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Abstract 

BACKGROUND: Aedes aegypti is one of the most important mosquito species which 

is a common disease-transmitting pest in tropical areas. Various infectious arbovirus 

diseases can be transmitted by Ae. aegypti. As the ongoing global climate change, we 

are facing an increasing public health threat from the rapid spread of disease vectors 

into wider geographical areas. To better understand the current ecological niche 

range and possible future expansion of Ae. aegypti, an ecological niche modelling 

approach was adopted to predict its current and future potential habitat in Taiwan, 

China. 

RESULTS: Based on observed occurrence records and environmental layers reflecting 

climate and land-use conditions, predictions with high-resolution of 30 arcsec 

(approx. 1km × 1km) were made by our model. Ae. aegypti was predicted to expand 

its habitat in varying degrees out of its current niche range under different climate 

scenarios for the future 21st century. Winter temperature and dry season 

precipitation were considered as important predictors among climate variables. And 

croplands, pasture, forested lands and urban lands were important land-use 
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variables. 

CONCLUSION: Ae. aegypti are expected to establish new habitats out of its current 

niche range under the trend of global climate change. The extent of habitat 

expansion varies under different climate scenarios. Measures should be taken to 

control its expansion to broader scale. Our study has important strategic implications 

for mosquito surveillance and the prevention and control of mosquito-borne 

diseases. 

Key words: Aedes aegypti, climate change, disease-transmitting pest, ecological 

niche model, mosquito-borne diseases 

Introduction 

Mosquitoes are common pests which can transmit a variety of infectious human and 

animal diseases. Due to the wide geographical distribution of mosquitoes, 

mosquito-borne diseases pose a great threat to the global public health. Dengue 

fever (DF) is an acute infectious disease, and is one of the most prevalent arbovirus 

diseases. Human morbidity and mortality caused by DF is higher than any other 

mosquito-borne diseases 1. It is estimated that there are 390 million global infections 

of DF per year 2. More than 125 countries are affected by dengue virus all over the 

world 3. The spread of dengue is considered to be caused mainly by international 

trade and travel, urbanization, insufficient vector monitoring and global climate 
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change 4-7. The history of DF in Taiwan area can be traced back to 1902 in Penghu 

Islet 8. The first documented outbreak of DF in Taiwan Island was in 1924. After the 

1942-1943 epidemic, DF was silenced in Taiwan area for nearly 37 years until the 

re-emerging in 1981 in Liu-Chiu Island 9. And DF outbroke again in southern Taiwan 

Island in 1987-1988, mainly in Kaohsiung and Pingtung 10. Until now, dengue cases 

continue to occur in Taiwan. The major concern is that there is neither no vaccine 

against DF nor specific antiviral therapy to treat DF. Currently, the available method 

to prevent and control DF effectively is to control its vectors 11. To develop prevention 

and control strategies for DF, it is essential to study the distributions of DF vectors in 

Taiwan. 

Aedes aegypti is the primary vector in the transmission of dengue fever 12. Ae. 

aegypti originated in Africa but is currently distributed in tropical and sub-tropical 

regions all over the world 13. More than 90% of female Ae. aegypti bloodmeals are 

taken from humans 14. Infectious females are able to transmit virus repeatedly to 

multiple hosts 15. In addition to dengue fever, Ae. aegypti is also competent vector of 

many other arbovirus diseases, such as chikungunya fever, yellow fever and Rift 

Valley fever 16-18. Adequate management of Ae. aegypti is indispensable for the 

prevention and control of mosquito-borne diseases. 

Ecological niche modelling is a widely accepted approach to predict the potential 
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distribution of various species, microorganisms and even epidemic diseases 19-22. 

Based on detailed species presence records and environmental variables which are 

considered to have an impact on the target species, the relationship between them 

can be estimated by using statistical algorithms. Risk assessments of vector-borne 

diseases by ecological niche modelling the vectors have been highlighted in many 

previous studies, such as the modelling of Culex tritaeniorhynchus for Japanese 

Encephalitis, Phlebotomus chinensis for Leishmaniasis, and snails for Schistosomiasis 

23-25. Species distribution models can help improve the targeted monitoring of 

vectors and guide the development of controlling programs. 

Nowadays, high-resolution geographic layer datasets reflecting the global 

environment can be conveniently accessed and applied. And the well-developed 

surveillance system in Taiwan provides accurate presence locations of mosquitoes 26. 

A comprehensive understanding of the potential niche range of Ae. aegypti and its 

future diffusion trend are able to carried out by ecological niche modelling. Our 

model was established under several assumptions for future climate conditions to 

account for the uncertainty of global climate change in the future 21st century. 

Materials and Methods 

Mosquito occurrence data 

The collections of Ae. aegypti were obtained from the Global Biodiversity 
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Information Facility (GBIF) (https://www.gbif.org/) and the database established by 

Kraemer et al 26. Both databases contain comprehensive global occurrence records of 

Ae. aegypti. Owe to the well-developed mosquito monitoring program in Taiwan 

Island, 9101 occurrences within the period from 1990 to date were obtained. To 

avoid the possible confounding caused by spatial stratified heterogeneity (SSH), we 

calculated Wang’s q-Statistic by GeoDetector to test the presence of SSH in our 

sample 27, 28. Town level occurrences were paired with integer codes representing the 

county level administrative district which they belong to 29. The q-Statistic test 

indicates no significant stratified spatial heterogeneity exists (q = 0.124; p = 0.728). 

By removing duplicate records and spatially autocorrelated records, 415 unique 

occurrences were used to form the final Ae. aegypti database (Fig 1). 

Environmental variables and data processing 

Nineteen bioclimate variables and twelve land-use variables were used to establish 

the model (Table 1 and 2). Data for current climate conditions were accessed and 

downloaded from WorldClim dataset (http://worldclim.org/version1). Variables in 

this dataset, representing temperature and precipitation conditions, were provided 

as the baseline for future climate scenarios. Data for future climate conditions were 

provided by the Consultative Group for International Agricultural Research (CGIAR) 

Research Program on Climate Change, Agriculture and Food Security (CCAFS) 
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(http://ccafs-climate.org/). We used the latest assumptions for future climate 

conditions, which were derived from the fifth Intergovernmental Panel on Climate 

Change (IPCC) assessment report (AR5). The “Representative Concentration 

Pathways” (RCPs) describes assumptions about the possible future emission of 

greenhouse gases 30. RCPs under the Climate System Model of the Beijing Climate 

Center (BCC-CSM1-1) model were used in our study. The BCC-CSM1-1 climate model 

is one of the most commonly used models for simulating the climate change in China 

31. We chose RCP 2.6 as the minimum emission scenario, RCP 6.0 as the medium, and 

RCP 8.5 as the maximum.  

Land-use variables were downloaded from the Land-Use Harmonization (LUH2) 

database (http://luh.umd.edu/index.shtml). A dataset of land-use scenarios from 850 

to 2100 were provided as part of the World Climate Research Program Coupled 

Model Intercomparison Project (CMIP6). 

We extracted future bioclimate and land-use variables with the same RCPs (RCP 2.6, 

RCP 6.0 and RCP 8.5) and time periods (2030s, 2050s and 2070s). All environmental 

layers were resampled to 30 arcsec (approx. 1km × 1km) resolution using bilinear 

interpolation and cropped to the geographical area of Taiwan island. All operations 

were accomplished in ArcGIS 10.2 (ESRI Inc., Redlands, CA, USA). 

Multicollinearity test of these variables was performed by calculating the variance 
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inflation factor (VIF), using the car package in R 32, 33. Variables with VIF > 10 were 

considered to have collinearity problem 34. Finally, variables with significant 

collinearity were removed out of the model. 

Establishing the Maxent models 

Maxent 3.4.1 (http://biodiversityinformatics.amnh.org/open_source/maxent/), 

which is one of the most widely used niche modelling methods, was used to establish 

the model 35. Among various presence-only modelling methods, Maxent has shown 

outstanding predictive performance in modelling niches of species, and scores well in 

comparative studies 36-38. Maxent gives prediction of probability distribution with the 

maximum entropy based on known environmental and species presence data 39. In 

ecological niche modelling, sampling bias is a common problem. To counter the 

sampling bias of occurrences, a background selection process was implemented by 

using SDMtoolbox v2.2 (http://sdmtoolbox.org/), a python-based plugin for ArcGIS 40. 

Ten thousand pseudo-absences with the same spatial bias as the occurrences were 

generated and then introduced into the model 41, 42. The average of 20 replicates for 

each model were taken as the final predictions. 

Suitable habitat shifts 

The possible shift of suitable habitat under future climate scenarios was simulated by 

our model. Binary models are widely used to convert suitability for species into 
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presence/absence in species distribution modelling. To estimate the area that is 

suitable for mosquito survival, sensitivity equals specificity threshold was applied to 

generate binary models 42-44. By comparing the future models with the current model, 

we separately estimated the area of maintain suitable, become suitable and no 

longer suitable for Ae. aegypti. 

Model evaluation and interpretation 

The receiver operating characteristic curve (ROC) was used to evaluate the model 

performance. A greater area under the curve (AUC) value (0 ~ 1) indicates a better 

predictive performance. Jackknife test was adopted to assess the importance of each 

variable in the modelling 45. Whether the training gain increases when a variable is 

used in isolation, or decreases when it is discarded, the variable is considered 

important for the modelling. 

Results 

Potential distribution under current and future climate conditions 

The probability of Ae. aegypti presence predicted by Maxent is shown in Fig 2. The 

current model performed well in representing the distribution of occurrence records. 

In Taiwan, the suitable habitat for Ae. aegypti is currently limited in the southwestern 

part of the island. And the future models showed the possible  range changes for Ae. 

aegypti under future climate scenarios. The shifts of areas with high habitat 
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suitability can be observed in future models.  

Ae. aegypti shows the tendency to expand its habitat under all climate assumptions. 

In the future 21st century, the suitable habitat of Ae. aegypti is likely to expand to the 

central island. There is also a certain possibility that some parts of the eastern coastal 

areas will become suitable for the survival of Ae. aegypti. The AUC value of our 

model is 0.927. 

Change in suitable habitat 

Binary models were reclassified from the continuous models (as shown in Fig 2) 

based on the sensitivity equals specificity threshold, which is 0.3357 output by 

Maxent. Modelled current suitable habitat for Ae. aegypti covers the central and 

southwestern Tainan, southwestern Kaohsiung, western and southern Pingtung (Fig 

3). Predictions under three future climate scenarios show different degrees of 

expansion and partial contraction of habitat. Ae. aegypti shows the tendency of 

spreading northward and eastward. Under all three scenarios for the 2030s, the 

eastern Tainan, central Kaohsiung and eastern Pingtung is predicted to become 

suitable for the survival of Ae. aegypti. Under RCP 6.0 and 8.5 for the 2050s and 

2070s, the habitat is predicted to expand continuously to central Chiayi and southern 

Taitung. The prediction under RCP 2.6 is expected to cover northwestern Tainan and 

western Chiayi in the 2050s and 2070s. The contraction of suitable habitat is 
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predicted to occur in the southernmost area of the island under all scenarios. The 

greatest contraction will occur in the midwestern Tainan under RCP 8.5. 

Under RCP 2.6 and 8.5, the area of suitable habitat is expected to continue growing 

until the 2070s (Fig 4). In the 2030s and 2050s, RCP 6.0 provides the largest suitable 

area among RCPs, and RCP 2.6 for the 2070s.  

The RCP 2.6 scenario provides the smallest contraction area of suitable habitat in the 

2050s and 2070s but the largest in the 2030s. RCP 6.0 provides the largest gained 

area in the 2030s and 2050s but the smallest in the 2070s. RCP 8.5 provides both the 

largest gained area and the largest contraction area in the 2070s. The largest total 

suitable habitat is predicted to be caused by RCP 6.0 in the 2030s and 2050s, and RCP 

2.6 in the 2070s. 

Variable importance 

The relative importance of variables was assessed by the Jackknife test (Fig 5). 

Among bioclimate variables, Bio 11 (Mean temperature of the coldest quarter) and 

Bio 17 (Precipitation of the driest quarter) show great importance in the modelling. 

Among land-use variables, the presence of Ae. aegypti is indicated to be significantly 

associated with cropland, pasture, forested primary land and urban land. 

Discussion 

The monitoring of arbovirus vector is of great help for the prevention and control of 
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vector-borne infectious diseases. In our current study, an approach of ecological 

niche modelling based on presence-only records was used to predict the potential 

distribution of Ae. aegypti in Taiwan, China. Combined with the epidemic situation of 

mosquito-borne diseases, adequate management of Ae. aegypti can be carried out 

according to the habitat suitability map, such as targeted surveillance and eradication, 

pathogen detection among mosquitoes and model verification. 

The current model well represents the observed occurrences of Ae. aegypti. And the 

future models demonstrate the possible ecological  range changes of Ae. aegypti 

under future climate conditions. Suitable habitat under RCP 2.6 is predicted to be 

more likely to expand northward. However, the prediction under RCP 6.0 and 8.5 

indicates the possibility of establishing new habitats in the northeast. This shows the 

different diffusion trends of Ae. aegypti under different future climate assumptions. 

In addition, in areas of Hualien and Taitung, in the east of the island, there is a 

certain possibility that it will become suitable for the survival of Ae. aegypti in the 

future (Fig 2). In general, under all assumptions, a significant northward shift is 

expected to occur in the northern boundary of the suitable habitat. Based on 

experience, Ae. aegypti is currently considered to be only distributed in areas south 

of about 23.5°N 46. The current distribution predicted by our model is located south 

of 23.3°N. And in the future predictions, the northernmost boundary can reach 
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23.8°N (under RCP 6.0). This indicates that, according to the current trend of climate 

change, the suitable habitat for Ae. aegypti will inevitably expand northward, which 

may pose a growing threat to public health. However, the predicted contraction of 

suitable habitats in the southern island can be explained by the inability of Ae. 

aegypti to adapt to higher temperatures 47. Although the size of the habitat changes 

varies with different climate change scenarios, we can notice that the RCP 6.0 

scenario is predicted to result in the most serious situation in the nearer future (until 

the 2050s) and RCP 2.6 would result in the most serious situation in the further 

future (in the 2070s). Moreover, the RCP 8.5 scenario provides the most dramatic 

prediction with both the largest contraction and the largest expansion in the 2070s. 

We considered using climate and land-use variables as predictors for the mosquito 

distribution and found variables which may have significant impact on the survival of 

Ae. aegypti. According to the Jackknife test, Bio 11 (Mean temperature of the coldest 

quarter) was given the greatest importance in the modelling. A previous study on the 

influence of temperature on the survival of Ae. aegypti showed that 13.8°C in winter 

was considered to be the critical low temperature for Ae. aegypti in Taiwan 46. 

Another study determined the minimum temperature threshold for the development 

of Ae. aegypti as 8.3 ± 3.6°C 48. Cold winter limits the occurrence of Ae. aegypti. As 

the continuously warming of climate in Taiwan due to global climate change, the 
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habitat is expected to expand its extent to higher latitudes in the north and higher 

altitudes in the east 46. Bio 17 (Precipitation of the driest quarter) also showed great 

importance among climate variables. Drought is unfavorable for mosquito survival 

because water is necessary for the hatching of eggs and the development of 

mosquitoes 49. Among land-use variables, cropland, pasture, forested land and urban 

land showed significant impact on the distribution of mosquitoes. Human water 

supply is considered to have great impact on the reproduction of mosquitoes 50. 

Agricultural irrigation in croplands and artificial water containers in urban area can 

both provide stable and abundant water for mosquito breeding. The preference for 

Ae. aegypti to rest indoors makes them more suitable for living in urban areas 1. In 

addition to bloodmeals on human, the sugar feeding activities of mosquitoes 

depends on plants in pasture and forested lands 51. 

Our study is novel in our purpose on modelling not only the current distribution but 

also the future distribution of the important arbovirus vector Ae. aegypti in Taiwan, 

China. Based on the available datasets of high-resolution predictions for future 

climate and land-use conditions, we established the model to estimate the extent of 

mosquito expansion. The relative importance of predictors was also assessed by our 

model. For the first time, an exhaustive understanding of the current and future 

status of Ae. aegypti in Taiwan was carried out. Our findings can serve as a reference 
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for current and future mosquito surveillance and will contribute not only to the 

prevention and control of DF, but other mosquito-borne diseases as well. 

There are still some limitations in our study. Firstly, the suitable habitats under future 

climate conditions are modelled based on the assumption that there is no disperse 

limitation for Ae. aegypti into the modelled new habitats. Therefore, our prediction is 

an ideal state, can only serve as a reference for future mosquito surveillance and 

needs to be verified by field investigations. Secondly, although our model considered 

precipitation as a relative important predictor in the modelling by a Jackknife test. 

The correlation between precipitation and habitat suitability should be interpreted 

with caution. The lifecycle of Aedes mosquitoes is characterized by a process of 

dehydration of the eggs (several days to months) after spawning, and then 

rehydration to hatch once precipitation occurs 52. This shows that precipitation is not 

a sufficient condition for the hatching of Aedes eggs. A complete and successful 

hatching process of Aedes eggs requires the alternation of rainfall and desiccation. 

Further ecological research in Taiwan is required to explore the specific relationship 

between environmental variables and the reproduction of mosquitoes.  

According to the ongoing global warming trends, continuous surveillance of Ae. 

aegypti in the future is recommended in areas with higher habitat suitability 

predicted by our model. Further monitoring data can be used to verify and improve 
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the model. Based on our study, a seasonal dynamic model can be carried out to 

investigate the seasonal distribution change pattern of mosquitoes under the 

premise of the introduction of long time series of environmental data. 

Conclusion 

Our study on modelling the current and future distribution of Ae. aegypti in Taiwan, 

China shows the possible habitat shifts under future climate scenarios. Ae. aegypti is 

assumed to be able to establish vast new habitats out of its current range in the 

future 21st century. The extent of habitat expansion varies under different climate 

scenarios. Certain climate and land-use variables are considered important for the 

survival of Ae. aegypti. Our model can serve as a reference in management of 

disease-transmitting pest and risk assessments of mosquito-borne diseases. 
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Variable Description Resolution Extent Sources Included 

Bio1 Annual mean temperature 

30 arcsec Taiwan 
WorldClim1 

CCAFS2 

 

Bio2 Mean diurnal range  

Bio3 Isothermality  

Bio4 Temperature seasonality Yes 

Bio5 Maximum temperature of the warmest 

month 

 

Bio6 Minimum temperature of the coldest month  

Bio7 Temperature annual range  

Bio8 Mean temperature of the wettest quarter  

Bio9 Mean temperature of the driest quarter  

Bio10 Mean temperature of the warmest quarter  

Bio11 Mean temperature of the coldest quarter Yes 

Bio12 Annual precipitation Yes 

Bio13 Precipitation of the wettest month  

Bio14 Precipitation of the driest month  

Bio15 Precipitation seasonality  

Bio16 Precipitation of the wettest quarter  

Bio17 Precipitation of the driest quarter Yes 
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Table 1. Bioclimate variables used in the model. 
1Data for current climate conditions were accessed from WorldClim (http://worldclim.com/version1) 
2Data for future climate projections were accessed from CCAFS (http://ccafs-climate.org/) 

  

Bio18 Precipitation of the warmest quarter  

Bio19 Precipitation of the coldest quarter  
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Table 2. Land-use variables used in the model. 

1Data for current land-use conditions and future land-use projections were accessed from LUH2 
(http://luh.umd.edu/index.shtml) 

 

 

 

 

Variable Description Resolution Extent Source Included 

Primf Forested primary land 

0.25° × 0.25° Taiwan LUH21 

Yes 

Primn Non-forested primary land Yes 

Secdf Potentially forested secondary land Yes 

Secdn Potentially non-forested secondary land Yes 

Pastr Managed pasture Yes 

Range Rangeland Yes 

Urban Urban land Yes 

C3ann C3 annual crops Yes 

C3per C3 perennial crops  

C3nfx C3 nitrogen-fixing crops  

C4ann C4 annual crops  

C4per C4 perennial crops  
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Figure titles 

Fig 1. Occurrence records of Aedes aegypti in Taiwan Island. 

Fig 2. Modelled habitat suitability of Aedes aegypti under current and future 

climate scenarios. 

Fig 3. Suitable habitat change under future climate scenarios. 

Fig 4. Estimated gain, stable and lost area of suitable habitat compared to current. 

Fig 5. The result of Jackknife test. Variables with longer blue bar or shorter green bar 

are considered to have greater relative importance in the modelling. 
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