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ARTICLE INFO ABSTRACT

Due to the worldwide trend of industrialization and urbanization, air pollutants were emitted heavily on a global
scale particularly in developing countries, which produces adverse effects on human health by causing health
problems such as respiratory and lung diseases. Many regression models based on land use types and urban
fabrics have been built to analyze the spatiotemporal distribution of air pollutants, however, few of them ex-
amined the relationship between urban morphological characteristics and the distribution of air pollutants in a
megacity. This study investigates such relationships for six types of air pollutants (PM2.5, PM10, SO5, NO,, Os,
and CO) and a composite AQI (Air Quality Index) based on hourly data at 35 monitoring stations in Beijing in
2016, with morphological characteristics (Morphological building index), meteorological factors (Land Surface
Temperature, LST), land use (vegetation, road length, gas station and industry point data), and population
distribution data. We also analyzed the results with spatiotemporal regression and SSH (Spatial Stratified
Heterogeneity) models respectively. According to the spatiotemporal regression model, the morphological
building index (MBI) shows a strong correlation with the dispersion of PM2.5 (R? = 0.81) and AQI (R? = 0.80)
in the warm season and this finding was reinforced through the Leave-one-out-cross-validation (LOOCV) ana-
lysis. From the SSH analysis, the road length in a large proximal region impacts air pollutants the most, espe-
cially for Os; and population density significantly affects PM 2.5, AQL, SO,, and NO, in the cold season. From an
integrated interpretation, distance to nearest industry impacts the spatial distribution of NO, in cold season,
while it impacts that of PM2.5 and AQI in both warm and cold seasons. The research finds that these two models
supplement each other well and together help to give us a better understanding of how air quality is affected in
the urban landscape.
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1. Introduction global climate change (Grimm et al., 2008). In addition, air pollutants

have been damaging the environment due to their chemical properties.

Since the rapid urbanization and industrialization, China has ex-
perienced deteriorating air condition, especially in large cities during
the past two decades. For Chinese cities, the emissions of NO, (nitrogen
dioxide) and SO, (sulfur dioxide) in 2010 were as 2.5 times and 1.5
times the values in 1990, respectively (Mendenhall, Sincich, &
Boudreau, 1996). Among them all, the most common air pollutant is
PM2.5 in recent years and a lot of attention has been paid to it (Wang,
Hu, Chen, Chen, & Xu, 2013, Yang et al., 2017, Yuan, Liu, Castro, &
Pan, 2012). In Beijing, the annual average concentration of PM2.5 was
around 70-100 pg/m?>, which were two to three times higher than the
level 1 Interim Target (35ug/m®) assigned by WHO (Cheng et al.,
2013). Besides, these emissions have adversely impacted air quality at
regional, national, and even global scales and played an essential role in
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For example, the acidification of soil, lakes, and rivers are resulted from
NO, SO,, and Ammonia, which caused the loss of plant life, the habitat
of animals, and the reduction of crop yield (Rao, Rajasekhar, & Rao,
2014). Moreover, annually, almost 3.7 million people die prematurely
because of outdoor air pollution around the world (WHO, 2014). In
China, air pollution has become the fourth greatest risk factor in all
deaths (Fang, Liu, Li, Sun, & Miao, 2015). Many epidemiological re-
searchers have demonstrated that air pollution leads to a variety of
health problems by long-term exposure to air pollutants (Brunekreef &
Holgate, 2002), which produces the considerable medical cost for in-
dividuals and economic loss for the government by the reduction of
productivity.

Air pollutants are released from a variety of sources, such as
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industry and transportation, and are driven by various social economic
factors. Many researchers believe air pollution is closely related to the
urban land use patterns and optimization of spatial planning could
improve the air quality in the long run. Thus, the relationship between
the spatial land use and land cover and the distribution of air pollution
attracts our attention. The conception of LUR (Land Use Regression)
was first introduced and termed regression mapping (Briggs et al.,
1997) and was applied in the SAVIAH (Small Area Variation in Air
Quality and Health) project. The development and accessibility of GIS
data and techniques contributed a lot to the popularity of LUR models.
Ross et al. (2007) predicted PM2.5 in New York City and surrounding
counties by LUR models, integrated with traffic density and census
data. The model interpreted 60% or more of the variation of PM2.5
concentration with prediction errors below 10% (Ross, Jerrett, Ito,
Tempalski, & Thurston, 2007). Meng et al. combined population, length
of major roads, agricultural land area, and the number of the industry
sites to the LUR model and explained a large part of the variability of
NO, concentration in Shanghai, which outperformed the interpolation
methods of Kriging and IDW (Meng et al., 2015). Liu, Henderson,
Wang, Yang, and Peng (2016) used LUR model to interpret the var-
iances of NO, and PM2.5 concentrations in Shanghai, and found anti-
correlation with coastal regions and correlation with industry and
highway intensity (Liu et al., 2016). Zheng et al. analyzed the land use
patterns with the spatiotemporal distribution of multiple air pollutants
(i.e. O3, SO,, NO,, and CO) to find their relationships (Zheng et al.,
2017). To improve the temporal granularity of air pollution monitoring
data, Anand et al. built a mixed-effects LUR method to model daily NO,
concentrations in Hong Kong from 2005 to 2015 with satellite datasets,
which realized the daily mapping of ambient surface NO, (Anand &
Monks, 2017). When it comes to the global scale, Larkin et al. created
the first global NO, LUR model to find the spatial variability of NO,
concentration. The model explained 54% of the annual change of NO,
and continental R? ranges from 0.42 to 0.67 (Larkin et al., 2017).

Some studies constructed multiple LUR models for different sce-
narios or purposes. For example, Wu et al. constructed eight LUR
models to explain diurnal, seasonal and annual spatial changes of
PM2.5 concentration in Beijing (Wu et al., 2015). Huang et al. explored
the relationship of fifty-nine potential variables (e.g. land use, traffic
and industry emission, and population density) with four air pollutants
(i.e. PM2.5, SO,, NO,, and O3) through LUR models based on national
monitoring network, and the variance of the four pollutants could be
explained to a certain degree (Huang et al., 2017a). Yang et al. set four
LUR models to estimate the air pollution concentration through ground-
based measurements, remote sensing data, air quality model, and other
spatial inputs, and found the best model to explain the NO, and PM2.5,
respectively (Yang et al., 2017). Yang et al. developed seasonal LUR
models to simulate the change of PM2.5 in the urban area, and these
models had a good fit and explained the variation of spatial distribution
of PM2.5 concentration well (Yang et al., 2017). However, such mul-
tiple LUR models may not always show good performance. For instance,
Muttoo et al. stated that seasonal models did not show clear differences
for measuring NOx with similar R® values, and this was due to the high
correlation between seasonal measurements for each of the monitoring
sites (Muttoo et al., 2018).

Even though the spatial land use patterns are related to the dis-
tribution of air pollutants, the accuracy of the final results depends
heavily on the accuracy of classification of land use types and most of
them interpreted the results based on LUR model only. Besides, the
urban morphology, as the three-dimension form of a set of buildings
and urban shapes (Chen, 2013), has significant influences on the con-
centration of air pollution (Cardenas Rodriguez, Dupont-Courtade, &
Oueslati, 2016). Bereitschaft et al. quantified urban form by preexisting
sprawl indices and spatial metrics and analyzed their relationship with
air pollution among 86 U.S. cities (Bereitschaft & Debbage, 2013). Yuan
et al. quantified the impact of urban morphological parameters, urban

36

Computers, Environment and Urban Systems 75 (2019) 35-48

permeability, and building geometries, on the dispersion of air pollu-
tion by CFD (Computational fluid dynamics) approach in the high-
density urban regions (Yuan, Ng, & Norford, 2014). Rodriguez et al.
proved that urban morphology produced significant influences on
pollution centration and found that higher concentration of NO, and
PM10 was related to fragmented and highly constructed cities and the
higher concentration of SO, was related to densely populated cities
(Cérdenas Rodriguez et al., 2016). She et al. (2017) analyzed the cor-
relation between urban form which was described by six spatial metrics
and group-based measurements of six air pollutants in the largest me-
tropolitan zone, Yangtze River Delta. The study demonstrated that
urban form did affect the urban air quality (She et al., 2017). Lu et al.
developed the geographically weighted regression model to analyze the
relationship between urban form and the density of NO, and SO, de-
rived by satellite data, and the results showed that urban form produced
significant effects on the air quality in urban areas of China (Lu & Liu,
2016).

As for street-level analysis, Maignant evaluated the dispersion of air
pollution through the MISKAM (Mikroskaliges Klima und
Ausbreitungsmodell) model integrating with urban morphology,
buildings volume and roughness, and climatology factors in a street
canyon (Maignant, 2006). Edussuriya et al. found the linkage between
urban morphology and air quality, and the final results showed that six
morphological variables significantly explained the variance of air
pollution at the street level (Edussuriya, Chan, & Ye, 2011). Shen et al.
investigated the connection of street morphology or canyons to dis-
persion of air pollution for six cities around the world. It was concluded
that an open central street would greatly improve the air quality due to
a larger vertical exchange of air flow via the street roof (Shen, Gao,
Ding, & Yu, 2017). Shi et al. used vehicle-based mobile measurements
and regression models to estimate the spatial distribution of PM2.5 and
PM10, and found the most decisive factor of urban morphology was the
frontal area index on street-level air quality in the central area of Hong
Kong (Shi et al., 2016a).

However, these previous studies emphasized those building mor-
phology parameters (e.g. sky view factor (Shi et al., 2016b, Silva &
Monteiro, 2016), and building orientation (Lu & Liu, 2016)) or urban
form indices (e.g. frontal area index (Ghassoun & Lowner, 2017, Lu &
Liu, 2016, Shi et al., 2016a)) that are largely affected by meteorological
factors such as wind direction and wind speed, or by the detailed
building fabrics, which is more suitable for small research areas with
clear 3D building maps and accurate group-based field measurements.
For a megacity like Beijing, this process would be time-consuming and
need too much human interference. This current study proposes to in-
vestigate morphological characteristics at various spatial levels based
on data extracted from high-resolution (HR) images. Such urban form
characteristics has not been investigated before in statistical approaches
to analyzing the spatiotemporal distribution of air pollution in mega-
cities. Another shortcoming in many of the previous LUR models is the
assumption of linear relationship. Because any type of models (e.g. LUR
model) may have its own limitations due to its assumption (e.g. line-
arity) and internal mechanism, the current study will apply multiple
models to supplement each other in order to provide findings for a
better understanding.

This study aims to answer three questions for the study area: (1).
What is the potential utility of morphological information for esti-
mating the spatiotemporal distribution of air pollution? (2). Are there
seasonal differences in the distributions of air pollutants and if so how
are these differences distributed spatially? (3). To what extent does
each factor of interest affects the spatial and seasonal distributions of
air pollutants? The innovation of the research lies in four aspects: i) it is
the one of the first studies that incorporates urban morphological
characteristic, which is not sensitive to the accuracy of land use clas-
sification and is easy for general adoption, as an essential predictor for
air pollution distribution. We combine morphological, meteorological,
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land use and socioeconomic variables together to analyze the dis-
tribution of air pollutants' concentrations; ii) the research is designed
carefully in consideration of possible sensitivity of parameter choices,
thus the approach is generally applicable to study other cities; iii)
parallel analyses of spatial distribution of seven air pollution indexes
are conducted simultaneously for both warm and cold seasons, which
helps to capture the changing dynamics of air pollutants throughout the
year; iv) the use of both spatiotemporal regression and SSH models
provides a more comprehensive understanding of how air pollutants
concentrations are affected by different factors.

2. Research area

The research area is Beijing, the capital city of China. The me-
tropolis covers a total area of approximately 16,410 km? according to
statistics in 2010 by the Beijing statistics bureau. There are 35 air
quality monitoring stations distributed across the entire area. These
stations are classified into four categories, including 12 urban en-
vironmental evaluation sites, 16 suburban environmental evaluation
sites, 5 traffic pollution monitoring sites, and 2 regional background
control sites.

Since the urban functional zone was proved to be a suitable spatial
scale to explore the effects of urban land use on air pollution (Yang
et al., 2017), this study recognizes four functional areas, namely core
functional area (i.e. Dongcheng and Xicheng districts), urban function
extension area (i.e. Chaoyang, Fengtai, Shijingshan, and Haidian dis-
tricts), new urban development area (i.e. Fangshan, Tongzhou, Shunyi,
Changping, and Daxing districts), and ecological conservation area
(Mentougou, Huairou, Pinggu, Miyun, and Yanging districts). The
spatial locations of the monitoring sites and the division of urban
functional zones are shown in Fig. 1.

. Legend
@ Monitoring Stations
I core functional area
I L ] ! IMiles urban function extension area
o 5 10 20 30 40

| new area of urban development

B <coiogical conservation area

Fig. 1. Spatial distribution of monitoring stations and urban functional zones.
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3. Data collection and preprocessing
3.1. Air pollution data

The air pollution data are acquired from 35 monitoring stations in
Beijing. They are based on hourly measurements of six types of air
pollutants (PM2.5, PM10, SO2, NO2, 03, and CO) and an overall Air
Quality Index (AQI) in 2016. AQI is a measure of air quality with the
maximum concentration among the abovementioned six air pollutants
(She et al., 2017). During data preprocessing, the hourly data are
summarized to monthly averages.

3.2. Morphological characteristics

The morphological characteristics in the research area is mainly
quantified with the MBI (Morphological Building Index) proposed by
Huang et al.(Huang & Zhang, 2011), as the index has been successfully
applied in various urban regions (Huang & Zhang, 2012, Wang et al.,
2016). The reason of choosing MBI can be illustrated as following:
Firstly, it is hard to distinguish building shadows on low spatial re-
solution images, because buildings usually have clear shadows in the
high spatial resolution images, such as ZY-3 images used in this study.
Then, the morphological operations could exaggerate the spectral dif-
ference between the buildings and their corresponding shadows, which
is differential morphological profile (DMP). Finally, MBI is constructed
with the logic that buildings have larger DMP values if they show
higher local contrast in all four directions (buildings and its shadow
have clear contrast concerning spectral values). Thus, MBI is able to
convert the physical properties of buildings (e.g., brightness, size, and
contrast) to morphological features (e.g., reconstruction, granulometry
and directionality). Therefore, MBI represents the probability of the
presence of buildings. Because built-up density is closely associated
with the distribution of air pollutants (She et al., 2017, Yang et al.,
2017, Zheng et al., 2017), it is reasonable to use MBI as a candidate
predictor for the distribution of air pollutants.

In order to calculate MBI, the optical high-resolution (HR) images
from the Chinese No. 3 Resources Satellite (ZY-3) were utilized. The
following summarizes the major steps of calculating of MBI in this
study. Please refer to the literature (Huang & Zhang, 2011, Wang et al.,
2016) for more details.

Step (1) Top-hat reconstruction:
White top-hat (W_TH) transformation is defined as the difference

between the original image and its morphological opening operation:

W_TH(d,s) = b — y,°(d,s) ¢h)

where b is the maximum value among all multispectral bands and y;" is
the result of opening-by-reconstruction from the brightness image. And
s and d represent the length and direction of a linear structural element
(SE), respectively.

Step (2) Directional W_TH:

The multidirectional information of W-TH is computed by averaging
four directions of the se:

W_TH(s) = melzianW_TH (s) @

Step (3) Granulometry:

Granulometry indicates the scale and size of an object in imagery.
Therefore, the differential morphological profile (DMP) is described as:
DMPw—rg(d,s) = W_THd,s + As) — W_TH(,s) 3)

where Sy, < 5 < Smax and /\s are the intervals of granulometry.
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Step (4) MBL: profiles, respectively.

The MBI is obtained by averaging DMPy—q:
Y ging v 3.3. Land use data

24s PMPyw 15 (d,s)

MBI = DxS 3.3.1. .Trajﬁc data .
S = (Smax — Smin)/ A8 + 1 ) T'hlS study uses road lengths by 1'road' type t(? surrogaFe for traffic
density. The method has been applied in previous studies and was

where D and S represent the amount of directionality and the scale of proven appropriate (Brauer et al., 2003; Henderson, Beckerman,
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Table 1
Candidate variables used in the study.
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Buffer size (m) Effect direction

Type Potential variable
Morphological information MBI
Meteorological data LST
Socioeconomic data Population density
Land use NDVI

Road density
POI industry
POI gas station

100,300,500,1000,2000,3000,5000 positive
100,300,500,1000,2000,3000,5000 positive
NA positive
100,300,500,1000,2000,3000,5000 negative
100,300,500,1000,2000,3000,5000 positive
NA positive
100,300,500,1000,2000,3000,5000 positive

[2-3
L L IMies p—
0o 5 10 20 30 W0 B 55
. -5

Fig. 3. MBI value in the research area.

Jerrett, & Brauer, 2007; Hoek et al., 2008; Madsen et al., 2007). The
data was obtained from Beijing institute of Surveying and Mapping
(http://www.bism.cn/). Four types of road types are classified in the
dataset, namely national highway, provincial highway, municipal
highway, and county highway. Road length within a buffer area of each
monitoring station is calculated. Previous study (Meng et al., 2015) has
indicated reasonable buffer sizes ranging from 100 m, 300 m, 500 m,
1000 m, 2000 m, 3000 m, and 5000 m, and thus we tested with all of
them in order to choose the best sizes.

3.3.2. POI data

Since the distribution of air pollutants is influenced by the pollution
source, this study considers two types of point data, gas stations which
can release air pollutants due to oil leakage and industry sites which
may produce pollutants throughout the production process.
Specifically, 1062 gas stations, 31 industry sites are collected in the
entire research area. These data were obtained from Gaode map and
Google earth.
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3.3.3. Vegetation
The vegetation data is mainly evaluated from NDVI calculated from
Landsat-8 downloaded from USGS throughout the 2016.

3.4. Meteorological information

According to (Zheng et al., 2017), land surface temperature (LST),
which influences and intensity of particles mobility, and built-up den-
sity were both related to concentrations of particulate matters, SO,
NO,, and CO. Therefore, we calculated the LST in each month of 2016
from landsat-8 images and integrated them into the final statistical
model.

3.5. Socioeconomic data

The population density was obtained from the statistical yearbook
of Beijing in 2016 (http://www.bjstats.gov.cn/nj/main/2016-tjnj/zk/
indexeh.htm), which has direct relationship with distribution of air
pollutants (Meng et al., 2015, Muttoo et al., 2018, Wu et al., 2015, Yang
et al., 2017)

4. Methods

Spatial autocorrelation and spatial heterogeneity are two funda-
mental characteristics of geographical data and processes. Supported by
the First law of Geography (Tobler, 1970), spatial autocorrelation refers
to the situation when a variable correlates with itself through space. In
a general sense, spatial heterogeneity is about the uneven distribution
of traits, events, relationship or spatial variation of properties across a
region (Wang et al., 2016). But particularly, it concerns the spatial non-
stationarity of relationship which means the same stimulus may pro-
voke a different response in different space (Fotheringham, 2009). Si-
milarly, temporal heterogeneity concerns such non-stationarity over
time.

The research considers both spatiotemporal autocorrelation and
spatial heterogeneity. At the beginning of analysis, all candidate vari-
ables went through the process of step-wise regression for a coarse se-
lection of significantly related variables for the estimation of air pol-
lution indexes. Then two parallel approaches were taken to model the
relationships between the variables and air pollutants' concentrations.
The first approach is spatiotemporal regression, while the second is the
spatial stratified heterogeneity (SSH) analysis. There are three reasons
why the research design takes two parallel modeling approaches. First
of all, the spatiotemporal regression model is based on the assumption
of linear relationship, however we also want to explore whether non-
linear relationships exist between dependent and independent variables
(Wang & Xu, 2017). Secondly, each of the two approaches focuses on
one of the two fundamental laws of spatial data. The spatiotemporal
regression explicitly considers spatial and temporal autocorrelations,
while the SSH analysis takes care of spatial heterogeneity. Thus the
parallel applications of two approaches will provide a more compre-
hensive view of the relationships. Thirdly, the comparison of results
from the two different approaches will allow us to cross-examine the
identified relationship. Fig. 2 shows the research design.


http://www.bism.cn
http://www.bjstats.gov.cn/nj/main/2016-tjnj/zk/indexeh.htm
http://www.bjstats.gov.cn/nj/main/2016-tjnj/zk/indexeh.htm

Y. Tian et al.

January
oy 270.19

Feburary

B 25454

May
e 31271

W 257.03

June

September
wr 206.51

. un

o 275.03

B 25114

o 31160
27414

October
o 297.54
28245

Computers, Environment and Urban Systems 75 (2019) 35-48

B 25811

August

Jul 2
4 " o 309.62
o 309.42
—
- 97402 20406
o
November December
o 287.12 o 276.79
26720 0164

N [ S | [

0 20 40 80

120 160

Fig. 4. LST during the year of 2016.

4.1. Spatiotemporal regression

4.1.1. Coarse selection of significant variables

To find significant variables among candidates in an objective and
automatic way, the step-wise regression modeling approach was used
for a coarse selection. This approach combines backward elimination
and forward selection. It regresses multiple variables while simulta-
neously removing those that are not significant.

4.1.2. Spatiotemporal regression modeling

Based on the factors above, a spatially and temporally weighted
regression was conducted to analyze the associations between these
factors and spatiotemporal distributions of air pollutants. The regres-
sion equation is described as follows:

Yi = By + ByX + By WX + el %)

where the subscript of i indicate the air pollutant i. Y; is the con-
centration of air pollutants i; X indicates the dependent variables: LST
(land surface temperature), NDVI, MBI (morphological building index
calculated from the HR images), POP (population density), ROAD (road
lengths), DIS (distance to the nearest industry), and GAS (number of gas
stations) in certain buffer areas. W is the spatiotemporal matrix, and ¢ is
the error item.

Most of the variables, namely LST, NDVI, MBI, ROAD, and GAS, are
calculated within a proximal area around each monitoring station j.
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Here a buffer around each station is created to represent the proximal
area. The results can be sensitive to the chosen buffer size. Therefore,
multiple buffer sizes are chosen in a wide range between 100 m and
5000 m for these variables. Table 1 shows all the candidate variables.
Following (Guo et al., 2017), the spatiotemporal weights W were ob-
tained from the multiplication of spatial weights and temporal weights.
In this study, the spatiotemporal weights were calculated when we
analyzed the distribution of air pollutants in warm and cold seasons.

4.1.3. Model evaluation

A set of statistics were used to test the multicollinearity, spatial
autocorrelation of the residuals, stationarity and model bias. These
statistics include the Variance Inflation Factors (VIFs), Moran's I,
Koenker Statistics, and Jarque-Bera Statistics, which were calculated in
the diagnostic tests, respectively. If VIF is greater than 3 (redundancy)
for any variable in the model, then the variable would be removed from
it (Meng et al., 2015). The Moran's [ is used to test the spatial auto-
correlation of the model's residuals. The p-values of Koenker Statistics
and Jarque-Bera Statistics are used to evaluate the stationarity and
model bias respectively.

Because there were a small number (35) of monitoring stations in
the study area, multifold cross-validation may not be plausible. Thus
the model performance was tested by the Leave-one-out-cross-valida-
tion (LOOCV) method (Meng et al., 2015). The final model was fitted to
34 stations and dependent variables of the remaining station were
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Fig. 5. NDVI during the year of 2016.

estimated by the fitted model. Such procedure would repeat 35 times
and the overall R? and the root mean squared error (RMSE) for all sites
were computed to show the model performance. Fig. 2 is the flowchart
of this study.

4.2. SSH (spatial stratified heterogeneity) analysis

The spatial stratified heterogeneity (SSH) model has been applied in
many research fields, including air pollutant PM, 5 cause analysis (Lou,
Liu, Li, & Li, 2016), health risk assessment (Wang et al., 2010), surface
modeling (Wang, Christakos, & Hu, 2009), and more. An open-source
program, Geodetector, is available for use. There are four detectors in
the Geodetector, and this study uses the factor detector in order to
identify the significance and strength of associations between pairs of
candidate factors (variables) and air pollutant indexes. The program
calculates a so-called g-statistic to test the significance of each asso-
ciation. The value of q is a ratio ranging from O to 1, where 0 means no
association between the dependent variable and a predictor, while 1
means that the dependent variable is perfectly associated with the
predictor. The g-statistic can be calculated with Eq. (6) (Wang et al.,
2016):

L
D Nyai, SST = No?
h=1

qg=1- %, where SSW =

(6)

where N and ¢®are the number of units and the variance in the study
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area which is composed of L strata (h = 1,2....L), respectively. Ny, is the
number of units and oyis the variance in stratum h. Larger value of q
means larger spatial heterogeneity in the study area. Another benefit of
the g-statistic is that it measures the association between X and Y, either
linearly or nonlinearly.

The format of p can be transformed so that it can satisfy the non-
central F-distribution.

=N=L 9 pq_1N-LN
L-11-g @
1< 1< ’
A== ZW——(Z th)
i et L Pt (8)

where A, Y, are the non-central parameter and mean value in stratum h,
respectively. Then, we could use the p-value of g-statistic testifies that
whether they have significant differences of variances in different
strata.

5. Results and discussions
5.1. MBI
The final result of MBI is shown in Fig. 3. An MBI value can be

interpreted as probability of buildings. High MBI values are found in the
southeastern part of the research area. Indeed, this area of flatland is
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highly suitable for constructing buildings and does see high building
densities.

5.2. LST and NDVI

Both LST (in Fahrenheit degree) and NDVI were calculated from the
Landsat-8, Level 1 TP, OLL TIRS imagery in the year 2016. The results
are displayed in Figs. 4 and 5. It can be seen from Fig. 4 that urban areas
have relatively higher values of LST than suburban areas especially the
mountainous regions in the northwestern part of research area. Such
regions also have lower NDVI value according to Fig. 5. This phe-
nomenon was partly due to the high coverage of imperious surface in
the central urban regions. Besides, seasonal changes of NDVI could be
clearly observed, which would potentially affect the spatiotemporal
distribution of air pollutants. Since the mean value of LST and NDVI in
certain buffer size around the monitoring station is necessary, the result
is less influenced by some images that have a relatively higher degree of
cloud (e.g. May, July, and September) and show abnormal distribution
of LST to some extent.

5.3. Road lengths

Fig. 6 shows the four types of roads in the study area. The national
highways connect the city with external areas and they are mostly
distributed outside the core functional areas with low density. In fact,
these highways typically have high traffic flows as they have more lanes
and higher speed limits. The provincial expressways incorporate the
main ring roads around central regions, and then they stretch outside,
and connect with national highways. As for municipal freeway and
county roads, they cover more areas with relatively low capacity but
high density. In this study, we calculated the total lengths of all four
types of roads in each buffer zone.

5.4. POI data and population density

Fig. 7 shows the distribution of industry points and gas stations in
different population density regions. It shows that most industrial sites
are located in the urban function extension area, probably due to the
convenience and good accessibility to the core functional area. The gas
stations are more spread out and are distributed mainly along the roads.

5.5. Spatial and Seasonal distribution of Air Pollutants

Given that air pollution may change dramatically from month to
month (Jiang, Wang, Tsou, & Fu, 2015), we analyzed the temporal
change of each pollution index on the monthly base. Fig. 8 displays the
monthly change of each air pollution index in all stations. As shown in
the figure, PM, 5, PM;, SO, and AQI enjoy relatively low values from
April to September, whereas CO shows the reverse situation. Besides,
NO, fluctuates less drastically than the others. Therefore, we conduct
the dichotomic research by dividing the time period into cold (October
to March) and warm seasons (April to September). Furthermore, some
places have higher values of air pollutants, such as Liuli River, Yufa (the
most two southern stations), and Daxing, than other regions (Miyun
Reservoir). The global trend shows that most air pollutants concentrate
more in the southern part than in the northern part of the study area
and more in the cold season than the warm season.

Fig. 9 displays the average value of each air pollution index in both
warm and cold seasons. The surfaces are fitted by kriging which is a
geostatistical procedure that generates an estimated surface from point-
based value. It is shown in the figure that most air pollutants con-
centrated in the southern part of the area except for CO. The reason
might be related to high population density and heavy traffic in the
southern area. This finding is in accordance with other studies (Guo
et al., 2017b). Besides, from the warm season to the cold season, con-
centrations of most air pollutants increased except for CO. It is



Y. Tian et al.

PM 10

PM 2.5

month month

Computers, Environment and Urban Systems 75 (2019) 35-48

s02 NO2

—Dongs Tiantan

month 4 - —Dangsihuan

Fig. 8. Monthly change of air pollution index.

reasonable considering huge energy consumption in the winter for
heating. CO shows a totally different trend with all other air pollutants,
more detailed investigation of reasons requires further analysis.

5.6. Spatiotemporal regression modeling results

In order to incorporate temporal weights in the final model, the
weighted mean was calculated in both warm and cold seasons.
According to the time-series analysis, in the warm season, the data in
June and July have the highest weights, followed by May and August,
while April and September have the lowest weights. The situation is
similar in the cold season. The model has 7 dependent variables with 37
candidate predictors for both seasons respectively. To select the most
effective variables and to reduce the chance of multicollinearity, a step-
wise regression was conducted. Since the spatiotemporal weight is
obtained by multiplying the spatial weight and temporal weight matrix
(Guo et al., 2017a), the spatiotemporal regression models could be
calculated by incorporating temporal weight into the GWR model.

5.6.1. Final selected variables and spatiotemporal regression models

Even though the step-wise process is useful to select statistically
significant variables, the coefficients of predictors need to be consistent
with the effect direction listed in Table 1. After filtering potential
predictors through step-wise regression and considering correct effect
direction, a regression model is obtained for each of the 7 air pollution
indexes (dependent variables). The 7 regression models are listed in
Table 2. Note that all the statistically significant predictors at the sig-
nificance level of 0.05 are listed for each model. These predictors will
be used for the spatiotemporal regression analysis in the next stage.

Taking a closer examination of the 7 models, several findings are
observed. When it comes to warm season, MBI within 1000 m buffer
size (MBI_1000) have shown statistical significance for the PM,s,
PM10, SO,, NO,, and O3 concentrations and the overall AQI. The
models for PM2.5 and AQI have higher R? (0.81 and 0.80) which
suggest about 80% of the variations in these two indexes can be ex-
plained by the respective models. As for the cold season, MBI appear to
be less significant, whereas LST 2000 and NDVI_100 are both sig-
nificantly related to PM2.5, PM10, and AQI, and NO, concentrations.
The reason why MBI did not show a strong association with any air
pollutant concentrations in cold season might be related to the fact that
Beijing suffered higher level of air pollutants partly due to the district
heating during this period. High concentrations of air pollutants may be
more closely associated with meteorological factors (e.g. aerosol optical
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depth (AOD)), and industry emission (e.g. combustion of a large
amount of charcoal). It is noteworthy that the direction of effects on CO
is counter-intuitive since its spatiotemporal change is dissimilar with all
other pollutants shown in Fig. 9, and such situation also happened in
the previous study(Zheng et al., 2017).

Furthermore, the influence of LST is interesting. The concentration
of air pollutants is influenced by LST in small proximal areas in warm
season, whereas in large proximal areas in cold season. Since the high
temperature would accelerate the flow of air, and the warm season
enjoys drastic air convection. As a result, even the smaller area of LST
would produce obvious effects on the distribution of air pollutants in
the warm season. Obviously, population density does not show any
correlation with these air pollutants in both seasons, which may attri-
bute to the relatively coarse spatial resolution of the data (adminis-
trative region based not grid based). Overall, we can safely draw the
conclusion that MBI has an obvious influence on the concentration of
air pollutants within a certain period.

5.6.2. Model evaluation

In this part, the values of Moran's I, Koenker (BP) Statistic, VIF of
each selected predictor, Jarque-Bera Statistic are used to evaluate the
presence/absence of spatial autocorrelation, stationarity, and multi-
collearity, and normal distribution with in a model. If the p-value of
Jarque-Bera Statistic shows statistically significant (e.g. PM10, and SO,
in warm season), the spatiotemporal regression model could reduce the
non-stationarity or heteroscedasticity to a large degree.

As can be seen from Table 3, all selected predictors have their VIF
values smaller than 3, which means the final selected model has no sign
of multicollinearity. The p-values of Moran'l values for all models are
greater than 0.05, which suggests that the models' residuals are not
spatial autocorrelated. Besides, all of the variables show statistically
non-significant Koenker (BP) Statistic, indicating that the residuals are
all normally distributed without bias. As for Jarque-Bera Statistic, a
majority of them are statistically non-significant except for PM;, and
SO, in the warm season and PMS, 5 in the cold season. The statistics also
suggests that the distributions of these pollutants are spatially and
seasonally nonstationary, which demonstrates the importance of spa-
tiotemporal regression model in estimating their distributions.

5.6.3. Cross-validation

The LOOCYV cross-validation process was conducted in R and results
are displayed in Table 4. According to the table, all models show sa-
tisfactory results. We paid particular attention to the influence of
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Table 2
Summary of step-wise regression results.

Pollutant type Regression model Adjusted R? P-value of global F-test

Warm season

PM2.5 PM2.5 = —147.96-72.0.98 Xx NDVI_100*** - 0.17 X DIS** + 0.76 X LST_100** + 1.45 x MBI_1000*** 0.81 2.39e-09%**
PM10 PM10 = 112.86-182.35 x NDVI_100%*** 0.61 1.44e-07%**
AQI AQI = —217.76-81.19 x NDVI_100*** — 0.16 X DIS** + 1.00 X LST_100*** + 1.67 X MBI_1000*** 0.80 6.01e-09%**
SO, SO, = 6.28 + 0.06 X GAS_5000* + 0.36 X MBI_1000" 0.28 0.02*

NO, NO, = 64.46 + 0.55x GAS_5000** - 141.77 x NDVI_100** + 2.89 x MBI_1000" 0.58 1.57e-05%**
Cco NA

(0% 03 = —0.66-1.74 x NDVI_300*** +0.01 x LST_100" + 0.03 x MBI_1000** 0.55 4.14e-05%**
Cold season

PM2.5 PM2.5 = —2622.57-244.70 x NDVI_100** + 9.93 x LST_2000*** 0.60 1.56e-06***
PM10 PM10 = —1962.06-305.65 x NDVI_100** + 7.60 x LST_2000*** 0.49 5.81e-05%**
AQI AQI = —2874.77-291.97 x NDVI_100** + 10.97 X LST_2000%*** 0.59 2.35e-06%**
SO, SO, = 19.41 + 8.58 x ROAD_100* - 55.79 x NDVI_100' 0.50 5.93e-03***
NO, NO, = —1285.16-0.73 x DIS*** — 215.14 x NDVI_100*** + 4.97 x LST_2000** 0.76 1.30e-08%**
co CO = 752.69-0.23 X GAS_5000** — 2.63 X LST_2000*** + 77.35x NDVI_100* 0.57 1.61e-06%**
O3 O3 = —60.48 + 0.25 x LST_2000*** 0.45 2.51e-05%**

where NDVI_100 means the mean value of NDVI in 100 m buffer size, LST_100 means the mean value of LST in 100 m buffer size, and the rest can be interpreted in
the same manner. *** Correlation is significant at the 0.001 level (2-tailed); ** Correlation is significant at the 0.01 level (2-tailed); * Correlation is significant at the
0.05 level (2-tailed); ~Correlation is significant at the 0.1 level (2-tailed).
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Table 3
Summary of model evaluation.
Pollution type  Significant VIF  P-value of P-value of  P-value of
predictors Koenker (BP) Moran's I Jarque-Bera
Statistic Statistic
Warm season
PM2.5 NDVI_100 1.30 0.34 0.92 0.60
DIS 1.18
LST_100 1.06
MBI_1000 1.13
PM10 NDVI_100 NA 0.21 0.76 0.045*
AQI NDVI_100 1.30 0.33 1.00 0.51
DIS 1.18
LST_100 1.06
MBI_1000 1.13
SO, GAS_5000 1.04 0.22 0.60 0.014*
MBI_1000 1.04
NO, GAS_5000 1.35 0.70 0.051 0.38
NDVI_100 1.41
MBI_1000 1.09
O3 NDVI_300 1.50 0.71 0.92 0.29
MBI_1000 1.38
LST_5000 1.36
Cold season
PM2.5 LST_2000 1.00 0.16 0.09 0.009**
NDVI_100 1.00
PM10 LST_2000 1.00 0.58 0.95 0.40
NDVI_100 1.00
AQI LST_2000 1.00 0.23 0.12 0.03*
NDVI_100 1.00
SO, Road_100 1.14 0.93 0.89 0.91
NDVI_100 1.14
NO, DIS 1.18 0.30 0.74 0.59
NDVI_100 1.00
LST_2000 1.18
Cco GAS_5000 1.16 0.47 0.39 0.85
LST_2000 1.01
NDVI_100 1.14
O3 LST_2000 NA 0.46 0.44 0.66
Table 4
Summary of LOOCV results.
Pollution type R-squared RMSE R-squared RMSE
Warm season Cold season
PM2.5 0.72 4.31 0.66 17.62
PM10 0.55 12.30 0.58 20.59
AQI 0.71 5.15 0.61 20.31
SO, 0.51 1.75 0.53 4.75
NO, 0.63 12.69 0.65 10.93
Cco NA NA 0.63 5.35
O3 0.59 0.09 0.57 0.41

morphological characteristic on indexes of air pollutants. We found that
the prediction accuracy of PM2.5 (R? = 0.72), AQI (R? = 0.71), and
NO, (R? = 0.63) in the warm season that enjoy strong correlation with
MBI through the LOOCV. This confirmed the influence of MBI on air
pollutants concentrations.

5.6.4. Standardized residuals in different urban functional zones

To compare the relative prediction strength across different urban
functional zones, values of standardized residuals were calculated for
all zones respectively. The absolute values of them are shown in Fig. 10.
The core functional area has the least standardized residuals for almost
all pollutants in all seasons, which may partly due to the relatively high
density of monitoring stations (one station for every 15.38 km?) in this
area. The largest standardized residual of AQI is found in the new area
of urban development throughout the year. This is probably due to the
fact that the majority of industrial sites are located is built in this zone
(24/37) and it is difficult to acquire real-time emission data. Moreover,
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this zone is directly adjacent to another major metropolis (Tianjin) with
heavy industry and its potential influence is not considered in the study.

During the warm season, the model produces the largest error for
PM;, SO,, and NO, in the zone of urban functional extension area. This
may be attributed to the lack of some meteorological data, such as wind
speed and wind direction, that would directly affect the dynamics of air
pollution. As for the cold season, the new area of urban development
and the ecological conservation area present the top two largest re-
siduals for all pollutants except CO, which may be caused by the dis-
crete spatial distribution of monitoring stations and complicated topo-
graphic conditions. The two regions include large areas of farmland,
lakes, and mountains where the Great Wall of China is located.

5.7. SSH modeling results

The g-statistic values and corresponding p-values are calibrated and
only the statically significant g-statistics are reported in Table 5. The
significance level is set at 0.05.

It is interesting to find that ROAD_5000 impacts all air pollutants in
the table in the cold season and O in both seasons. The g-statistic
values related to ROAD_5000 are all higher than 0.99, which mean
almost perfect associations between ROAD_5000 and the respective air
pollutants. This suggests that traffic in a very large proximal area
(buffer size of 5km) has significant impact on the concentrations of
most air pollutants, especially in the cold season. It is an important
finding in supplement to other findings from the spatiotemporal re-
gression modeling results. In addition, population density (POP) is
found to be significantly associated with PM, s, AQIL, SO», and NO, in
the cold season. This finding accords with the fact that more heating is
needed in regions of larger population density during the cold season
and thus would produce PM 2.5, SO,, and NO,. As for the variable of
distance to the nearest industry site (DIS), it only shows significant
association with PM, 5 and AQI in the cold season.

5.8. Comparisons and discussions

Results of two modeling approaches are not exactly the same but are
generally in accordance. For instance, the SSH analysis found popula-
tion density to be a significant predictor in the cold season, which is not
identified by the spatiotemporal regression models. However, it is no-
ticed that the spatiotemporal regression did find the urban morpholo-
gical characteristic index (MBI) to be a significant predictor for most
pollutants. High density of buildings usually indicates high population
density (Wang et al., 2016) and high demand of energy consumption,
which would lead to the worse air conditions especially in urban areas
(Silva, Oliveira, & Leal, 2016). Because MBI considers building index,
which is highly correlated with population density, the population
density might be dropped in the process of stepwise regression to avoid
multicollinearity. With this consideration, the results of the two mod-
eling approaches are not contradictory. The variable of DIS is found to
be a significant predictor for PM, 5 and AQI in the warm season and
NO, in the cold season based on the spatiotemporal regression models,
while the SSH analysis added similar message in the warm season.

More importantly, results of the two approaches are also com-
plementary to each other. With the combined findings from both
modeling approaches, distance to industry is found to be a significant
predictor in both seasons. Thus the message is strengthened that in-
dustry emission affects the air quality throughout the year. While the
spatiotemporal regression models captured other relationships in detail,
SSH analysis added the important finding of the significant impact of
traffic on air pollution.

Several variables, namely MBI, LST, NDVI, Road density and POI of
gas stations, were constructed for a proximal area around each sample
point. The analysis result can be sensitive to the predefined size of the
proximal area. To test the sensitivity and to find the real scope of in-
fluence, seven different buffer radii (100, 300, 500, 1000, 2000, 3000,
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Fig. 10. Comparison of standardized residuals in each functional zone in the warm season (a) and the cold season (b).

Table 5
Summary of g-statistic.
Pollutant Independent variable q-statistic p-value
Warm season
O3 ROAD_5000 0.996126 0
Cold season
PM2.5 DIS 0.91361 0.030382
POP 0.797056 0.044715
ROAD_5000 0.991886 0
PM10 Road_5000 0.999857 0
AQI DIS 0.912245 0.049241
POP 0.807308 0.049926
ROAD_5000 0.992438 0
SO, POP 0.785184 0.049594
ROAD_5000 0.998024 0
NO, POP 0.786147 0.02862
ROAD_5000 0.996314 0
O3 ROAD_5000 0.997391 0

5000 m) were chosen and tested for each of these variables. Results
show that the scope of influence differs among these predictive vari-
ables.

5.9. Limitations

The study has several limitations. First of all, the study is limited by
data availability, suitability, and quality. Although the data source of
air quality is expected to report hourly data of all seven types of indexes
at all 35 monitoring stations, there were often missing data at random
time and locations. Besides, remotely sense images used in the study
have a relatively higher degree of cloud (see Figs. 4 and 5), which may
lead to errors in LST and NDVI calculation. Other datasets, such as
nighttime light data (Zhang & Hu, 2017) and aerosol optical depth from
MODIS (Moderate Resolution Imaging Spectro radiometer) (Chen et al.,
2018; Feng, Zou, & Tang, 2017), were used in the study. But their
coarse spatial resolutions, 1 km and 3 km respectively, may not be ap-
propriate for a urban region with high densities of buildings and po-
pulation. Moreover, some meteorological factors, such as relative hu-
midity, wind speed, wind direction, precipitation and air pressure, are
highly relevant. However, such data in station-based scale were not
available and thus had to be left out in the study.

Secondly, there are also limitations in the techniques used in the
study. For the spatiotemporal regression modeling, even though step-
wise regression is effective for prescreening of statistically significant
variables, some internal flaws are noteworthy: i) as a “greedy search”
method, it would not consider all possible combinations among all
potential variables, and thus some significant groups may be
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subjectively ignored; ii) it only considers the main effect terms, not
interaction terms or high-order terms of predictors (e.g. quadratic term)
among variables. Moreover, the study emphasized distinguishes two
seasons for comparison. Thus each spatiotemporal regression model
would only have six sets of monthly air pollution data respectively. This
may limit the usefulness of the temporal weight matrix. As for SSH
model, we only used the factor detector to examine the associations
between an independent variable and an air pollution index. Other
three detectors of the SSH analysis could also be useful.

6. Conclusions and future research directions

This study investigates the relationships between air pollution and
various factors in the urban landscape including socioeconomic, urban
form, and morphological characteristics. The research design combines
two parallel modeling approaches, the spatiotemporal regression and
social stratified heterogeneity (SSH) analysis. In the experiment, the
urban morphological characteristic variable, MBI, is proven to be a
statistically significant factor for the estimations of air pollution. In
addition, traffic density, distance to industry, density of gas stations,
and population density are also found to be significant contributing
factors.

Comparing with the conventional LUR model (Huang et al., 2017b,
Larkin et al., 2017, Yang et al., 2017), this study makes two innovative
improvements. First, it includes morphological characteristics in the
modeling process. Even though a street-level analysis of air quality also
considers urban morphology (Edussuriya & Chan, Shi et al., 2016, Shi,
Xie, Fung, & Ng, 2018), it requires detailed field survey data and is less
feasible or cost-effective than the zone-based analysis in this study. The
second innovative improvement is the consideration of spatial auto-
correlation, temporal autocorrelation, and spatial heterogeneity by the
use of two modeling approaches. The spatiotemporal regression modi-
fies classical regression by adding spatiotemporal weight matrices in
the equation. The SSH analysis considers spatial heterogeneity in the
process of identify associations among variables. In addition, the two
approaches also consider both linear and non-linear relationships re-
spectively. The use of two modeling strategies not only allow us to
consider spatiotemporal autocorrelation and spatial heterogeneity in
the same study, it also provides basis for cross-examination of findings.

Findings from the study can have far-reaching implications to urban
environment policy and urban design practices for the case study city.
Among other findings, results of this study suggests that air pollutants'
concentrations in any location of a city are significantly influenced by
road density and urban morphology index in a large proximal area of
the location (i.e. ROAD_5000, MBI_1000). Moreover, distance to in-
dustry also has significant impacts. Thus, urban policy may need to
control further expansion and/or intensification of road network and



Y. Tian et al.

buildings. Planning practitioners may also carefully choose the location
of industry to keep them in distance from the populated area. The study
provides evidences that can be used as references for future informed
urban design and planning policies to achieve more ecologically sus-
tainable urban development.

There are plenty of rooms for future research efforts. First, research
can be conducted on finer spatial and temporal scales. It remains un-
known how concentrations of air pollutants vary on different days of a
week and at different times of a day. Future studies may also choose a
finer spatial granularity, for instance, at the level of street canopy, with
considerations of relevant meteorological factors. Research findings at
various spatial and temporal scales will help us to gain fuller under-
standing of air pollution in urban environments. Another research
avenue is to investigate the topic of interest for different types of cities.
Furthermore, a comparative study of findings from different cities will
be interesting and informative. The third direction of future research is
making more use of modern geospatial technology to collect and ana-
lyze data in innovative ways. For instance, field data collection with
mobile devices and other handheld instruments can be used more.
Moreover, interactions among different variables can be further ana-
lyzed in the modeling process. Finally, different air pollutants have
distinct causes and mechanisms of affecting air quality. For instance,
SO, primarily comes from industrial emissions, such as soot and dust.
NO, and CO are mostly produced by traffic emission. PM, 5 and PM;,
may be caused by combustion of coal used for heating during winter.
Therefore, these air pollutants may better be analyzed separately in
further research.
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