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ABSTRACT ARTICLE HISTORY
The discovery of spatial clusters formed by proximal spatial units Received 12 August 2018
with similar non-spatial attribute values plays an important role in Accepted 15 April 2019
spatial data analysis. Although several spatial contiguity- KEYWORDS
constrained clustering methods are currently available, almost all Spatial clustering;
of them discover clusters in a geographical dataset, even though permutation test;
the dataset has no natural clustering structure. Statistically evalu- homogeneity; cluster
ating the significance of the degree of homogeneity within validation

a single spatial cluster is difficult. To overcome this limitation,

this study develops a permutation test approach Specifically, the

homogeneity of a spatial cluster is measured based on the local

variance and cluster member permutation, and two-stage permu-

tation tests are developed to determine the significance of the

degree of homogeneity within each spatial cluster. The proposed

permutation tests can be integrated into the existing spatial clus-

tering algorithms to detect homogeneous spatial clusters. The

proposed tests are compared with four existing tests (i.e., Park’s

test, the contiguity-constrained nonparametric analysis of variance

(COCOPAN) method, spatial scan statistic, and g-statistic) using

two simulated and two meteorological datasets. The comparison

shows that the proposed two-stage permutation tests are more

effective to identify homogeneous spatial clusters and to deter-

mine homogeneous clustering structures in practical applications.

1. Introduction

In real-world scenarios, spatially contiguous regions usually exist in a spatial dataset
where observations are homogeneous within each region but not between regions
(Dutilleul 2011, Wang et al. 2016), e.g., ecological regions (Rueda et al. 2010), climate
zones (Fovell and Fovell 1993), social-economic units (Openshaw and Rao 1995); and the
distributions of land use, land cover, and soil types (Jansen and Gregorio 2002, Goktepe
et al. 2005). The detection of these homogeneous spatially contiguous regions is useful
for understanding local patterns of geographical phenomena and is helpful for remov-
ing spurious data variation (Legendre 1987, Wang et al. 2012, Deng et al. 2018).
Currently, the discovery of homogeneous spatially contiguous regions has played
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a key role in exploratory spatial data analysis. For example, while delineating ecological
regions, important aspects and tradeoffs to be considered involve addressing the
homogeneity of the regions with respect to any implicit or explicit classification criteria
and the spatial contiguity of the resulting units (Kupfer et al. 2012). Identification of
homogeneous spatially contiguous regions from global land areas can yield important
insights for landscape structural analysis (Hay et al. 2003).

Currently, spatial contiguity-constrained clustering is the main technique to delineate
homogeneous spatially contiguous regions. This technique enforces spatial contiguity
constraint during clustering (Legendre 1987). Three types of spatial contiguity-constrained
clustering methods are popular in practical applications: (i) spatial partitioning clustering,
e.g. the AZP method (Openshaw and Rao 1995), MaxP method (Duque et al. 2012), and
GeoSOM (Henriques et al. 2012); (ii) spatial hierarchical clustering, e.g., the SKATER method
(Assuncao et al. 2006), REDCAP method (Guo 2008), and MSSC method (Mu and Wang
2008), and (iii) density-based clustering, e.g., spatial scan statistic (Kulldorff 1997), ST-
DBSCAN (Birant and Kut 2007), and DBSC (Liu et al. 2012). A review of spatial contiguity-
constrained clustering methods can be seen in Gordon (1996) and Guo and Wang (2011).

The abovementioned spatial contiguity-constrained clustering methods discover
homogeneous spatially contiguous regions subject to balancing the number of clusters
and within-cluster homogeneity. While many clusters can impede spatial pattern under-
standing, a decrease in the number of clusters can degrade the degree of homogeneity
within a cluster. When the degree of homogeneity within a cluster becomes insignificant,
the clustering operation should stop. Currently, the homogeneity within a single cluster is
usually determined by user-specified parameters (e.g., the number of clusters or homo-
geneity thresholds). However, determining these parameters in practice may be difficult.
Almost all the existing clustering methods discover clusters in a geographical dataset,
even though the dataset may have no natural clustering structures (Park et al. 2009). This
is one of the main limitations for users to apply the spatial contiguity-constrained
clustering methods in practice (Tan et al. 2006). The determination of homogeneity
threshold (or cluster number) is highly affected by the scale of the dataset (scale of the
sampling framework utilized to produce spatial data) (Liu et al. 2015). Furthermore, the
identification of suitable homogeneity thresholds can be helpful for determining an
appropriate scale of analysis (the scale of variation or phenomenon) and will be further
utilized to alleviate the modifiable areal unit problem (MAUP) (Mu and Wang 2008).

In this study, we developed a permutation test approach to determine the signifi-
cance of the degree of homogeneity within a spatial cluster. The main contributions of
this study include (i) developing two-stage permutation tests to statistically evaluate the
significance of the degree of homogeneity within each spatial cluster, and (ii) proposing
permutation tests to set the stopping criterion for a given spatial contiguity-constrained
clustering method.

The rest of this article is organized as follows. Section 2 reviews the related work for
determining the homogeneity within spatial clusters. Section 3 presents a new strategy
for evaluating the homogeneity within a spatial cluster. Section 4 describes the two-
stage permutation tests. Section 5 introduces the method for integrating the two-stage
permutation tests into existing spatial contiguity-constrained clustering. Section 6 dis-
cusses an experimental evaluation, and finally, Section 7 concludes the study and high-
lights future work.
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2. Related work

Currently, several statistical tests have been developed for assessing the statistical
significance of the clustering results. They can be divided into two categories: tests for
assessing the statistical significance of the degree of homogeneity within a single cluster
and those for assessing the statistical significance of a spatial partition. Although this
study mainly focuses on the testing of the statistical significance of a single cluster, we
believe that it would be also useful to review tests for assessing the statistical signifi-
cance of a spatial partition.

2.1. Methods for assessing the statistical significance of the degree of
homogeneity within a single cluster

For identifying homogeneous clusters from the dendrograms obtained by hierarchical
clustering, two kinds of permutation tests are currently available:

(i) Some permutation tests were proposed by comparing the dendrogram constructed
for the observed data with that constructed for randomly permuted data or resam-
pling data. Greenacre and Primicerio (2013) proposed a simple permutation test for
determining homogeneous clusters. Under the null hypothesis, they expected that
the cluster obtained at a given level of the dendrogram is non-homogeneous (the
height computed for the observed data is larger than that computed for the ran-
domly permuted datasets). The Monte Carlo p-value is computed as the proportion of
the times the heights computed for the permuted datasets are smaller than or equal
to those computed for the observed dataset. The distance between the merged
clusters has to increase monotonically for this test. However, two merged clusters
may be more similar than the pair of clusters merged in the previous step when the
spatial constraint is considered. Suzuki and Shimodaira (2006) developed
a permutation test based on multi-scale bootstrap resampling. For each cluster
discovered from the observed dataset, the bootstrap probability is computed as
the proportion of the times that the cluster is discovered from the bootstrapped
samples. This test was designed for the analysis of high dimensional DNA microarray
data and cannot consider the spatial contiguity constraint of the spatial data. When
the test is applied to spatial data, we cannot construct a spatial proximity relationship
for the resampled datasets. Consequently, the spatial clustering methods cannot be
applied to the resampled datasets.

(ii) Some permutation tests have been developed based on comparing the within-
cluster structure of the observed dataset with that of the sample datasets by
permuting the cluster membership of objects. Under the null hypothesis, two
clusters are expected to be combined to form a homogeneous cluster. Different
test statistics have been constructed to characterize the within-cluster structure.
For example, Park et al. (2009) used the within-cluster variance as the test statistic
to measure the clustering quality, and Bruzzese and Vistocco (2015) defined
a relative cost measure as the test statistic for measuring the similarity between
two clusters. During each aggregation step, a large number of random samples
are obtained by permuting the elements between the two clusters and preserving
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the original number of elements in both these clusters. If the test statistic
computed for the observed dataset is similar with that computed for the per-
muted clusters, then the null hypothesis cannot be rejected. In existing methods,
the Monte Carlo p-value is computed as the proportion of the times that the test
statistic calculated for the observed dataset is greater than or equal to that
calculated for the permuted clusters. It can be seen that the similarity between
the statistics calculated for the observed dataset and the random samples is not
well measured.

The spatial scan statistic and its variants (Kulldorff 1997, Pei et al. 2011) are also able
to assess the statistical significance of a single cluster. However, these spatial scan
statistics are designed to identify significant hot or cold spots, and the degree of the
homogeneity within a single cluster cannot be evaluated.

2.2. Methods for assessing the statistical significance of a spatial partition

A spatial partition or a stratification of heterogeneity is a partition of a study area, where
spatial units are similar within each region (or stratum) but not between regions (Wang
et al. 2016). The spatial partition is usually obtained by the spatial partitioning clustering
method, and each spatial unit should be assigned to a certain region.

Some clustering validity indices that are defined based on within-cluster similarity
and between-cluster difference can be used as indicators to select the optimal clustering
results or spatial partition (Halkidi et al. 2001, Salvador and Chan 2004). However, the
significance of these indicators cannot be evaluated statistically, and the selection of
optimal clustering results remains difficult. Additionally, these indices are usually not
suitable for evaluating arbitrarily shaped spatial clusters and are not robust to noise.

Certain analysis of variance methods designed for spatially autocorrelated data can be
used to judge the significance of a spatial partition (Sokal et al. 1993), such as Griffith’s
method (Griffith 1978) and COCOPAN method (Legendre et al. 1990). The COCOPAN
method can also test the homogeneity of each cluster. This method randomly partitions
the study area into contiguous regions, corresponding in size to the observed regions (or
clusters). For each cluster, a number of pseudo areas that are approximately similar to an
overserved cluster (with the same number of spatial units and approximately the same
shape) can be obtained. The sum of squares within a cluster (SSW) is used as the test
statistic, and the Monte Carlo p-value is computed as the proportion of the times that the
SSW computed for the observed dataset is greater than or equal to that computed for the
pseudo areas. We argue that the SSW (or variance) is not sensitive enough for measuring
the homogeneity within each cluster. In the experimental results given in Section 6, it is
seen that the COCOPAN method usually false rejects the null hypothesis.

Recently, Wang et al. (2016) proposed a g-statistic method for measuring the degree
of spatial stratified heterogeneity and for testing its significance. The exact probability
density function of the g-statistic can be derived; therefore, the g-statistic method does
not require the time-consuming Monte Carlo simulation. When the number of regions in
a spatial partition is fixed, the g-statistic can be used to select the best partition from the
partitions obtained by different spatial clustering methods.
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Table 1. Application conditions of different methods.
Apply to spatial con-  Test the statistical ~ Test the statistical sig- Requirement of

tiguity-constrained significance of nificance of a spatial Monte Carlo

Methods clustering a single cluster partition simulation

Greenacre's test X J X J
(Greenacre and
Primicerio 2013)

Suzuki’s test X v X N
(Suzuki and
Shimodaira 2006)

Park’s test Vv V X V
(Park et al. 2009)

Bruzzese's test X J X J
(Bruzzese and Vistocco
2015)

Spatial scan statistic v v X N
(Kulldorff 1997)

Griffith’s method V X V X
(Griffith 1978)

The COCOPAN method v ) v v
(Legendre et al. 1990)

The g-statistic V X J X
(Wang et al. 2016)

The two-stage V V X V

permutation test

In Table 1, the application conditions of different methods are summarized. Based on
the above analysis, we can conclude that although some reliable methods (e.g., the
g-statistic) have been proposed for testing the statistical significance of a spatial parti-
tion, there is still a lack of a powerful statistical test for assessing the significance of the
degree of homogeneity within a spatial cluster. In this study, we present a new strategy
for evaluating the homogeneity of a spatial cluster based on the local variance and
cluster member permutation and develop two-stage permutation tests for identifying
homogenous spatial clusters.

3. Measuring homogeneity within a spatial cluster based on local variance
and cluster member permutation

To determine whether a spatial cluster is homogenous, the homogeneity within it
should be properly measured. In this study, the spatial contiguity constraints of the
spatial units are considered to measure the homogeneity of a cluster. We think that
a homogeneous spatial cluster should meet the following two conditions:

(i) Each part of the cluster should be homogeneous, i.e., each unit in a spatial cluster
should have a similar non-spatial attribute value with its spatial neighbors in the
same cluster.

(i) Different parts of the cluster should be similar, i.e., each unit in a spatial cluster
should have a non-spatial attribute value similar to its non-adjacent units in the
same cluster.
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To satisfy the above two conditions, in this study, the homogeneity within a spatial
cluster is measured from two aspects.

(i) The basic part of a cluster is defined as each spatial unit and its first-order spatial
neighbors, and the local variance is used to measure the similarity between
a spatial unit O; and its first-order spatial neighbors. This is represented as follows:

LV(0) = —=37 10 (AO) — M) 0

where N(O)) represents the first-order spatial neighborhood of O; (including O), n;
is the number of spatial units in N(O;), A(O) represents the non-spatial attribute
value of the /™ spatial unit in N(O), and M; represents the mean non-spatial
attribute value of the spatial units in N(O;). The local variance is somewhat similar
to the local indicator of spatial autocorrelation (e.g. local Geary’s C); therefore, the
conditional permutation approach can be used to test the statistical significance of
LV(O)) (Anselin 1995). In the mth conditional permutation, the non-attribute value
of O; is fixed, and the remaining non-attribute values in the dataset are randomly
permuted. The permuted first-order spatial neighborhood of O; is represented as
N,,(O;), and the local variance of the units in N,,(O)) is calculated by using Equation
(1), denoted as LV™(O)).

(i) A cluster member permutation strategy is proposed to measure the similarity
between a spatial unit O; and its non-adjacent units in the same cluster. If each
unit O; has a similar non-spatial attribute value with its non-adjacent units in the
same cluster C. LV(O;) should also be small when the non-adjacent units of O; in
C are randomly assigned to N(O;). Based on this observation, the non-spatial
attribute value of O; is fixed, and the non-spatial attribute values of the remaining
spatial units in C are permuted H times. It can be seen that after the cluster
member permutation, the non-adjacent units of O; in C will be located in N(O)).
The local variance LV(O)) is calculated for each permutation; the list of local
variances LV(0)) = {LV1(0)), LV;(0)).....LV4(O:)} can be used to indicate the similarity
between O; and its non-adjacent units in the same cluster.

The datasets in Figure 1 are used to illustrate the measurement of the similarity
between a spatial unit and its non-adjacent units in the same cluster. In the homo-
geneous cluster C;, each unit O; has similar non-spatial attribute values with its first-
order neighbors. In Figure 1(a), the local variance of the units in the red square is 0.17.
After cluster member permutation, for each unit O, the other non-adjacent units
become the first-order neighbors of O, If each unit O; is similar to its non-adjacent
units, each element in LV(O;) should be low. In Figure 1(b), the local variance of the units
in the red square is 0.17. Cluster C, represents an inhomogeneous cluster in which the
non-spatial values of neighboring units have small differences (in Figure 1(c), the local
variance of the units in the red square is 0.84), and the values of the border units in the
cluster are significantly different from those of the other border units in the opposite
side. After the cluster member permutation, one can find that the local variance of the
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Figure 1. Measuring the homogeneity within spatial clusters (spatial neighbors are identified based
on the queen contiguity). (a) Homogeneous cluster (;, (b) cluster member permutation in (;, (c)
inhomogeneous cluster (5, and (d) cluster member permutation in (.

units in the red square depicted in Figure 1(d) increases remarkably (LV = 7.43).
Therefore, it can be concluded that different parts of cluster C, are dissimilar.

After the homogeneity within a cluster is measured, the performance of the permuta-
tion tests will be addressed.

4. Two-stage permutation tests for identifying statistically significant
spatial clusters

Based on the strategy for measuring the homogeneity of a cluster introduced in the
Section 3, to test whether a cluster C; is homogeneous, whether each part of the cluster
is homogeneous and whether different parts of the cluster are significantly similar need
to be tested. To achieve this purpose, the following two permutation tests are
developed.
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4.1. Testing the significance of the similarity between each unit and its spatial
neighbors

Under the null hypothesis, we expect that in cluster C;, there is at least one spatial
unit O; (N(O;) C () whose first-order spatial neighbors have different non-spatial
attribute values. For each unit O; in a cluster C; (N(O;) C G), the local variance
(represented in Equation (1)) is used as the test statistic. The non-spatial attribute
values of the dataset are permuted M times, and the Monte Carlo p-value is
calculated as the proportion of the times the observed value LV(O;) is greater
than the permuted values LV"(0;) (m = 1, 2,..., M). It is given by Equation (2) as
follows:

M
Im
1

p(0) =" 2

M

where p(O)) is the p-value calculated for unit O; by using the conditional permutation
approach; [ is an indicator variable. After the mth permutation, if LV(0;) >LV™(0;), then
I, = 1, otherwise, I,, = 0.

When the above permutation test is performed for k spatial units, the multiple
and dependent testing problem should be considered. Benjamini and Hochberg
(1995) developed a false discovery rate (FDR) approach to control the multiple
testing problem for independent test statistics. Benjamini and Yekutieli (2001) further
demonstrated that the FDR approach can handle the multiple and dependent testing
problem. The experimental analysis by Caldas de Castro and Singer (2006) shows that
the FDR approach is the most suitable method for controlling the multiple and
dependent tests in the local statistics of spatial association. Therefore, in this study,
the FDR approach is used to manage both the multiple and dependent testing
problems. Given a significance level a, the adjusted significance level can be
obtained as follows:

Step 1: The p-values calculated for k spatial units are ordered in ascending order such
as p(01)=p(0y) <...=p(Oy).

Step 2: Starting from p(Oy), the first p(O,) that satisfies the following equation is found
and used as the adjusted significance level aq4;:

i
Aagj = p(0;) < @ 3)

The adjusted significance level a,4; is used to determine the significance of the p-values
calculated by Equation (2). For cluster C;, if the local variance of each unit O; (N(0;) C ;)
is significantly small (p(O;) < aqq), then the null hypothesis should be rejected, and it
can be concluded that each part of the «cluster is homogeneous.

Further, the significance of the degree of similarity between a spatial unit O; and its non-
adjacent spatial neighbors in C;is tested. In this study, we propose another permutation test
based on the cluster member permutation.
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4.2. Testing the significance of the similarity between each unit and its
non-adjacent units

The null hypothesis of the test states that there is at least one spatial unit O; (N(O;) C C;)
whose non-spatial attribute value is different from that of its non-adjacent units in
cluster C;. For each unit O; (N(O;) C G), the non-spatial attribute value of O; is fixed,
and the non-spatial attribute values of the other spatial units in cluster C; are permuted
H times. The list of local variances LV(O;) = {LV;(0)), LV5(O)),..., LVy(O))} can be obtained. If
unit O; has a similar non-spatial attribute value with its non-adjacent unit in cluster C;
each local variance LV/(O) (j= 1, 2, ..., H) should be small. To determine whether LV/(O)) is
small, we can compare LV;(0) with the permuted values LV"(0) (m =1, 2, ..., M) used in
Equation (2). As calculated by Equation (3), if the proportion of the times that LV/(O)) is
greater than LV"(O)) is higher than the adjusted significance level a,g; then it can be
concluded that LV/(O) is not small. The Monte Carlo p-value can be calculated as the
proportion of times when LV/(O)) is not small:

=

l
j

Puwithin(0i) = e (4)

Where pinin(0)) is the p-value of O; calculated based on cluster member permutation;
I'is an indicator variable. After the jth cluster member permutation, if LV,(O)) is not small,
then ; = 1, otherwise, /; = 0.

For each spatial unit O; (O;€ C;andN(O;) C G), if pyitnin(O;) is equal to or less than a given
significance level B, then we can conclude that the degree of similarity between a spatial
unit O; and its non-adjacent spatial neighbors in C s statistically significant. When the above
test is performed for several units in a cluster, the adjusted significance level B,4; should be
computed by using the FDR approach to alleviate the multiple and dependent testing
problem. If each spatial unit O; (N(O;) C C) in cluster G; meets conditionpyinin(0i) < Bagjr
then the null hypothesis should be rejected. It can further be concluded that different parts
of the cluster are similar.

If each unit O; in cluster C; (N(O;) C G) satisfies the conditionsp(0;) < aqq and
Pwithin(0;) < ﬁadj, then cluster C; is recognized as a homogeneous cluster.

5. Integration of the two-stage permutation tests into spatial
contiguity-constrained clustering

The proposed two-stage permutation tests can not only be performed following a given
spatial clustering method but also be integrated into existing spatial contiguity-
constrained clustering methods.

It is easy to perform the two-stage permutation tests following a given spatial
clustering method: after a clustering result € = {C;, C5, ..., C;, ..., Cad is obtained
using a certain clustering method, the two permutation tests introduced in Sections 4.1
and 4.2 should be performed for each cluster C;. For each spatial unit O; (N(O;) C C) in
cluster G, if p(O;) < daq; and Puithin (O;) < Bagi (P(O) and puinin(0)) are calculated using
Equations (2) and (3), respectively), then C; should be identified as a homogeneous
cluster.



10 Q. LIV ET AL,

The two-stage permutation tests can also be embedded into existing spatial conti-
guity-constrained clustering methods and can be used to guide a clustering method to
find homogenous clusters. In this study, we will present an example to show how the
two-stage permutation tests can be integrated into spatial hierarchical clustering meth-
ods because the existing comparative study observed that spatial hierarchical clustering
methods usually perform the best while identifying homogeneous spatially contiguous
regions (Guo and Wang 2011).

Step 1: Construct the spatial proximity relationship among spatial units based on the
topological relationship or graph-based methods (e.g., trimmed Delaunay triangulation
method (Liu et al. 2012)).

Step 2: Identify within-clusters spatial units. As illustrated in Section 3, each unit in
a homogenous cluster should have a similar non-spatial attribute value with its spatial
neighbors in the same cluster. We can easily deduce that only the units in
a homogeneous spatial neighborhood will be used to construct homogenous clusters.
Therefore, we can first use the permutation test given in Section 4.1 to identify within-
clusters units:

For each spatial unit O; in the dataset, calculate the p-value p(O,) using Equation (2).
Set the significance level a and calculate the adjusted significance level a4 using the
FDR approach. If unit O; meets the conditionp(0;) < aqq;, the units in N(O;) will be
identified as within-clusters units.

Step 3: Cluster within-cluster units by using a certain spatial hierarchical clustering
method. After two clusters C; and C, are combined to form a new cluster C; the
permutation test given in Section 4.2 is used to test the significance of the similarity
between each spatial unit and its non-adjacent units:

For each spatial unit O; in C; (N(O;) C (), calculate the p-value p,nin(O;) using
Equation (4). Set the significance level 8 and calculate the adjusted significance level
Bag; using the FDR approach. If each unit O; (N(O;) C () in cluster C; meets the condition
Pwithin (0;) < Badj, cluster C; is identified as homogeneous. Otherwise, C; and C; should
not be combined, and the spatial proximity relationship between C; and C; should be
deleted.

Step 4: Repeat Step 3 until no homogeneous cluster can be obtained, and output all
identified homogeneous clusters.

6. Experimental evaluation

For the proposed two-stage permutation tests, the number of Monte Carlo
simulations M and H are both set to 999, and the significance levels a and 8 are both
set to 0.05. For comparison, Park’s permutation test (Park et al. 2009), the COCOPAN
method (Legendre et al. 1990), spatial scan statistic (Kulldorff 2011), and g-statistic
(Wang et al. 2016) that were developed for spatial data are also used to determine
the significance of the degree of homogeneity within spatial clusters. In the following
experiments, the number of Monte Carlo simulation is set to 999 for Park’s permutation
test, the COCOPAN method, and spatial scan statistic. For all the four comparison
methods, the significance level is set to 0.05.
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In this study, the spatial contiguity-constrained Ward’s method is selected as the
spatial clustering method (Guo and Wang 2011). The proposed two-stage permutation
test is integrated into the spatial contiguity-constrained Ward's method using the
strategy given in Section 5. For Park’s test, the COCOPAN method, and g-statistic, the
cluster discovered in each aggregation step is evaluated. When the obtained cluster is
identified as inhomogeneous, the clustering operation is stopped.

Most of the tests (the COCOPAN method, g-statistic, and proposed tests) eval-
uated in this study are designed for univariate spatial data. Therefore, the five tests
are only evaluated by using univariate spatial data (two simulated and two real-life
datasets) so that the clustering results can be examined visually (Guo 2008).
Currently, intuitively identifying clusters using human eyes is still acknowledged
as the best benchmark for evaluating clustering results (Baatz and Schape 2000,
Dragut et al. 2011).

6.1. Experiments on simulated datasets

Two simulated datasets SD; and SD, are shown in Figure 2. Four clusters are predefined
in SD;. The non-spatial attribute values of the spatial units in each cluster follow
a uniform distribution. The non-spatial attribute values of the other units follow
a uniform distribution in [1,100]. In SD,, two-level clusters are designed. At the high-
level, four clusters are predefined. At the low-level, 16 clusters can be identified, and the
non-spatial attribute values of the spatial units in each cluster follow a normal distribu-
tion. To mimic a more realistic geographical pattern (boundaries between clusters are
blurred), the two datasets were further spatially smoothed using a Gaussian filter (the
size of the filter is [3 3] and the standard deviation is 0.5).

The experimental results of SD; are shown in Figure 3. By using the proposed
permutation tests, the clustering process is stopped when there are four clusters
(shown in Figure 3(a)). All the four predefined clusters can be seen to be well discovered.
By using Park’s test, the clustering operation is stopped when there are 26 clusters
(shown in Figure 3(b)). It can be seen that the predefined clusters are wrongly
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Figure 2. Simulated datasets (spatial neighbors are identified based on queen contiguity). (a) SD;(n
= 1024), (b): SDy(n = 1024).
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Figure 3. Experimental results of SD;. (a) Homogeneous clusters identified by the proposed test, (b)
homogeneous clusters identified by Park’s test, (c) homogeneous clusters identified by the
COCOPAN method, (d) clusters identified by spatial scan statistic (blue cluster: cold spot; red cluster:
hot spot), and (e) significant spatial partition identified by the g-statistic.

segmented into several small parts. By using the COCOPAN method, the clustering
operation is stopped when there are three clusters (shown in Figure 3(c)). A large
amount of noise is wrongly clustered. As seen in Figure 3(d), the spatial scan statistic
can only discover three clusters (two cold spots and one hot spot) and some noise is
wrongly clustered. By using the g-statistic, in case of two clusters, the stratified hetero-
geneity is still significant (shown in Figure 3(e)). However, the identified clusters are not
homogenous.

In Figure 4, the experimental results of SD, are shown. By using the proposed
permutation tests, the clustering process is stopped when there are four clusters
(shown in Figure 4(a)). We can see that all the high-level clusters are discovered
correctly. Then, the proposed tests are used to evaluate the homogeneity of clusters
in each high-level cluster, and all 16 low-level clusters can be identified satisfactorily
(shown in Figure 4(b)). The clusters identified by Park’s test are shown in Figure 4(c). The
clustering process is stopped when there are 28 small clusters. All the predefined
clusters are over-segmented. In Figure 4(d,e), the two-level clusters identified by the
COCOPAN method are depicted. It can be seen that all the predefined clusters are
under-segmented. In Figure 4(f), the spatial scan statistic can only discover three
clusters, and the cluster with medium non-spatial attribute value is missing. In Figure
4(g), although the spatial partition evaluated using the g-statistic is statistically signifi-
cant, the two identified clusters are not homogenous.
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Figure 4. Experimental results of SD,. (a) High-level homogeneous clusters identified by the
proposed tests, (b) low-level homogeneous clusters identified by the proposed tests, (c¢) homo-
geneous clusters identified by Park’s test, (d) high-level homogeneous clusters identified by the
COCOPAN method, (e) low-level homogeneous clusters identified by the COCOPAN method, (f)
clusters identified by the spatial scan statistic (blue cluster: cold spot; red cluster: hot spot), and (g)
significant spatial partition identified by the g-statistic.

6.2. Experiments on climate datasets

The proposed permutation tests and the four existing tests are further evaluated using
the annual average temperature and the annual precipitation of 554 stations in main-
land China in the year 2009. In Figure 5, the spatial distribution of the stations is
displayed and the spatial proximity relationship among these stations is constructed
by using the trimmed Delaunay triangulation method (Liu et al. 2012). To evaluate the
clustering results visually, the spatial distributions of the annual average temperature
and annual precipitation are mapped by using the ordinary kriging method after
removing the second-order trend, as shown in Figures 6 and 7.
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Figure 5. Spatial distributions of the meteorological stations in mainland China.

For the annual average temperature dataset, the clustering process is stopped when
there are 12 clusters. The identified homogeneous clusters are displayed in Figure 6(a).
The minimum, maximum, and mean temperature values; and the standard deviation of
each cluster are listed in Table 2. It can be seen that the mean temperature of the
clusters discovered from north to south have distinct differences and a rising trend. The
standard deviation within each cluster is usually very low. The visual evaluation based on
the interpolation result shows that there is an obvious difference between the spatially
adjacent clusters. The clusters are significantly consistent with the main temperature
zones in mainland China (Zheng et al. 2010). For instance, Cluster 1 represents the cold
temperature zone, Clusters 2 and 3 represent the mid-temperature zone, Cluster 6
represents the warm temperature zone, Cluster 8 represents the northern subtropical
and mid-subtropical zones, Clusters 10 and 11 represent the south subtropical zone,
Cluster 12 represents the tropics, and Cluster 4 represents the plateau temperate zone.

The four comparison tests were also applied to the temperature dataset. Using Park’s
test, the clustering operation is stopped when there are 30 small clusters (shown in
Figure 6(b)). The spatial pattern of temperature cannot be revealed from the clustering
result. In Figure 6(c), the COCOPAN method identifies only two homogeneous tempera-
ture clusters. In Figure 6(d), the spatial scan statistic can only detect three clusters. In
Figure 6(e), by using the g-statistic, in the case of two clusters, the spatial partition
remains significant. The clustering patterns identified by the COCOPAN method, spatial
scan statistic, and g-statistic reveal the temperature difference between South and North
China; however, the local characteristics of the spatial distribution of temperature in
mainland China are not reflected.

For the annual precipitation dataset, the clustering process is stopped when there are
15 clusters. The identified homogeneous clusters are displayed in Figure 7(a). In Table 3,
the minimum, maximum, and mean precipitation values and the standard deviation of
each cluster are listed. The differences and homogeneity among clusters can be visually
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Figure 6. Experimental results of the temperature dataset. (a) Homogeneous temperature clusters
identified by the proposed tests, (b) homogeneous temperature clusters identified by Park’s test, (c)
homogeneous temperature clusters identified by the COCOPAN method, (d) temperature clusters
identified by the spatial scan statistic (blue cluster: cold spot; red cluster: hot spot), and (e)
significant spatial partition identified by the g-statistic.

evaluated using the interpolation result. We can see that the homogeneous clusters with
different precipitation values are clearly classified. The local characteristics of the spatial
distribution of precipitation in mainland China are well reflected by the clusters. For
example, the southern boundary of Cluster 2 (L;) is highly consistent with the widely
accepted boundary between the semi-arid and semi-humid regions in mainland China
(400-mm precipitation contour). Lines L, and L3 are highly consistent with the 800- and
1600-mm precipitation contours, respectively.

In Figure 7(b-e), the homogeneous clusters identified by four comparison tests are
shown. It is seen that the significant spatial partition identified by the g-statistic and
the two clusters detected by the spatial scan statistic reflect the difference of
precipitation between South and North China. Although the homogeneous clusters
identified by the COCOPAN method can reveal the local spatial pattern of
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Figure 7. Experimental results of the precipitation dataset. (a) Homogeneous precipitation clusters
identified by the proposed tests, (b) homogeneous precipitation clusters identified by Park’s test, (c)
homogeneous precipitation clusters identified by the COCOPAN method, (d) precipitation clusters
identified by the spatial scan statistic, and (e) significant spatial partition identified by the g-statistic.

Table 2. The minimum, maximum, and mean temperature values and standard deviation of each
cluster (unit: °C).

Cluster ~ Min Max  Mean Standard deviation  Cluster ~ Min Max  Mean Standard deviation
G -3.08 -1.08 -2.08 1.05 G 0.79 7.93 4.60 290

G —0.65 6.7 3.83 1.68 (& 9.11 19.72  17.61 1.49

G 2.75 13.33 8.51 1.93 (& 1142 20.81 14.77 2.05

G -1.74 6.48 2.74 2.02 Cio 1796 2347 20.22 1.9

Cs -468 -1.08 -29 1.32 (% 19.12 2258 21.05 0.93

Cs 1226 1641 14.35 1.06 G 22,75 2678 23.63 0.99

precipitation in South China, the precipitation differences in northern China cannot
be described. Park’s test can only identify a large number of small clusters; however,
these clusters are not useful for describing the spatial distribution pattern of pre-
cipitation in mainland China.
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Table 3. The minimum, maximum, and mean precipitation values and standard deviation of each
cluster (unit: mm).

Cluster  Min Max Mean  Standard deviation Cluster Min Max Mean  Standard deviation
G 194.4 5123 344.6 77.83 G 626.6 1222.6 859 135.8

G, 175 3424 1457 72.780 Co 13225 17848 1530.2 188.6

G 337.8 806.9 568.7 104.99 (e 841.8 2027.7 14589 224.7

(A 2866 701.7  476.6 91.93 G 1389.3 1844.6 1533.1 157.1

Cs 214.7 517.3 3328 87.09 C3 1109.6 1513 1337.8 102.3

[ 746.1  1234.1 933.7 133.98 [ 1069.6 12524 1163.2 54.4

G 8849 1489.1 1131.2 130.99 (s 13703 2033 1737.6 227.2

Cs 779.1 10149 877.2 91.23

6.3. Discussion

Experimental results of simulated and real-life datasets show that the proposed two-
stage permutation tests are more efficient for identifying homogeneous spatial
clusters. Theoretical comparisons of the methods tested in this study are given as
follows:

(i)

(i)

(iii)

Although Park’s test was designed to evaluate the significance of the degree of
homogeneity within a single spatial cluster, determining whether the difference
between the statistics calculated for the observed dataset and the random
samples is small enough is difficult. From the experimental results shown in
Figures 3(b) and 4(c), one can see that a slight variation within a homogeneous
cluster may be over-segmented.

For the COCOPAN method, the SSW is not sensitive enough for measuring
homogeneity within each cluster. When some noise is merged into
a homogenous cluster, the value of the variance of this inhomogeneous cluster
will be still smaller than a pseudo area or cluster constructed by the COCOPAN
method. Figures 3(c), 4(d,e), 6(c) and 7(c) show that some inhomogeneous
clusters were wrongly reported.

The spatial scan statistic is suitable for identifying significant circular or elliptical
hot (or cold) spots (shown in Figures 3(d) and 4(f)). The shapes of discovered
clusters are limited by the circular or elliptical scanning windows. The spatial scan
statistic is not designed for detecting homogeneous clusters; therefore, some
clusters with medium non-spatial attribute values are usually missed.

Although the g-statistic for assessing the statistical significance of a spatial parti-
tion is compared in this study, it does not indicate that the proposed test out-
performs the g-statistic. The experimental results only indicate that the tests for
assessing the statistical significance of a spatial partition cannot be directly used
for testing the statistical significance of the degree of homogeneity within
a single cluster. One reason is that the g-statistic is defined on stratum but not
on spatial continuous regions. We think that the proposed tests and the g-sta-
tistic complement each other for different application purposes rather than being
competing methods.

For the proposed two-stage permutation tests, we find that homogenous clusters
with different shapes can be detected easily and correctly by integrating the
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proposed tests into certain spatial clustering methods because the homogeneity
of a spatial cluster can be well measured by using local variance and cluster
member permutation strategy.

The time complexity of the five methods can be analyzed as follows. The time
complexity of the spatial scan statistic is O(N*), where N is the number of units in the
dataset. Indeed, the spatial scan statistic cannot be applied to large datasets. The time
complexity of Park’s test is O(HN?), where H is the time of cluster member permutation,
whereas that of the COCOPAN method is O(RNlogN), where R is the number of Monte
Carlo simulations. The time complexity of the g-statistic is O(N). For the proposed tests,
the time complexity of the first stage test in Section 4.1 is O(MN) and the time complex-
ity of the second stage test in Section 4.2 is O(HN?). Thus, the total time complexity of
the proposed tests is O(MN+ HN?).

7. Conclusions

In this study, the homogeneity within a cluster is measured based on the local variance
and cluster member permutation, and two-stage permutation tests are proposed to
statistically evaluate the significance of the degree of homogeneity within spatial
clusters. The proposed tests can be integrated into existing spatial contiguity-
constrained clustering methods to guide them to find homogenous clusters.
Experiments on both simulated and real-life datasets show that the proposed permuta-
tion tests are more efficient than the existing statistical methods for identifying homo-
geneous clusters. The proposed permutation tests have been applied to the annual
average temperature and annual precipitation datasets in mainland China, and the local
characteristics of the spatial distribution of the temperature and precipitation can be
reflected satisfactorily by the identified homogeneous clusters.

It should be noted that the two-stage permutation tests are only designed for
testing the statistical significance of a single cluster. For assessing the statistical
significance of a spatial partition, users should select the g-statistic or the
COCOPAN method. Two limitations of the proposed tests should be considered in
the future. First, the Monte Carlo simulation used for estimating the empirical
distribution of the test statistic is computationally prohibitive, and the computational
efficiency needs to be further improved. Second, the two-stage permutation tests are
designed only for univariate spatial data, and they should be further extended to
a multivariate context.
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