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Abstract

Rationale, aims, and objectives: Heterogeneity is a critical issue in meta‐analysis,

because it implies the appropriateness of combining the collected studies and impacts

the reliability of the synthesized results. The Q test is a traditional method to assess het-

erogeneity; however, because it does not have an intuitive interpretation for clinicians

and often has low statistical power, many meta‐analysts alter to use some measures, such

as the I2 statistic, to quantify the extent of heterogeneity. This article aims at providing a

summary of available tools to assess heterogeneity and comparing their performance.

Methods: We reviewed four heterogeneity measures (I2, bRI, bRM, and bRb) and illus-

trated how they could be treated as test statistics like the Q statistic. These measures

were compared with respect to statistical power based on simulations driven by three

real‐data examples. The pairwise agreement among the four measures was also eval-

uated using Cohen's κ coefficient.

Results: Generally, bRI was slightly more powerful than the Q test, while its type I

error rate might be slightly inflated. The power of I2 was fairly close to that of Q.

The bRM and bRb statistics might have low powers in some cases. Because the differ-

ences between the powers of I2, bRI, and Q were often tiny, meta‐analysts might not

expect I2 and bRI to yield significant heterogeneity if the Q test failed to do so. In addi-

tion, I2 and bRI had fairly good agreement based on the simulated meta‐analyses, but

all other pairs of heterogeneity measures generally had poor agreement.

Conclusion: The I2 and bRI statistics are recommended for measuring heterogeneity.

Meta‐analysts should use the heterogeneity measures as descriptive statistics which

have intuitive interpretations from the clinical perspective, instead of determining the

significance of heterogeneity simply based on their magnitudes.
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1 | INTRODUCTION

Meta‐analysis has been a popular statistical method to synthesize evi-

dence from different studies in clinical research.1,2 Assessing heterogene-

ity between the collected studies in a meta‐analysis plays a critical role in

examining whether the studies may be properly combined and the syn-

thesized results are reliable.3-12 Of note, the specific meaning of
wileyonlinelibrary.com/jour
heterogeneity may vary across different disciplines. For example, it could

be the differences between contextures of materials or between strata in

a geographical space.13 In this article, heterogeneity in meta‐analyses of

clinical studies refers to the variation in the reported treatment effect

estimates across the collected studies.14 A traditional statistical method

to detect heterogeneity in meta‐analyses is the Q test,15,16 but it is gen-

erally recognized to have low statistical power in many cases.17 Also, it
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only produces P values that indicate a binary decision of either presence

or absence of heterogeneity, and it may not be attractive for evidence

users who are more interested in the magnitude of heterogeneity.

Because of these, more meta‐analyses in recent years have emphasized

on quantifying heterogeneity using certain measures.18

This article considers a class of heterogeneity measures, including the

well‐known I2 statistic18 and the bRI , bRM, and bRb statistics,
19-22 that has an

attractive interpretation as “the proportion of total variation caused by

heterogeneity rather than within‐study sampling error.” All four measures

range between 0% and 100%. Conceptually, these measures describe the

proportion
τ2

τ2 þ σ2
, where τ2 is the between‐study variance caused by

heterogeneity and σ2 represents a summary of within‐study variances.

The following section introduces details about the heterogeneity mea-

sures, and Table 1 summarizes their definitions. Among them, the I2 sta-

tistic has been used most frequently in meta‐analyses. The Cochrane

Handbook for Systematic Reviews of Interventions provides a rule of thumb

for interpreting the I2 statistic; that is, I2 ≤ 40%may indicate unimportant

heterogeneity, 30 % ≤ I2≤ 60%may represent moderate heterogeneity,

50 % ≤ I2 ≤ 90% may represent substantial heterogeneity, and

75 % ≤ I2 ≤ 100% implies that heterogeneity may be considerable.14

These ranges overlap because they are rough, and the true heterogeneity

should be assessed not only from the statistical perspective but also from

the clinical perspective.23 Nevertheless, in many applications, the values

of 25%, 50%, and 75% have been often used as the cut‐off points of I2

to differentiate the extents of heterogeneity for convenience.24

Several studies have evaluated these heterogeneity measures

regarding their biases and confidence interval coverages.18,20,22,25,26

However, the concept of “the proportion of total variation caused by

heterogeneity rather than within‐study sampling error” is not uniquely

defined, because different measures use different summaries of

within‐study variances σ2.27,28 Each measure's true value is usually

defined by replacing the estimated between‐study variance bτ2 with

the true between‐study variance τ2 (see Table 1). For example, the

true proportion of total variation caused by heterogeneity is calculated
TABLE 1 Heterogeneity measures interpreted as the proportion of total
sampling error

Heterogeneity Measure Expressed as a Function of

I2 bτ2
bτ2 þ n − 1ð Þ∑s−2i

∑s−2i
� �2

− ∑s−4ibRI bτ2bτ2 þ n

∑s−2ibRM bτ2
bτ2 þ 1

n
∑s2i

bRb 1
n
∑

bτ2bτ2 þ s2i

Note. n, the number of studies in a meta‐analysis; yi and s2i , the observed effect size

of‐moments estimate of the between‐study variance τ2; Q ¼ ∑s−2i yi−μð Þ2, where
as
τ2

τ2 þ n=∑s−2i
when the bRI statistic is used, while the true proportion

is
τ2

τ2 þ ∑s2i =n
for the bRM statistic. Here, n is the number of studies in

the meta‐analysis, and s2i are the within‐study variances. Therefore,

different measures have different true values, and thus, comparing

the measures' biases and confidence interval coverages may be unfair.

Instead, researchers may pay more attention to how precisely the

measures describe heterogeneity in terms of statistical power. In fact,

measuring heterogeneity is closely related to testing for it. Any het-

erogeneity measure should be able to serve as a test statistic, because

it monotonically increases as heterogeneity increases. Its statistical

power determines its precision as a measure of heterogeneity. Analo-

gously, in linear regression, the coefficient of determination R2 statistic

is widely used to measure the proportion of variation in responses

explained by linear predictors.29 If treated as a test statistic, R2 corre-

sponds to the hypothesis testing of regression slopes being zero.

This article explores the performance of the four heterogeneity

measures serving as test statistics. We first review the derivations of

the various measures and provide details about the calculations of

their statistical powers. Then, three real‐world examples are provided

to illustrate the use of the measures, and we compare the statistical

powers and type I error rates of the measures and the Q test. We also

evaluate the agreement among the four heterogeneity measures using

Cohen's κ coefficient. This article concludes with a brief discussion.
2 | METHODS

2.1 | Heterogeneity measures

The I2 statistic has been the most popular tool to quantify heterogene-

ity among the four measures.18,24 Its motivation was based on a ten-

tative but unrealistic assumption of equal within‐study variances.

Specifically, consider a meta‐analysis containing n studies; each study
variation in a meta‐analysis caused by heterogeneity rather than

bτ2 Expressed as a Function of Q

Q − n − 1ð Þ
Q

Q − n − 1ð Þ
Qþ 1 − n∑s−4i = ∑s−2i

� �2
Q − n − 1ð Þ

Q − n − 1ð Þ þ ∑s−2i
� �2

− ∑s−4i

h i
∑s2i = n∑s−2i

� �
1
n
∑

Q − n − 1ð Þ
Q − n − 1ð Þ þ s2i ∑s−2j

� �2
− ∑s−4j

� �
=∑s−2j

and its sample variance within study i;bτ2 ¼ Q − n − 1ð Þ
∑s−2i − ∑s−4i =∑s−2i

, the method‐

μ ¼ ∑yi=s
2
i

∑1=s2i
. If Q < n − 1, then Q is truncated as n − 1 in the expressions.
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reports a point estimate of treatment effect yi with within‐study vari-

ance s2i . The I2 statistic was originated from the traditional Q statistic,

which is defined as Q ¼ ∑s−2i yi−μð Þ2, where μ ¼ ∑yi=s
2
i

∑1=s2i
is the pooled

common‐effect estimate of the overall treatment effect μ. The expec-

tation of the Q statistic is as follows30:

E Q½ � ¼ τ2 ∑s−2i −
∑s−4i
∑s−2i

 !
þ n − 1;

where τ2 is the true between‐study variance. Here, the within‐study

variances s2i are treated as known “true values” throughout this article

as in most conventional meta‐analysis methods, although in practice

they are sample variances and are actually random variables.16 If the

within‐study variances are assumed to be equal, ie, s2i ¼ σ2, then the

expectation of Q becomes

E Q½ � ¼ n − 1ð Þ τ2

σ2
þ 1

� 	
:

Using the method of moments, ie, equating the observed Q with its

expectation, the proportion of total variation caused by heterogeneity

rather than within‐study sampling error can be evaluated using the I2

statistic:

I2 ¼ τ2

τ2 þ σ2
¼ Q − n − 1ð Þ

Q
; (1)

which is a function ofQ. Because conceptually the proportion should be

positive, Q is often truncated as n − 1 if Q < n − 1, so that I2 is between

0% and 100%. Such a truncation will be applied throughout this article.

Alternatively, the I2 statistic can be also expressed as a function of

the between‐study variance. Consider the method‐of‐moments esti-

mate of the between‐study variance τ2 by DerSimonian and Laird31:

bτ2 ¼ Q − n − 1ð Þ
∑s−2i −

∑s−4i
∑s−2i

: (2)

Again, the truncation of Q is used to guarantee the nonnegativity of

this variance estimate. Expressing the Q statistic in the form of bτ2
via Equation (2) and plugging it in Equation (1), we have

I2 ¼ bτ2
bτ2 þ n − 1ð Þ∑s−2i

∑s−2i
� �2

− ∑s−4i

: (3)

Therefore, the I2 statistic effectively treats the summary of within‐

study variances as follows:

σ2 ¼ n − 1ð Þ∑s−2i
∑s−2i
� �2

− ∑s−4i
:

As the I2 statistic was originally motivated by the expectation of the Q

statistic, it has a simpler form expressed in terms of Q in Equation (1)
than that expressed in terms of bτ2 in Equation (3). The latter form is

seldom used in the literature.

Unlike the I2 statistic, the measures bRI and bRM were directly origi-

nated from certain summaries of within‐study variances σ2, instead

of the Q statistic. The bRI statistic uses the harmonic mean of within‐

study variances to estimate σ2, while the bRM statistic uses the arith-

metic mean.19-21 The bRI statistic was proposed by Takkouche et al19

prior to the introduction of the I2 statistic, although it has been used

less frequently than I2 so far. Specifically, the bRI statistic treats the

summary of within‐study variances as σ2 ¼ n

∑s−2i
, and the bRM uses

σ2 ¼ 1
n
∑s2i . Consequently, plugging them in the conceptual form of

τ2

τ2 þ σ2
that describes the proportion of total variation caused by het-

erogeneity, the two heterogeneity measures are accordingly calcu-

lated as follows:

bRI ¼
bτ2bτ2 þ n

∑s−2i

and bRM ¼ bτ2
bτ2 þ 1

n
∑s2i

:

Using Equation (2) to express bτ2 in terms of Q, the two measures can

be also written as functions of Q, as shown in Table 1, while such

forms are not as straightforward as those in terms of bτ2.
The bRb statistic was recently proposed by Crippa et al.22 It uses the

random‐effects meta‐analysis result to directly impute the total varia-

tion τ2+σ2. Specifically, the bRb statistic is originally defined in terms of

the estimated between‐study variance:

bRb ¼ 1
n
∑

bτ2bτ2 þ s2i
:

Note that
bτ2bτ2 þ s2i

represents the proportion of heterogeneity in study

i; therefore, the bRb statistic can be considered as an average of study‐

specific proportions of heterogeneity. Again, this measure can be

alternatively expressed in terms of the Q statistic via Equation (2) as in

Table 1, but the alternative form is much more complicated and much

less intuitive.

2.2 | P values of heterogeneity measures

The P value of the Q test can be easily calculated because the Q sta-

tistic follows a χ2 distribution with n − 1 degrees of freedom under

the null hypothesis of homogeneity (ie, H0 : τ
2 = 0), if ignoring the var-

iation of the within‐study variances s2i and treating them as known

true values. However, the four heterogeneity measures have compli-

cated theoretical null distributions. Due to this difficulty, these mea-

sures have been rarely recognized as test statistics to produce P

values. To avoid the problems in deriving the measures' exact null dis-

tributions, the parametric resampling method can be applied to calcu-

late the P values of the measures, as well as the Q test.19,32,33



4 LIN
The steps for the parametric resampling method are as follows. First,

under the null hypothesis of homogeneity, we calculate the common‐

effect estimate as μ ¼ ∑yi=s
2
i

∑1=s2i
and denote the heterogeneity measures

and the Q statistic in the original meta‐analysis as I2(0), bR 0ð Þ
I , bR 0ð Þ

M , bR 0ð Þ
b ,

and Q(0), accordingly. Second, n within‐study variances are sampled with

replacement from those (ie, s2i ) in the original meta‐analysis. Third, the

point estimates of the n resampled studies are generated using the nor-

mal distributions with mean μ and the sampled variances under the null

hypothesis; these studies form a resampled meta‐analysis. Fourth, repeat

the second and third steps for K (say, 1000) iterations. Finally, we calcu-

late the four measures and Q for each resampled meta‐analysis, denoted

as I2(k), bR kð Þ
I , bR kð Þ

M , bR kð Þ
b , and Q(k) (k = 1, 2, …, K). Consequently, their P values

are calculated as follows:

PX ¼ ∑K
k¼1 1 X kð Þ ≥ X 0ð Þ

� �h i
=K;

where X represents any heterogeneity measure or the Q statistic, and

1 tð Þ is the indicator function with 1 tð Þ ¼ 0 if the statement t is false

and 1 tð Þ ¼ 1 if t is true.

Given the number of studies n, note that the I2 statistic depends

only on the Q statistic as in Equation (1), and it is an increasing func-

tion of Q. Therefore, I2(k) ≥ I2(0) is equivalent to Q(k) ≥ Q(0); conse-

quently, the P value of I2 equals to that of Q when using the

resampling method, leading to the same statistical power and type I

error rate. Of note, some statistical large‐sample properties (eg, the

delta method) may be also used to derive an approximated variance

of I2 as in Higgins and Thompson18 and thus to yield an

asymptotics‐based P value of I2. However, the large‐sample approxi-

mation may be fairly poor for meta‐analyses with a few (say, less than

10) studies, while such meta‐analyses are common in practice34;

therefore, such P values may not be accurate.

Because bRI, bRM, and bRb must depend on the within‐study variances

besides Q, their mathematical forms may not clearly reveal their statis-

tical power compared with Q. Section 2.4 explores their resampling‐

based P values and statistical powers using real data and simulations.

2.3 | Other available heterogeneity measures

Besides the aforementioned four heterogeneity measures, several other

measures are available for different purposes. For example, Higgins and

Thompson18 also proposed the H and R statistics, while they have been

generally less popular than I2. The H statistic is interpreted as the ratio of

the standard deviation of the summary estimate from a random‐effects

meta‐analysis compared with that from a common‐effect meta‐analysis.

In other words, it describes the inflation in the confidence interval of the

summary estimate under a random‐effects setting (heterogeneity) com-

pared with a common‐effect setting (homogeneity). The R statistic is

defined differently but has a similar interpretation with H. The I2 statistic

has been used more frequently than these two measures primarily

because the concept of “proportion of variance explained” is widely

familiar among meta‐analysts.
Moreover, meta‐analyses often contain some outlying studies that

are inappropriately or mistakenly selected into the systematic reviews;

these outliers may have substantial impact on assessing heterogeneity,

and I2 may overestimate heterogeneity. To reduce such impact, Lin

et al32 proposed two alternative heterogeneity measures I2r and I2m,

which have the same interpretation as I2 and are robust in the pres-

ence of outliers. Their robustness has been evaluated using both the-

oretical properties and empirical studies.12,32 In addition to these

heterogeneity measures mostly used in meta‐analyses of clinical stud-

ies, Wang et al35 introduced the q statistic to assess spatial stratified

heterogeneity in ecological and geographical research. Similar to I2, a

q value of 0 indicates no spatial stratification of heterogeneity, while

q = 1 indicates a perfect spatial stratification of heterogeneity.

These alternative measures were originally proposed for different

specific purposes; I2r and I2m were specially designed for the presence

of outliers, and q was designed for spatial stratified heterogeneity.

Their performance may be preferred in those specific cases and has

been investigated in the original articles that proposed them. Conse-

quently, in this article, the following comparisons will focus on the four

heterogeneity measures reviewed in Section 2.1 that have the same

interpretation for generic meta‐analyses.
2.4 | Data analyses

We considered three meta‐analyses with different numbers of studies.

O'Doherty et al36 presented a meta‐analysis with three studies on the

effect of screening on identification of women experiencing intimate

partner violence in emergency clinics. Makani et al37 collected 16

studies to compare dual blockade of the renin‐angiotensin system

with monotherapy for hyperkalemia in cohorts without heart failure.

One study had no events in both treatment groups, so its treatment

effect was not estimable and the meta‐analysis effectively contained

15 studies. Moreover, Myung et al38 conducted a meta‐analysis with

50 studies to investigate the efficacy of vitamin and antioxidant sup-

plements in prevention of major cardiovascular events. The effect

sizes in all three meta‐analyses were the risk ratios, which were

analysed on a logarithmic scale. Figures 1–3 show their forest plots,

which were produced using the R package “meta.”39

We applied the four heterogeneity measures to these meta‐analyses

and calculated the P values of these measures and the Q test based on

the resampling method described in Section 2.2 with 100 000 iterations.

The theoretical χ2 distribution was also used to calculate the Q test's P

value. The significance level was set to 5%. The R code for the three

meta‐analyses is available in the Supporting Information.

In addition, driven by these real‐world examples, we conducted

simulations to investigate the statistical powers and the type I error

rates of the heterogeneity measures. Specifically, based on each

example, 10 000 meta‐analyses were simulated using the real

dataset's overall effect size and the number of studies n = 3, 15, or

50. The within‐study standard errors were sampled from the

uniform distribution ranging from the minimum to the maximum of

the observed standard errors in each real dataset. For example, when

User
高亮



FIGURE 1 Forest plot of the meta‐analysis by O'Doherty et al36

FIGURE 2 Forest plot of the meta‐analysis by Makani et al37
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the simulations were based on the meta‐analysis by O'Doherty et al,36

whose within‐study standard errors were 1.02, 0.24, and 0.47 in its

three studies, the within‐study standard errors in the simulated

meta‐analyses were sampled from U(0.24, 1.02). In addition, we con-

sidered various values for the between‐study standard deviation τ.

Specifically, τ was from 0 to 2.5 by 0.5 for the simulations based on

the meta‐analysis by O'Doherty et al,36 was from 0 to 0.75 by 0.15

for those based on the meta‐analysis by Makani et al,37 and was from

0 to 0.5 by 0.1 for those based on the meta‐analysis by Myung et al.38

The between‐study standard deviation was not further increased

because the statistical power would be too high (eg, above 80% or

90%), and the differences between the measures would be minimal.

To calculate the P values of the heterogeneity measures, 1000 resam-

pling iterations were used for each simulated meta‐analysis. The sig-

nificance level remained to be 5%.

Based on the simulatedmeta‐analyses, we also used Cohen's κ coef-

ficient to assess pairwise agreement among all four heterogeneity mea-

sures under each setting.40 The extent of heterogeneity in each

simulated meta‐analysis was categorized as unimportant, moderate,

substantial, and considerable roughly using the cut‐off points at 25%,

50%, and 75% of the heterogeneity measures. The κ coefficients less

than 0.4, 0.4 to 0.75, and greater than 0.75 represented poor, fair to

good, and excellent agreement, respectively; see, eg, Fleiss et al.41(p604)
3 | RESULTS

3.1 | Real‐data examples

For the meta‐analysis by O'Doherty et al,36 the Q test led to PQ = 0.070

(based on the theoretical χ2 distribution) and 0.071 (based on the resam-

pling method), and the heterogeneity measures were I2 = 62.3%,bRI = 74.5%, bRM = 46.3%, and bRb = 58.9% with P values PI2 = .071,

PbRI

= .057,PbRM

= .105, andPbRb

= .079, respectively. For the meta‐analysis

by Makani et al,37 the Q test had PQ = 0.054 (based on the theoretical χ2

distribution) and 0.053 (based on the resampling method), and the het-

erogeneity measures were I2 = 40.2%, bRI = 58.9%, bRM = 4.4%, andbRb = 19.0% with P values PI2 = .053, PbRI

= .058, PbRM

= .138, and

PbRb

= .120. For the meta‐analysis by Myung et al,38 the Q test had a P

value around .002 (based on both the theoretical χ2 distribution and

the resampling method), and the heterogeneity measures were

I2 = 41.3%, bRI = 42.8%, bRM = 2.2%, and bRb = 26.1% with P values

PI2 = .002, PbRI

= .002, PbRM

= .014, and PbRb

= .003.

In the first two meta‐analyses, all P values were larger than .05, and

we did not reject the null hypothesis of homogeneity, although the

heterogeneity measures were mostly moderate or high, implying



FIGURE 3 Forest plot of the meta‐analysis
by Myung et al38
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nonignorable heterogeneity.14 In the last two meta‐analyses, the bRM

and bRb statistics were noticeably smaller than I2 and bRI. Their values

(2.2% and 26.1%) seemed to seriously underestimate heterogeneity

in the last meta‐analysis by Myung et al,38 because all P values were

much smaller than .05, indicating statistically significant heterogeneity.
3.2 | Simulation studies

Table 2 presents the statistical powers and type I error rates of the

heterogeneity measures and the Q test. The Monte Carlo standard

error for each result was smaller than 1%. The I2 statistic and the Q

test controlled the type I error rate very well, as the rate was fairly

close to 5% across different settings. The type I error rate of the bRI sta-

tistic slightly inflated (by from 0.5% to 1.4%). Moreover, the type I

error rates of the bRM and bRb statistics did not exceed 5% under all set-

tings, and the rates were as low as 1.9% and 3.2% under the setting

based on the meta‐analysis by Makani et al.37
As for statistical power, the I2 statistic produced nearly the same

results with the Q test. Generally, the bRI statistic was slightly more

powerful than the I2 statistic and the Q test, possibly because its type

I error rate was also a bit higher. The bRM statistic had the lowest power

among the four heterogeneity measures, and the bRb statistic was also

noticeably less powerful than the Q test and the I2 and bRI statistics.

Under the setting based on the meta‐analysis by Makani et al37 with

τ = 0.3, the powers of the Q test and the I2 statistic were around

53.6%, slightly less than the power of the bRI statistic, 55.9%. The

power of the bRM statistic was merely 43.3%, and that of the bRb statistic

was 49.3%. The bRM and bRb statistics were underpowered likely

because their type I error rates were too low in some cases, so these

measures might be too conservative for assessing heterogeneity.

Table 3 presents Cohen's κ coefficients in the simulated meta‐

analyses. Under the setting based on the meta‐analysis by O'Doherty

et al36 containing only three studies, all four heterogeneity measures

generally had excellent agreement because nearly all κ coefficients

were at least 0.75. However, for larger simulated meta‐analyses



TABLE 2 Type I error rates and statistical powers (in percentage, %)
of the heterogeneity measures and the Q test in the simulation studies

τ
Q (Based

on χ2)
Q (Based on

resampling) I2 bRI
bRM

bRb

Simulations based on the meta‐analysis by O'Doherty et al36 with three

studies:

0 5.2 5.1 5.1 5.8 4.5 5.0

0.5 18.0 17.9 17.9 19.4 16.7 17.6

1.0 45.3 45.2 45.2 46.7 43.7 44.9

1.5 64.9 64.7 64.7 66.1 63.8 64.5

2.0 76.7 76.6 76.6 77.6 75.7 76.4

2.5 83.8 83.8 83.8 84.4 83.3 83.8

Simulations based on the meta‐analysis by Makani et al37 with 15 studies:

0 5.1 5.1 5.1 6.4 1.9 3.2

0.15 22.3 22.1 22.1 23.8 12.2 17.2

0.30 53.7 53.6 53.6 55.9 43.3 49.3

0.45 76.5 76.6 76.6 78.1 69.5 73.3

0.60 89.6 89.5 89.5 90.3 85.0 87.4

0.75 95.2 95.2 95.2 95.7 93.0 94.3

Simulations based on the meta‐analysis by Myung et al38 with 50 studies:

0 4.9 4.9 4.9 5.5 2.1 3.3

0.1 21.6 21.5 21.5 22.6 13.8 17.7

0.2 63.7 63.4 63.4 64.8 54.1 59.1

0.3 88.1 88.2 88.2 88.8 83.9 86.1

0.4 96.7 96.7 96.7 97.0 95.1 96.0

0.5 99.1 99.1 99.1 99.2 98.5 98.8

Note. τ, the between‐study standard deviation. The results corresponding

to τ = 0 are type I error rates, and those corresponding to τ > 0 are statis-

tical powers.

TABLE 3 Cohen's κ coefficient of each pair of the four heteroge-
neity measures based on the simulated meta‐analyses

τ I2 vsbRI I2 vsbRM I2 vsbRb
bRI vsbRM

bRI vsbRb
bRM vsbRb

Simulations based on the meta‐analysis by O'Doherty et al36 with three

studies:

0 0.857 0.893 0.961 0.751 0.876 0.875

0.5 0.862 0.878 0.949 0.742 0.859 0.883

1.0 0.870 0.886 0.953 0.757 0.850 0.907

1.5 0.885 0.891 0.954 0.777 0.859 0.918

2.0 0.886 0.908 0.963 0.796 0.861 0.935

2.5 0.903 0.893 0.956 0.797 0.876 0.922

Simulations based on the meta‐analysis by Makani et al37 with 15 studies:

0 0.636 0.061 0.477 0.034 0.265 0.210

0.15 0.618 0.033 0.412 0.022 0.231 0.132

0.30 0.597 0.030 0.264 0.023 0.138 0.220

0.45 0.625 –0.028 0.113 –0.013 0.043 0.244

0.60 0.632 –0.059 0.039 –0.038 –0.008 0.321

0.75 0.654 –0.060 0.040 –0.034 0.010 0.398

Simulations based on the meta‐analysis by Myung et al38 with 50 studies:

0 0.664 0.000 0.010 0.000 0.005 0.000

0.1 0.735 0.000 0.016 0.000 0.008 0.000

0.2 0.703 0.000 0.010 0.000 –0.010 0.012

0.3 0.679 –0.008 –0.085 –0.006 –0.072 0.058

0.4 0.687 –0.028 –0.092 –0.018 –0.067 0.079

0.5 0.700 –0.033 –0.088 –0.022 –0.065 0.027

Note. τ, the between‐study standard deviation.
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containing 15 studies based on that by Makani et al,37 all κ coefficients

dramatically decreased. Only the pair of I2 and bRI had good agreement.

All remaining five pairs generally had fairly poor agreement; many κ

coefficients were close to zero. When the simulated meta‐analyses

became even larger with 50 studies as in the one by Myung et al,38

the agreement between I2 and bRI remained good with κ coefficients

around 0.7, while κ coefficients of other five pairs of heterogeneity

measures became closer to zero, indicating poor agreement.
4 | DISCUSSION

4.1 | Main findings

This article has reviewed four measures that can be used to quantify

heterogeneity in meta‐analyses of clinical studies. The bRI statistic

was found to be slightly more powerful than the Q test and the I2 sta-

tistic in some cases, while its type I error rate was also slightly inflated.

The Q test and the I2 statistic had nearly the same power. The power

of the bRb statistic was noticeably lower than that of the foregoing
measures, and the bRM statistic was generally the least powerful one

among the four measures. In addition, based on the simulated meta‐

analyses, the agreement between I2 and bRI was fairly good, while all

other pairs of heterogeneity measures generally had poor agreement.
4.2 | Strengths and limitations

Most existing studies compared heterogeneity measures in terms of

biases, mean squared errors, confidence interval coverages, etc.

Although all four heterogeneity measures reviewed in this article can

be interpreted as the proportion of total variation due to heterogene-

ity, such a proportion is not a uniquely defined concept. Different

measures use different estimates to summarize the within‐study vari-

ances, so their true values are different, and it may be unfair to com-

pare the measures with respect to characteristics such as biases.

Alternatively, this article compared the four measures with respect

to their statistical powers (and also type I error rates) via simulations

driven by real data, which may better reflect the performance of the

measures for detecting heterogeneity. The simulation settings covered

various scenarios with different numbers of studies and different

extents of heterogeneity.
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Our study had several limitations. First, we restricted our compar-

isons to be among the four heterogeneity measures with the same

interpretation for generic meta‐analyses, while several other measures

briefly reviewed in Section 2.3 are also good options for different pur-

poses. The heterogeneity measures may be selected on a case‐by‐case

basis with considerations of many factors (eg, the presence of out-

liers). Second, the different forms of the four heterogeneity measures

in terms of bτ2 and Q in Table 1 were based on the method‐of‐

moments estimate of the between‐study variance bτ2. Originally, I2

was derived based on Q, while the other three measures were based

directly on bτ2. This article used the method‐of‐moments estimate

mainly because it yielded the one‐to‐one relationship between the

two forms in terms ofbτ2 and Q for each measure; otherwise, such rela-

tionship may not hold for other estimates of τ2. However, although

the method‐of‐moments estimate has been popular so far, it has been

found to be inferior in some cases.42 Alternative estimates, such as

those based on the restricted maximum likelihood or Bayesian analy-

sis, may be better options to be used in the heterogeneity mea-

sures.43,44 Third, as in conventional meta‐analysis methods, the

within‐study variances were treated as true values in our analysis

and the four heterogeneity measures. However, they were actually

estimates and were subject to sampling error; these variance esti-

mates could be poor if the corresponding studies had small sample

sizes.16,27,45 Future studies are highly needed to effectively account

for such sampling errors in within‐study variances and to quantify het-

erogeneity more accurately.
4.3 | Recommendations

In summary, based on their statistical powers and agreement, both the

I2 and bRI statistics may be preferred measures of heterogeneity, while

the bRM and bRb statistics may not be recommended.

In the current literature, some meta‐analysts depend solely on the

magnitude of certain heterogeneity measures (usually I2) for assessing

heterogeneity and choosing either the common‐effect or random‐

effects model. For example, Myung et al38 used the I2 statistic “for

the test of heterogeneity”; however, they reported only the magnitude

of the I2 statistic, without any information about the P value of I2 or

the Q test. This article has shown that the measures were not dramat-

ically more powerful than the Q test; therefore, they may not yield sta-

tistically significant heterogeneity if Q cannot. It is untenable to assess

heterogeneity based only on the measures' magnitude. In addition,

meta‐analysts have been recommended to report the measures along

with their confidence intervals, rather than simply using them as abso-

lute measures of heterogeneity.46-49

Despite that the heterogeneity measures may not greatly outper-

form the traditional Q test with respect to statistical power, the I2

and bRI statistics still provide valuable information about heterogeneity

in a meta‐analysis from the epidemiological or clinical perspective, and

they can be easily understood by evidence users.
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