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Abstract: Currently, more and more remotely sensed data are being accumulated, and the spatial analysis 

methods for remotely sensed data, especially big data, are desiderating innovation. A deep convolutional 

network (CNN) model is proposed in this paper for exploiting the spatial influence feature in remotely sensed 

data. The method was applied in investigating the magnitude of the spatial influence of four factors—

population, gross domestic product (GDP), terrain, land-use and land-cover (LULC)—on remotely sensed 

PM�.� concentration over China. Satisfactory results were produced by the method. It demonstrates that the 

deep CNN model can be well applied in the field of spatial analysing remotely sensed big data. And the 

accuracy of the deep CNN is much higher than of geographically weighted regression (GWR) based on 

comparation. The results showed that population spatial density, GDP spatial density, terrain, and LULC 

could together determine the spatial distribution of PM�.�  annual concentrations with an overall spatial 

influencing magnitude of 97.85%. Population, GDP, terrain, and LULC have individual spatial influencing 

magnitudes of 47.12% and 36.13%, 50.07% and 40.91% on PM�.� annual concentrations respectively. Terrain 

and LULC are the dominating spatial influencing factors, and only these two factors together may 

approximately determine the spatial pattern of PM�.� annual concentration over China with a high spatial 

influencing magnitude of 96.65%.  

Keywords: spatial influence; PM�.� pollution; deep convolutional network; remote sensing  

 

1. Introduction 

Remote sensing technology has developed rapidly since the 1960s [1], and an abundance of remote sensing 

data has been accumulated in this 50-year period. Although abundant remotely sensed data have been applied 

to many fields, such as ecology, environment, geography, etc., the spatial analysis method for remotely sensed 

lattice data desiderates innovation. A single spatial variable generally has autocorrelation [2] (i.e., spatial 

dependence [3,4]), and various spatial variables have correlation. Spatial autocorrelations can be analysed with 

local indicators of the spatial association (LISA) index [5] (e.g., local Moran I [6], local Geary c index [7]). The 

main objective of spatial analysis is to identify the natural relationships that exist between variables [8,9].The 

mainstream classical spatial analysis models , e.g. spatial lag model [10,11], spatial error model [10,11], and 

Bayesian spatial regression model [12], can only evaluate the overall or average linear correlation feature over 

a whole study region, neglecting the details of local area. These methods ignore the consequences of spatial 

heterogeneity [13]. The majority of spatial analysing methods assume stationary space. However, assuming 

spatial convariance structure to be stationary is not so reasonable [14]. The spatial influencing relationship can 

better be explored when the analysis is local and more detailed results can be yielded [15]. The inclusion of a 
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spatial heterogeneity resulting from differences in environmental conditions, socioeconomic dynamics, and 

other factors reinforces the need for more regionalized spatial analyses in exposure assessment and public 

health [16]. Although, the geographically weighted regression (GWR) [17] method considers local details; 

however, it can only describe a linear or simple non-linear spatial influencing relationship. In the era of big 

data, the need for developing advanced spatial analysis methods (e.g., machine learning methods) for remotely 

sensed data is urgent. 

Previously, there are several studies that have applied machine learning methods to address the 

influencing factors on PM�.�  concentrations. Zheng et al. [18] used traditional artificial neural networks to 

model spatial correlation between Beijing’s air qualities and influencing factors, e.g. meteorology, traffic flow, 

human mobility. Yan et al. [19] predicted the daily average PM2.5 concentration in Nanjing, Beijing, and Sanya, 

combining meteorological and contaminant factors based on the Long Short-Term Memory (LSTM) model. 

Suleiman et al. [20] presented a machine learning model to predict the traffic-related PM��  and PM�.� 

concentrations from various variables (e.g., traffic variables). Hsieh et al. [21] proposed a semi-supervised 

learning algorithm to optimize the monitoring locations of air quality in Beijing based on spatial correlation. 

Certainly, there are some studies which utilized typical methods to investigate the influence of satellite-based 

PM�.�. He et al. [22] used empirical orthogonal function (EOF) to analyse the relationship between remotely 

sensed PM�.� and climate circulation transformation in East China. Hajiloo et al. [23] employed geographical 

weight regression (GWR) to investigate impact of meteorological and environmental parameters on PM2.5 

concentrations in Tehran, Iran. Yang et al. [24] quantified the influence of natural and socioeconomic factors on 

PM�.� pollution using the GeoDetector model [25,26].  

This study proposed a spatial analysis method that exploits the spatial influencing feature of remotely 

sensed data based on the deep CNN. CNN is a mainstream deep learning method and can effectively extract 

the feature representations from a large number of images [27] and object detection [28]. Some researchers have 

applied deep CNN in remote sensing classification. Q. Zou et al. [29] and Zhao et al. [30] proposed a DBN 

method for high-solution satellite imagery classification. H. Liang and Q. Li, C. Tao et al., and F.P.S. Luus et al. 

[31], Nogueira et al. [32], Volpi et al. [33], Chen et al. [34], have employed deep CNN in hyperspectral imagery 

classification or feature extraction. Some researchers have also employed deep CNN in synthetic aperture radar 

(SAR) image classification, e.g. Du et al. [35] and Geng et al. [36]. To our knowledge, the research applying deep 

CNN into spatial influencing of remotely sensed lattice data is very rare. This study aimed to present a deep 

CNN model exploiting the magnitude of spatial influence of four factors—population, gross domestic product 

(GDP), terrain, and land-use and land-cover (LULC)—to remotely sense the annual mean concentration of 

PM�.� over China. This model not only considers local spatial heterogeneity but also has super nonlinear fitting 

ability. Therefore, the presented model is rooted in a deep learning framework and may reduce uncertainty of 

the results obtained from a simplistic correlation analysis or simple regression model, therefore giving better 

information to decision makers of public health. 

2. Materials and Methodology 

2.1 Materials 

The materials used in this research contain five types of data: remotely sensed PM�.�  concentration, 

population spatial distribution density, GDP spatial distribution density, terrain data, and LULC in China. The 

remotely sensed PM2.5 annual concentration dataset in 2010 was produced by the Atmospheric Physics Institute 

of Dalhousie University in Canada [37] with a resolution of 0.1° ×  0.1°. The population density data in this 

paper are cited in the Gridded Population of the World (GPW), data of the UN-Adjust Population Density-v4 

[38], published by a data centre in NASA's Earth Observing System Data and Information System (EOSDIS), 

with a resolution of 30’ × 30’ . GDP spatial distribution density, terrain data, and LULC datasets were drawn 

from the Resources and Environmental Science Centre of the Chinese Academy of Sciences 

(http://www.resdc.cn). All above-mentioned data were projected by Albers Conic Equal Area with WGS-84 

datum, and the resolution was unified to 10 km × 10 km. 
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2.2 Methodology 

 The methodology in this paper consists of two modules: processing geospatial data and structuring the 

deep CNN model. The purpose of the former is to establish the dataset for the deep CNN model. The deep 

CNN model undertakes the mission of fitting the complex function of spatial correlation relationship. 

2.2.1 Processing geospatial data 

 The deep CNN method is usually applied in image identification or classification, not directly 

transplanted into analysing geospatial data. In the geospatial issue, spatial correlation and geographical 

attribute need to be considered. Hence, geospatial data require technical processing to match the deep CNN 

model structure. The four influencing factors generate inputs. Each pixel location contains PM�.� 

concentrations as output and four influencing factors. In view of spatial correlation, the pixel location and the 

surrounding locations should be considered. The deep CNN model has the ability of processing big data; 

therefore the order of spatial correlation can be amplified. In this paper, the order of spatial correlation adopts 

n-order shape, (2n + 1) × (2n + 1) pixels (n = 1,2, …). Figure 1 shows an illustration of 5-order shape of the 

spatial correlation extent, including 11 × 11 pixels. Subsequently, it can extract the corresponding four sets of 

influencing factor attribute data for a pixel location. Each dataset of influencing factors comprises the 

corresponding values of the surrounding (2n + 1) × (2n + 1) pixels. In short, the PM�.� annual concentration 

of a pixel location is affected by the four influencing factors of its own and the surrounding n-order spatial 

correlation extent, (2n + 1) × (2n + 1) pixels. The mathematic form can be expressed as follows: 

��
(���.�)

=

������|(����)×(����), ����|(����)×(����), ����|(����)×(����), �����|(����)×(����)� + ��   
(1) 

where ��
(���.�)

 is the PM�.�  annual concentration of the i-th pixel, ����|(2�+1)×(2n+1) , 

����|(2�+1)×(2n+1), ����|(2�+1)×(2n+1), �����|(2�+1)×(2n+1) represent the four influencing factor attribute values of 

the i-th pixel and its surrounding (2n + 1) × (2n + 1)  pixels, and ��  represents the error. The spatial influencing 

function F(. ) can be learned by the deep CNN model. 

 

Figure 1. Illustrating 5-order shape of the extent of spatial correlation 

2.2.2 A developed deep convolutional neural network model  

CNN contains two categories of cells in the visual cortex, simple cells which exploit local features and 

complex cells which “pool” (e.g. maximizing, averaging) the outputs of simple cells within a neighbourhood. 

The structure of CNN model which has two special aspects of local connections and sharing weights is different 

from general deep learning models. A complete deep CNN stack three types of layers, convolutional layers, 

pooling layers, and full connected layers.  
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The commonly used CNNs are 2-Dimensional CNN and 3- Dimensional (3-D) CNN. Figure 2 shows a 3-

D CNN illustration with m (m=1,2,…) filters and k (k=1,2,…) convolution kernels. The value of a neuron S��
���

 

at position (�, �, �) of the j-th convolutional feature in the i-th layer can be expressed as follows [34]: 

���
���

= �(� � � � ����
���

�(���)�
(���)(���)(���)

+ ���

����

���

����

���

����

����

 )  (2) 

where m indexes the convolutional feature in the (� − 1)th layer connected to the j-th convolutional feature, 

and ��  and ��  are the height and the width of the convolutional kernel. �� is the size of the spatial influencing 

factors, ����
���

 is the value of position (�, �, �) connected to the m-th convolutional feature, and ���  is the bias 

of the j-th convolutional feature in the i-th layer. 

 

Figure 2. The illustration of 3-D convolution with m (m=1,2,…) filters and k (k=1,2,…) convolution kernels, the 

weights are color-coded.  

This paper designs a deep 3-D CNN model for exploiting spatial influencing feature of remotely sensed 

data. Figure 3 illustrates the presented deep CNN model architecture which contains including four 

convolutional layers, four polling layers, and three hidden layers. And the activation function for hidden layer 

adopted the Rectified Linear Unit (ReLU) function. The pooling mode employed average mode. The batch 

normalization was set in each layer except for the output layer. The dropout ratio and learning ratio were set 

as 25% and 1%, respectively. The dimension of the pre-processed input neural layer is (2n + 1) × (2n + 1) × 4, 

including four sets of influencing factors with the i-th pixel and its surrounding (2n + 1) × (2n + 1) pixels. 

Table 1 lists the experimental results when the spatial correlation parameter n was assigned various values. It 

shows that the validation accuracy reaches the highest when the spatial correlation parameter, n, is taken 9, 

although the training accuracy is improved along with the increase of the parameter, n. Considering that the 

validation accuracy is better indicator representing the accuracy of a model. Hence, the spatial correlation 

parameter, n, is assigned with nine. Then the input layer contains 19 × 19 × 4 neurons with the four factors’ 

attribute value. The number of the output neuron is 11, labelled by PM�.�  annual concentration with 11 

categories: <10μg/m� , 10~20 μg/m� , 20~30 μg/m� , 30~40 μg/m� , 40~50 μg/m� , 50~60 μg/m� ,  60~70 μg/

m�, 70~80 μg/m�, 80~90 μg/m�, 90~100 μg/m�, > 100 μg/m�. 
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Figure 3. Illustration of the presented deep CNN model architecture exploiting spatial influencing feature of 

remotely sensed PM�.� concentration, including four convolutional layers, four polling layers, and three hidden 

layers, the first layer is input containing four influencing factors’ values on a pixel, the output layer with 11 

neurons consisting of 11 categories of PM�.� annual concentrations on the pixel location in the middle. 

3. Results 

The remotely sensed PM�.� annual concentration and influencing factors possessed 96,337 pixels, among 

which, 86,903 pixels (accounting for the ratio of 90%) were used for deep learning, and the remaining 9,434 

pixels (accounting for 10%) were reserved for validation. Training accuracy is defined as the accuracy applied 

to the training data (i.e., 86,903 pixels), while validation accuracy is the accuracy for the remaining data (i.e., 

9,434 pixels), and estimated accuracy is the accuracy for the total data (i.e., 96,337 pixels). To investigate the 

integrated and respective spatial influence of the four various factors, we exploited the congregate magnitude 

of spatial influence from the four factors and the separate influencing magnitude from one or two factors.  
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Table 1. Experimental results of the training and validation accuracy of the deep 3-D CNN model when the 

spatial correlation parameter, n, is assigned various values 

Spatial correlation 
parameter, n 

Training accuracy Validation accuracy 

1 67.94% 80.17% 

2 77.71% 82.37% 

3 88.08% 86.11% 

4 92.01% 90.50% 

5 94.51% 91.83% 

6 96.53% 92.14% 

7 97.35% 92.90% 

8 98.30% 92.46% 

9 98.71% 93.29% 

10 98.87% 92.40% 

11 99.29% 93.28% 

12 99.53% 93.25% 

3.1 Integrated spatial influencing feature 

If the four impact factors were all fed into the input layer, after 1,000 epochs of learning, the training 

accuracy of 86,903 pixels were 98.71%, and the validation accuracy of the remaining 9,434 pixels reached 93.29%. 

Figure 4 illustrates the spatial distribution of the original and estimated PM�.� annual concentration of the total 

96,337 pixels using the trained deep learning model fed with the four influencing factors.  

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Original (A), estimated spatial distribution of PM�.� annual mean concentrations in 2010 (B) by the 

deep CNN model and (C) Geographic Weighted Regression (GWR) model, with the four influencing factors 

(population spatial density, GDP spatial density, terrain, and LULC) over China in 2010.  

PM�.� concentrations (μg/m�) 

(A) (B) 

(C
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The estimated spatial distribution of PM�.� annual concentration was nearly the same, except for very few 

pixel locations. It indicated that the four factors (population spatial density, GDP spatial density, terrain, and 

LULC) can almost determine the PM�.� annual concentration. Furthermore, Table 2 listed the corresponding 

confusion matrix between the original and estimated PM�.�  annual concentration of the total 96,337 pixel 

locations by the four factors using the trained deep CNN model. The result showed that although there are 

some incorrect estimated pixel values which were close to the correct values, that is an obvious narrow diagonal 

band. The overall estimated accuracy is 97.85%. The estimated accuracy of the first category of PM�.� annual 

concentration, < 10μg/m�, reaches a maximum of 99.38%. The minimum and the second minimum predicted 

accuracies are 90.81% and 95.48% respectively, occurring on the eighth and eleventh category of 70~80 μg/m� 

and 90~100 μg/m� . The estimated accuracy can be regarded as the spatial influencing magnitude of the 

influencing factors on PM�.� annual concentration. A high estimated accuracy reflects directly a high spatial 

influencing feature. The results show that there is a strong correlation between PM�.� annual concentration and 

the four factors. Especially while the trained deep CNN evaluated the total 96,337 pixels, the overall estimated 

accuracy has reached up to 97.85%, indicating the spatial influencing magnitude of the four factors on PM�.� 

annual concentration. 

Table 2. The confusion matrix of the original vs. estimated PM�.� annual concentrations by the deep CNN model 

fed by the four influencing factor data: population, GDP, terrain, and LULC 

96,337 pixels 
Original PM�.� annual concentration (μg/m�) 

<10 10~20 20~30 30~40 40~50 50~60 60~70 70~80 80~90 90~100 >100 

E
st

im
at

ed
 P

M
�

.�
 

an
n

ua
l 

co
n

ce
n

tr
at

io
n 

(μ
g/

m
�
) 

<10 18395 337 0 0 0 0 0 0 0 0 0 

10~20 112 11792 70 3 0 1 0 0 0 0 0 

20~30 2 83 21891 86 12 1 0 2 0 0 0 

30~40 0 3 101 10804 89 3 0 0 0 0 0 

40~50 0 6 18 115 13971 60 5 0 0 0 0 

50~60 0 0 1 5 62 4103 57 4 0 0 0 

60~70 0 0 0 0 0 49 3650 62 0 0 0 

70~80 0 0 2 0 0 1 142 3598 159 0 0 

80~90 0 0 0 0 0 0 14 296 4563 60 0 

90~100 0 0 0 0 0 0 0 0 38 1332 7 

>100 0 0 0 0 0 0 0 0 1 3 166 

Accuracy 99.38% 96.49% 99.13% 98.10% 98.85% 97.27% 94.36% 90.81% 95.84% 95.48% 95.95% 

3.2 Single spatial influencing feature 

The spatial influencing magnitude of the single factor can be measured by the deep CNN model proposed 

in this paper. We have implemented other deep CNNs whose input layer contains 19 × 19 neurons with a 

single factor attribute value; the other parameters are the same as above. After 1,000 epochs of learning, the 

training accuracy and validation accuracy of population spatial density and GDP spatial density were 47.12% 

and 36.13%, 50.07% and 40.91%. Furthermore, the results show that PM�.� annual concentration has strong 

spatial correlation with terrain or LULC, as the validation accuracies of terrain and LULC were up to 83.17% 

and 72.37%. The result showed that although the overall estimated accuracies of population and GDP over 

China were relatively low, the two factors could have determined the severe PM�.�  polluted region. 

Furthermore, the result indicated that terrain and LULC are the main spatial influencing factors on PM�.� 

annual concentration over China. 

In addition, we also have implemented the deep CNN with an input layer containing 19 × 19 × 2 neurons 

describing terrain and LULC. The learning result shows that the training accuracy and validation accuracy of 

the two factors, terrain and LULC, were up to 90.69% and 87.95%. Table 3 listed the corresponding confusion 

matrix between the original and estimated  PM�.� annual concentration produced by the trained deep CNN 

fed by terrain and LULC data on the total 96,337 pixel locations. Except for the eleventh category (> 100μg/m�) 
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of PM�.� annual concentration, the other ten categories’ estimated accuracies are more than 91%. Furthermore, 

the overall estimated precision can reach up to 96.65%.  

Table 3. The confusion matrix of the original vs. estimated  PM�.�  annual concentrations by the deep CNN 

model fed by the two influencing factor data, terrain and LULC. 

96,337 pixels 

Original PM�.� annual concentrations (μg/m�) 

<10 10~20 20~30 30~40 40~50 50~60 60~70 70~80 80~90 90~100 >100 

E
st

im
at

ed
 P

M
�

.�
 

an
n

u
al

 

co
n

ce
n

tr
a

ti
o

n
 (

μ
g/

m
�
) 

<10 17974 535 0 0 0 0 0 0 0 0 0 

10~20 161 11775 135 3 0 0 0 0 0 0 0 

20~30 3 129 21622 129 20 0 1 6 0 0 0 

30~40 1 3 177 10869 128 4 1 1 2 0 0 

40~50 1 1 27 181 13991 90 8 1 8 0 0 

50~60 0 0 2 3 81 4099 93 3 1 0 0 

60~70 0 0 4 1 5 75 3491 75 1 1 0 

70~80 0 0 1 0 1 1 181 3395 193 1 0 

80~90 0 0 1 0 2 0 17 462 4445 108 0 

90~100 0 0 0 0 5 0 5 4 101 1290 40 

>100 0 0 0 0 0 0 0 0 0 4 158 

Accuracy 99.08% 94.63% 98.42% 97.17% 98.30% 96.02% 91.94% 86.01% 93.56% 91.88% 79.80% 

3.3 Comparation with the GWR prediction 

To verify the advantage of the deep CNN model presented in this paper, we conducted the GWR in the 

same dataset. Figure 4 (C) is the estimated spatial distribution of PM�.� annual concentrations over China in 

2010 by the GWR model. It can be seen that the GWR estimated results have obvious bias comparing with the 

origin data (Figure 4). Furthermore, the lowest and highest PM�.�  concentrations were particularly 

misestimated by the GWR model. And the overall estimated accuracy was 72.81% which is more less than the 

estimated accuracy of the deep CNN model, 97.85%. Comparing the Figure 4 (B) and (C), it indicated that 

although the overall spatial structure estimated by the GWR is generally similar with the origin spatial structure 

of PM�.� annual concentrations, there were some deviations in detail. The cause of the difference of the two 

models could be that, the deep CNN model has super strong non-linear fitting ability which can train very 

complicated non-linear function, however, the GWR is still a linear regression model which cannot catch 

complicated non-linear variation effects. Inaccurate correlativity between PM�.�  concentration and other 

influencing factors could lead to biased public policies. Scientific public policy-making need more fine and 

accurate analysing evidences. 

4. Discussion  

This study proposed a deep CNN model to exploit spatial influencing magnitude for the annual mean 

concentration of remotely sensed PM�.� over China. In consideration of the influencing mechanism and the 

availability of the dataset, this study investigated the spatial influence of the four factors (population, GDP, 

terrain, and LULC) on the annual concentration of PM�.�  over China. The influencing factors of PM�.� 

pollution are known to include natural and anthropogenic activities [39]. Among the four factors selected for 

this paper, terrain represented natural elements, population and GDP reflected anthropogenic activities, and 

LULC could be regarded as a mixture of natural and anthropogenic activities. The presented deep CNN method 

fully considered the local spatial heterogeneity, and a wider spatial correlated scope could be considered by 

more than one-order shape extent, which benefited from the strong ability of the deep CNN to process big data.  

This paper bridged the gap between spatial analysis and deep CNN technology with the idea of 

reprocessing or reorganizing remotely sensed data for deep CNN input. The deep CNN method was commonly 

used to extract the feature representations from a mass of labelled images [27,28]. As aforesaid, few researchers 
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applied the deep CNN model when analysing spatial influence of multiple variables. From a different view, 

combining a geospatial reprocess, this study designed a 3D deep CNN structure in which the input and output 

neurons were influencing factors and PM�.� concentration, respectively. The strong non-linear function fitting 

ability of a deep CNN model could then detect complicated non-linear spatial influencing effect, and the deep 

CNN model might consider local spatial heterogeneity. From the results, the developed deep CNN model can 

fully consider spatial relationship and can calculate on each pixel location. Hence, the results can effectively 

describe the spatial influencing feature on every pixel location. Although the GWR method can also investigate 

the local correlation on each pixel location, only a linear or simple non-linear regression can be implemented, 

and the capability of processing big data is not very strong. From the above, the deep CNN model can not only 

process big data well but can also fit or learn very complicated correlativity.  

This paper demonstrated that the deep CNN technology could be applied in exploiting the spatial 

influence feature of geospatial or remotely sensed data, and its advantages could be fully performed. The spatial 

influencing magnitude of the four factors on the annual concentration of PM�.� was investigated employing 

the presented deep CNN model. This model was not only used in exploring spatial influence of remotely sensed 

PM�.� concentration, but also in other fields, such as detecting risk factors of some kind of epidemic based on 

remotely sensed data. Through the model, the risk level of risk factors in public health could be 

quantificationally assessed. In other words, the developed deep CNN model has the potential to expand the 

field of spatial analysis of remotely sensed lattice data. Despite all this, this research has some limitations. 

Firstly, the spatial dependent variable, PM�.� annual concentration, is classified into 11 categories, not as a 

continuous variable. Secondly, the deep CNN model can learn a very complicated function structure, but the 

mathematical mechanism is currently not clear, namely mysterious “black boxes” [40], and it is difficult to 

explain in a geographical process. 

5. Conclusions 

Population spatial density, GDP spatial density, terrain, and LULC can almost determine the spatial 

pattern of PM�.� annual concentration with an overall estimated precision of 97.85% over China. Furthermore, 

terrain and LULC are the main spatial influencing factors on PM�.�  annual concentration among the four 

factors. And the overall spatial influencing magnitude of the two factors, terrain and LULC, reached up to 

96.65%, nearly equal to all four factors’ spatial influencing magnitude on PM�.� annual concentration. 
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