q¼1

Bs
ξq cos2π

kq
12

tij; kq ¼ 1 : Q:

ð3Þ
Here P and Q are the number of the sine and cosine

functions representing the trend and seasonal components,
respectively, μs0 and ξs0 are the intercepts defining the base-
lines of the trend and seasonal components, As

μp , B
s
μp , A

s
ξq

and Bs
ξq are the Fourier coefficients and tij indexes time.

The amplitude of the trend equals: Cs
μp ¼ signðBs

μpÞ
ðAs

μp
2 þ Bs

μp
2Þ1=2 ; that of the seasonal component equals:

Cs
ξq ¼ signðBs

ξpÞðAs
ξq
2 þ Bs

ξq
2Þ1=2, where sign is the func-

tion extracting the sign of a real number [24].
Iterative weighted least square estimation was used to

fit (2) and (3) by minimizing the generalized cross-

Fig. 1 Spatial strata in the mainland of Da Nang city, Viet Nam: S1 is the most densely populated districts, S3 has the lowest population density as
compared to S1 and S2
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validation value: GCV = RSS + λ × PENL, where RSS is
the weighted residual sum of squares, λ is the smoothing
parameter and PENL is a penalty term as a measure of
Fourier series roughness [25].

Identifying driving factors of seasonality
To contrast the effects of preschooling period as a proxy
measure of the social contacts and the weather season on
the seasonality of the disease, we further stratified the sea-
sonal components ξðIRs

ijÞ into three temporal strata: T1 is

the dry and preschooling season from January to May, T2 is
the dry and summer holiday season from June to July and
T3 is the rainy and preschooling season from August to De-
cember. Hence, for all j and s, ξðIRs

ijÞ belong to T1 for i =

1:5, to T2 for i = 6:7 and to T3 for i = 8:12, respectively.
To relate ξðIRs

ijÞ of T1, T2 and T3 to the potential risk

factors, a spatial-temporal regression model was deployed:

ξT IRs
ij

� �
¼ βsT0 þ

XN
n¼1

βsTnX
s
Tnij þ βsT Nþ1ð ÞPTi þ εsTij;T ¼ T1 : T3;

ð4Þ
where N is the total number of the weather covariates,
βsT0 and βsTn are the regression parameters, Xs

Tnij are the

weather covariates, εsTij are the spatial-temporal autore-

gressive regression residuals, PTi are the number of
months at preschools, cumulated from August current
year to May next year. Notice that PTi did not vary with

s and j as they were obtained by: PTi ¼
iþ 5 for i∈T1

0 for i∈T2

i−7 for i∈T3

8<
: .

To account for spatial-temporal autocorrelation remaining
in the residual, we applied the Spatial-Temporal AutoRegres-
sive model (STAR) [26] for the error term εsTij in (4):

εsTij ¼ γsT1ε
s
T iþ1ð Þ j þ γsT2ε

s
T i−1ð Þ j þ

XM
m¼1

ρsTmε
s
Tijm

þωs
Tij;with ωs

Tij � N 0; σsTω
� �2� �

ð5Þ

where M is the total number of the first-order spatial
neighbors of Ss, γsT1 and γsT2 are the temporal autore-
gressive coefficients, ρsTm are the spatial autoregressive

coefficients, ðσsTωÞ2 is the variance of the i.i.d. random
error ωs

Tij . The model parameters were estimated by max-

imum likelihood (ML) [27]. Schwarz’s Bayesian criterion
(BIC) was used to indicate the fitness of the models. The
Shapiro–Wilk test [28] was used for normality test. The
analyses and modellings were executed in R. 3.4.4, using
mainly stat4 library [29] and fda library [30].

Results
Seasonality at multiple district level
The seasonality of IRs

ij was evidenced by the variations

of the corresponding SIsi (Table 1). For all spatial strata,
the maximum SIsi > 100% fell into two periods, between
April and May and between September and October.
These indicate that, for example for S2 in April, the me-
dian incidence proportion was 1.66 times higher than
the average incidence proportion of the year. The mini-
mum SIsi < 60% were in the period between December
and January. These show that, for example for S2 in
January, the median incidence proportion was 2.5 times
lower than the average incidence proportion of the year.
As outcomes from the iterative fitting processes, the

optimally fitted trends of S1 and S2 had two sine and
two cosine functions (P = 2) and the optimal logλ = 4
corresponding to the minimum values of the GCV equal
to 2.28 and 3.33, respectively. For S3, the fitted model in-
cluded four of each of the trigonometric functions
(P = 4) with logλ = 2 and the minimum GCV equal to
6.1. The fitted models for the seasonality (3) have five of
each sine and cosine functions (Q = 5) with logλ = 0 and
the minimum GCV equal to 0.87, 2.6 and 4.1 for the S1,
S2 and S3, respectively. The trends show a gradual de-
crease from 2012 to 2015, whereas from the end of 2015
onwards, they increase (Fig. 2). The magnitude is highest
in S2, being approximately double to those of S1 and S3.
Fig 3 presents the seasonal patterns of IRs

ij . In T1, all

the peaks fell within April as indicated by the maximum
SIsi in Table 1. In T3, the peaks occurred in August (S3),
September (S2) and October (S1). All the deepest troughs
were in January, whereas the small troughs occurred in
June. The maximum amplitude of seasonality was equal
to 4.56 infected U5s per 1,000 U5s at risk per month.

Table 1 Seasonal indices of IRsij for 3 × 3 spatial-temporal strata in the mainland of Da Nang city

Strata T1 T2 T3

Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

SI % (Std.
Error)

S1 44.6
(19.5)

52.5
(15.4)

123.0
(41.9)

138.6
(38.1)

106.9
(52.8)

83.0
(27.4)

108.1
(23.0)

105.0
(17.3)

136.9
(31.7)

158.1
(41.7)

88.1
(36.2)

55.1
(15.5)

S2 41.0
(25.0)

72.9
(26.4)

94.6
(41.9)

165.7
(43.3)

107.0
(45.5)

73.5
(27.4)

121.7
(21.4)

105.0
(10.4)

138.1
(36.2)

136.3
(27.4)

89.7
(38.2)

54.7
(19.56)

S3 49.4
(25.7)

67.1
(36.5)

122.1
(32.0)

142.5
(54.5)

137.8
(43.7)

86.5
(28.4)

93.8
(26.7)

124.4
(18.1)

131.6
(38.6)

121.8
(29.4)

70.7
(16.9)

52.3
(21.0)
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Driving factors of seasonality
The monthly relative humidity and sunny hours in Da
Nang city in the study period were significantly correlated
at lag zero with the average temperature (rlag0 = − 0.82
and 0.84, respectively). Meanwhile, ξðIRs

ijÞ from all three

spatial strata had significantly lower correlation with the
rainfall than with the average temperature at lag zero
(rlag0 = − 0.13, − 0.10, − 0.23 versus 0.74, 0.74, 0.63 for S1,
S2, S3, respectively). The average temperature was appar-
ently the sole explanatory weather variable included or

Fig. 2 Time plot of IRsij and the temporal trends for S1 (long-dashed line), S2 (dashed line) and S3 (dotted line). IRsij in the dry season had larger

magnitude than in the rainy season

Fig. 3 Seasonality of IRsij from the mainland of Da Nang city estimated from the 5 year time series for S1 (long-dashed line), S2 (dashed line) and

S3 (dotted line). The highest peaks occurred in the middle of the dry season (April). The other peaks occurred after the children went
to preschools
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N = 1 in (4). The maximum average temperature of over
30 °C occurred in May and June; the minimum of approxi-
mately 22 °C occurred in January every year (Fig. 4). The
ξT ðIRs

ijÞ all satisfied the Shapiro-Wilk normality test (p-

value < 0.05), thus satisfying the specifications of (4) and
(5) without any need for transformation.
The results of the q-statistic show that the spatial-

temporal stratification into nine strata reflecting the in-
fluences of the density of U5s and the monthly average
temperature yielded a significant homogeneity within
the strata. The q-statistic of the nine spatial-temporal
strata was equal to 0.21 (p-value = 0.00), while that of
the combinations of the months versus the districts was
not significant, q-statistic = 0.26 (p-value = 0.24).
To compare the effects of the average temperature and

the preschooling period (Fig 4), the parameters in (4) and
(5) were consequently estimated for two sub-models: 1)
with preschooling period or βsTðNþ1Þ ¼ βsT2 and 2) without

preschooling period or βsTðNþ1Þ ¼ 0 . Accordingly, every

spatial-temporal stratum had two sets of estimated parame-
ters, except for those in T2 because children did not attend
preschools in this period. The estimated results are pre-
sented in Tables 2 and 3. The effects of the spatial-temporal
autocorrelations were taken into account in these estima-
tions, resulting in estimated parameters as presented in Ta-
bles 4 and 5 in Appendix. The corresponding BIC values of
the selected models were all minimized.
T2 is the transitional period between the dry and rainy

season and also the period of summer holidays. Thus, the
interest of studying the driving factor of the seasonality laid
in T1 and T3. Table 2 shows that in the sub-model one, the
average temperature was negatively correlated with ξðIRs

ijÞ
in T1. This negative βsT1 indicates a mismatch between the
peak of the seasonality of the disease incidences and the
average temperature. In sub-model two as can be seen in

Table 3, the βsT2 had negative values for all strata in T3;
whereas, the βsT1 were minimal. The average temperature
therefore had no significant effect in T3.

Discussion
In this section, we discuss our main findings, the
consistency of the seasonal patterns extracted from IRs

ij

using our methods compared to other methods and we also
highlight the limitations of this study.
In this study, we have decomposed the monthly time

series of the adjusted incidence proportions of childhood
HFMD infections for the spatial-temporal strata of the
mainland of Da Nang city to reveal the trend and the sea-
sonality. The yearly larger outbreaks simultaneously hap-
pened in all three spatial strata in April. The variation of
the seasonality of the second smaller outbreaks in T3 is in-
triguing. This variation suggests the effects of the season
of increasing social contacts among U5s when they go to
preschool on the onset of HFMD infection.
We have shown statistical evidences of these effects during

the preschooling period. The positive values of the spatial-
temporal regression coefficients imply the simultaneity of
the peaks and vice versa [21]. The mismatch between the
maximum incidence proportions and the maximum average
temperature indicates that the increase of the average
temperature was the driving factor, not its maximum values.
In the last two quarters of all years, the average temperature
was not the predominant risk factor. The contrary was evi-
dent in T1. At small areas of multiple districts in the study
area, the increasing social contact has been shown to be the
important driving factor of the geographical variation of the
seasonality of the childhood HFMD outbreaks.
The estimated spatial-temporal regression parameters of

(4) in T3 are interestingly more informative than those in
T1 because all the smaller peaks occurred in T3. As the

Fig. 4 Temporal variation of the driving factors of the seasonality of HFMD incidences: the monthly average ambient temperature (cyan line) and
the cumulative preschooling period (red line)
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period at the preschools in T3 cumulatively increased
from August to December, the negative values of βsT2 indi-
cate the occurrence of the smaller peaks at the beginning
of the preschooling period. Recall from the study of Horby
et al. [17] that the physical contacts of U5s are most in-
tense within this age group in Viet Nam. Given that the
physical contact is the prominent means of passing
HFMD viruses, the nature, frequency and duration of the
contacts of those children during the preschooling period
explain the occurrence and the geographical dynamics of
these smaller outbreaks.
The trends show the occurrences of the large outbreaks

at the beginning and at the end of the observed period.
Study of a longer period of time would show a long-term
oscillation of the large outbreaks with the frequency of
every two to 3 years in this city. The possible reasons can
be the required lapse of time to cumulate the critical sus-
ceptible population [31] or the existence of multiple viral
strains in the study area [32, 33].
The decomposed trends and seasonal components

were highly correlated with those fitted by the method
of seasonal and trend decomposition using Loess [34].
The correlation coefficients of the trends from both
methods at lag zero varied from 0.85 to 0.90. Those of
the seasonality varied from 0.83 to 0.97. The similar re-
sults from both decomposition methods imply the
consistency of the seasonality derived from the Fourier
decomposition method. This method provides a semi-
parametric approach to extract different components of
a time series including the long-term and short-term ir-
regular and regular fluctuations, taking into account ef-
fects of possible confounders [35, 36]. Using this

approach instead of the common seasonal ARIMA, the
drawbacks of stationarization by differencing and statistical
transformation can be avoided [37]. Moreover, Fourier de-
composition in combination with the spatial-temporal auto-
regressive model allow both spatial and temporal
autocorrelation existing in the data to be included into the
model calibration. This reduces the biases in the estimation
of the associations between the incidence proportions and
the risk factors. Notwithstanding, from a statistical point of
view, the small number of spatial strata in the study area
places one of the limitations of the study to include the ef-
fects of the spatial auto-correlation. In addition, the separ-
ation the temporal trend from the time series was based
mainly upon expert judgments. In other words, the effi-
ciency of the Fourier decomposition in many cases relies on
the expert’s familiarity with the understudied phenomena.

Conclusions
HFMD has been becoming one of the most important
pediatric NTDs in the Northeastern and Southeastern
Asian countries. By applying spatial-temporal statistical
analyses, the results have shown that at multiple district
level, the social contact is the important driving factor of
the spatial variation of the disease’s outbreaks. This study
provides statistical evidences of the effects of the seasonal-
ity of increasing social contact amongst U5s on geograph-
ical dynamics of HFMD infection outbreaks. Our findings
contribute to extend the understanding of the underlying
driving factors of the disease dynamics at small areas. This
contribution is necessary to inform the next insightful re-
search into the spatial-temporal dynamics of the transmis-
sion of the NTDs within the local population.

Table 3 ML estimates of the spatial-temporal regression coefficients between the ξðIRsijÞ and the average temperature including the

cumulative preschooling period

Strata T1 T3

Parameters (Std. Error) S1 S2 S3 S1 S2 S3

βsT0 −5.16 (0.61) 8.00 (3.73) −5.57 (0.55) 0.8 (0.03) 0.64 (0.03) 0.65 (0.09)

βsT1
(Average temperature)

0.08 (0.03) 0.03 (0.04) 0.07 (0.02) −0.00 (0.00) −0.00 (0.00) − 0.01 (0.00)

βsT2
(Preschooling period)

0.32 (0.05) −1.25 (0.53) 0.39 (0.05) −0.40 (0.01) −0.29 (0.00) − 0.25 (0.01)

BIC −50.00 − 68.79 −57.86 − 189.86 − 98.63 − 166.29

Table 2 ML estimates of the spatial-temporal regression coefficients between the ξðIRsijÞ and the average temperature, without the

cumulative preschooling period included

Strata T1 T2 T3

Parameter (Std. Error) S1 S2 S3 S1 S2 S3 S1 S2 S3

βsT0 5.44 (2.08) 7.12 (2.45) 4.10 (1.47) 3.25 (0.73) 8.83 (0.00) 6.55 (0.00) 1.57 (0.65) −2.81 (0.08) 0.69 (0.35)

βsT1 (Temperature) −0.18 (0.07) − 0.25 (0.09) − 0.14 (0.05) − 0.10 (0.02) − 0.00 (0.00) −0.74 (0.00) − 0.12 (0.03) 0.02 (0.00) − 0.08 (0.01)

BIC −23.28 −9.63 −45.38 −15.73 − 95.88 −95.23 −41.90 −69.34 − 66.72
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Appendix

Table 4 ML estimates of the spatial and temporal auto-regression coefficients of the sub-model one

Strata T1 T2 T3

Parameters (Std. Error) S1 S2 S3 S1 S2 S3 S1 S2 S3

γsT1 0.04 (0.06) 0.08 (0.05) 0.23 (0.04) −0.37 0.70 − 0.17 (0.00) 0.00 (0.00) 0.07 (0.06) 2.26 (0.06) 0.22 (0.05)

γsT2 0.42 (0.14) 0.38 (0.05) −0.09 (0.02) 0.26 0.28 −0.19 (0.00) 1.50 (0.02) −0.55 (0.12) 0.87 (0.02) 0.38 (0.03)

ρsT1 −0.61 (0.18) −0.61 (0.21) 1.03 (0.04) 1.70 (0.00) 1.05 (0.00) −0.51 (0.02) 0.16 (0.05) −1.26 (0.11) 0.35 (0.07)

ρsT2 1.54 (0.21) 1.62 (0.18) 0.09 (0.02) 0.18 (0.00) 0.27 (0.00) 0.00 (0.00) 1.28 (0.18) −1.05 (0.10) 0.06 (0.02)

σs
Tω 0.09 (0.01) 0.12 (0.02) 0.04 (0.01) 0.04 (0.00) 0.00 (0.00) 0.00 (0.00) 0.06 (0.01) 0.04 (0.01) 0.04 (0.01)

Table 5 ML estimates of the spatial and temporal auto-regression coefficients of the sub-model two

Strata T1 T3

Parameter (Std. Error) S1 S2 S3 S1 S2 S3

γsT1 −0.25 (0.04) 0.15 (0.03) 1.61 (0.06) −0.51 (0.01) −1.68 (0.04) −0.06 (0.01)

γsT2 0.07 (0.02) 0.04 (0.01) 8.12 (0.02) −0.04 (0.02) 0.04 (0.01) −0.21 (0.01)

ρsT1 −0.07 (0.03) 0.21 (0.09) 5.82 (0.01) −0.24 (0.02) −0.71 (0.07) 0.23 (0.01)

ρsT2 0.96 (0.04) 0.84 (0.09) 6.62 (0.00) 2.79 (0.06) 8.84 (0.01) 0.21 (0.00)

σs
Tω 0.05 (0.01) 0.035 (0.01) 0.06 (0.01) 0.00 (0.00) 0.02 (0.00) 0.01 (0.00)
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