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Key Points: 

 Bayesian maximum entropy maps showed that nitrate and phosphate concentrations had 

similar spatial distributions. 

 Nitrate and phosphate distributions exhibited different seasonal patterns that may have been 

affected by coastal hydrodynamics and human activities. 

 Stochastic site indicators showed that nitrate pollution was much more serious than phosphate 

pollution. 
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Abstract: Human activities interacting with coastal waters lead to large amounts of nutrient loading and severe 

water pollution in China’s near Seas. In this context, a comprehensive quantitative characterization of the 

spatiotemporal variation of nutrient pollutant concentrations is a key component of any reliable seawater quality 

assessment and integrated coastal management plan. The present work combines the Bayesian maximum 

entropy method with stochastic site indicators to estimate monthly nitrate and phosphate concentrations in 

China’s near Seas during 2015, explore their spatiotemporal variation, and provide an explicit quantitative 

assessment of seawater quality in conditions of in situ uncertainty. This makes it the first study of space-time 

nutrient pollutant characterization at a national-scale in a coastal seawater environment. The results showed that 

nitrate and phosphate distributions exhibit the same spatial trends along China’s near Seas, whereas high 

nutrient pollution levels are found in the Yangtze river, Liaohe river and Pearl river estuaries. Local differences 

of temporal trends exist between nitrate and phosphate distributions, which suggest that distinct remediation 

strategies are needed to properly satisfy the required seawater quality standards. The average nitrate and 

phosphate concentrations across space-time were found to be equal to 0.271 and 0.015 mg/L, respectively. The 

nitrate and phosphate concentrations exceeding the 4th grade seawater quality standard during 2015 were about 

11% and 2.6%, respectively. The study of both the seasonal changes in human activities along the coastal cities 

and the temporal marine hydrodynamics can offer a better understanding of seawater quality and the 

biogeochemical process of nutrient transport and distribution. 
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1. Introduction 

With the rapid economic development and growing population in China’s coastal cities, various 

anthropogenic activities have led to substantially increased nutrient inputs to coastal waters from 

different sources, such as agricultural fertilizer usage, domestic/industrial wastewater and aquaculture 

(Qu et al. 2010; Strokal et al. 2014; Wang et al. 2018). Nutrients are very important to marine primary 

productivity and marine environmental health. Excessive nutrient discharge (especially nitrate and 

phosphate) to coastal waters can cause adverse ecological effects, such as loss of habitat and 

biodiversity (Diaz and Rosenberg 2008), harmful algal blooms (Li et al. 2014), hypoxia (Breitburg et 

al. 2018) and ocean acidification (Cai et al. 2011), thereby affecting marine ecosystem health and 

sustainable coastal development (Howarth et al. 2006; Smith 2006; Conley et al. 2009). Thus, 

comprehensive monitoring, assessment and management of these marine pollutants are of great 

significance and have received much attention by scientific researchers and policy makers in recent 

decades (Huang et al. 2013; Kitsiou and Karydis 2011; Khangaonkar et al. 2018; Yu et al. 2019). 

 Several statistical techniques have been used to study nutrient pollutant distributions, such as 

principal component analysis, cluster analysis and regression analysis (Primpas et al. 2010; Lundberg 

et al. 2009; Everaert et al. 2017). These statistical techniques rely mainly on sparsely distributed 

samples and/or ignore spatial autocorrelation and heterogeneity. Geostatistical techniques, on the 

other hand, generate unbiased and optimal estimates of the pollutant distributions that account for 

spatial nutrient pollutant correlations in the area of interest (Christakos 2000). Many studies have 

employed geostatistical techniques to model field data in aquatic environments. Murphy et al. (2010) 

compared different spatial interpolation methods for water quality evaluation in the Chesapeake Bay, 

and the results indicated that kriging techniques generally outperform inverse distance weighting 

techniques for all parameters and depths. Zhou et al. (2013) used universal kriging to estimate the 

extent of hypoxia in Lake Erie, and to map the spatial distribution of dissolved oxygen with auxiliary 

variables such as bathymetry and longitude. Ren et al. (2016) utilized the mean of surface (MSN) 

technique to assess the mean concentrations of nitrate and phosphate in the Yangtze estuary, taking 

regional heterogeneity into account. Most of these studies were concerned with small-scale aquatic 

ecosystems, such as a special estuary or a coastal sea region, where the human activity intensity and 

pollution sources differ between geographical regions. Moreover, these studies focused primarily on 

spatial pollutant estimation, and ignored the direct consideration of temporal covariance and dynamics 

(these issues were considered separately as supplements to spatial estimation and pollution status 

assessment). Apart from the human factor, nutrient concentrations are affected by changing 

hydrologic and meteorological conditions (e.g., upwelling, current drift, and precipitation), which may 

lead to seasonal adverse incidences such as hypoxia and harmful algal blooms when pollutant 

concentrations reach a certain threshold under specific aquatic ecosystem conditions. Therefore, the 
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determination of the spatiotemporal pollutant trends can provide valuable information on how marine 

ecosystems respond to changing pollutant concentrations, thus allowing for timely warnings and 

marine spatial planning, as well as the implementation of conservation measures for marine 

environmental health assessment purposes. 

      The present work provides, for the first time, a spatiotemporal nutrient pollutant characterization 

of the coastal seawater environment at the national-scale. Since China’s reform and opening up to the 

outside world in 1978, China’s GDP grew 75 times between 1978 and 2016. Rapid economic and 

social development has led to increased nutrient loading, which has been associated with 1392 

harmful algal bloom events in China during the period 2000-2017 (Wang et al. 2018). Since the 

“Marine Ecological Civilization Construction” policy in China puts great emphasis on marine 

ecological restoration and environmental protection, the comprehensive characterization and 

assessment of the marine ecological state provides very important information to policy makers and 

researchers seeking to manage pollution sources and develop effective remediation strategies. A total 

of 3962 monthly surface water samples collected during 2015 were included in this study, whose 

goals were threefold: (1) Use the Bayesian maximum entropy (BME) method to represent the space-

time nitrate and phosphate concentration distributions in China’s near Seas and generate monthly 

nutrient pollutant predictions across space (maps); (2) explore the seasonal variability of the space-

time nutrient distributions based on these predictions; and (3) use stochastic site indicators (SSI) to 

quantify the uncertainty and assess the risk associated with the nutrient pollutant variations for 

sustainable development and management purposes. The results of this work provide a comprehensive 

spatiotemporal characterization and assessment of the nitrate and phosphate distributions throughout 

China’s coastal Seas that could contribute to the development of effective remediation plans and the 

scientific management of nutrient pollution in these waters.  

 

2.  Materials and Methods 

2.1 Study domain and data  

The study area is located along China’s near Seas, including the Bohai Gulf, the Yellow Sea, the East 

China Sea and the South China Sea. Its geographical boundaries are determined according to 

administrative divisions (including internal seawaters and twelve nautical miles territorial seas), 

where most of the monitoring sites are located (Fig 1). The East and South China Seas receive large 

amounts of nutrient pollutants from rivers, especially from the Yangtze River, the Yellow River (Fig 

S1) and the Pearl River, where there are large drainage areas and intense anthropogenic activities 

(especially those related to industrial and agricultural production; Qu et al. 2010, Strokal et al. 2014). 

The period considered in this work is the year 2015. Accordingly, the space-time domain of interest 

can be symbolically presented as  



D (A,T) , 

where A = geographical area along China’s near Seas and T = year 2015. The annual frequency and 

area of harmful algal blooms along Chinese Seas increased rapidly in the 21st century and peaked in 

the mid-2000s (Wang et al., 2018).  

 We used a total of 3962 monthly surface samples that were obtained by the State Oceanic 

Administration during 2015 (this administration has been recently integrated in to the Ministry of 

Natural Resources of People’s Republic of China, http://www.mnr.gov.cn). The monitoring 

parameters cover a range of variables describing coastal water quality such as nitrate (N), phosphate 

(P), pH, dissolved oxygen (DO) and chemical oxygen demand (COD). The methods used for 

parameter concentration assessment purposes followed the national marine monitoring standards 

(GB17378-2007; https://www.nmemc.org.cn/). There are a total of 652, 977, 1187 and 1146 regional 

monitoring samples at Bohai Sea (BS), Yellow Sea (YS), East China Sea (ECS) and South China Sea 

(SCS), respectively. For each year, most of the field sampling work was conducted during the months 

of March, May, August and October, but several more samples were collected during the other 

months as well (Fig S2). These sites (latitude, longitude) were converted to Mercator, and the final 

monthly nitrate and phosphate concentration predictions were generated on a 5km2 grid. 
 

2.2 Space-time estimation and mapping using BME 

http://www.mnr.gov.cn/
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The space-time prediction of nitrate and phosphate concentrations was based on the BME theory 

(Christakos 2000), which has been applied successfully in various fields, including water quality, air 

pollution and epidemiology (e.g., Coulliette et al. 2009, Fei et al. 2016, Jiang et al. 2019). In the BME 

modeling context, let 



NP( p)  be the spatiotemporal random field model (S/TRF, Christakos 2017) 

representing nutrient (nitrate or phosphate) pollutant concentrations in China’s near Seas during 2015, 

where the vector 



p  (s,t)  determines a point within the space-time domain 



D , with 



s  denoting 

geographical location and t time. To obtain the probability density function (pdf) of possible 



NP( p) 

values at each space-time point 



p , the BME integrates two major knowledge bases (KB): the core or 

general G-KB that includes the theoretical mean and covariance models of the nitrate and phosphate 

distributions, and the site-specific S-KB that consists of monthly surface samples of nitrate and 

phosphate concentrations. Notice that BME can incorporate several other information sources, when 

they are available, e.g., the G-KB may include scientific theories and physical laws, and the S-KB 

may include hard (or exact) data, empirical evidence and soft (or uncertain) measurements of various 

kinds (see, review by He and Kolovos 2018). The fundamental BME equations (Christakos 1990, 

2000; Text S2) integrate the G-KB with the S-KB (i.e., 



K GS ), thus providing a complete 

probabilistic characterization of the space-time nutrient pollutant distribution in terms of the nutrient 

pdf 



fK (NP)  at each point 



p  of interest. The Spatiotemporal Epistemic Knowledge Synthesis 

Graphical User Interface software library (SEKS-GUI, Yu et al., 2007) was used for the 

computational implementation of BME-based nutrient pollution modeling and mapping.  

 

2.3 Stochastic site indicators (SSI) 

The SSI is a set of quantitative indicators that express different yet complementary assessments of 

over-pollution (i.e., cases where the pollutant exceeding the specified threshold 



 ) in the space-time 

domain of interest. Specifically, the SSI can (a) describe a polluted region in terms of its key features 

(e.g., areal fraction of the over-polluted region, mean over-polluting concentration, spatiotemporal 

connectivity between over-polluting concentrations), (b) indentify regions at risk, and (c) reduce 

uncertainties across broad spatial and temporal scales. The SSI have been shown to be useful tools to 

characterize and quantify the morphology and evolution of the pollutant distribution of interest 

(Christakos and Hristopulos 1996a-b, Yang and Christakos 2015, Jiang et al., 2018, He et al., 2019). 

In this study, a space-time binary random field associated with the nutrient pollutant 



NP( p) is defined 

as 



INP( p, ) 1 if 



NP( p)  , and 



 0  otherwise, where 



  is a threshold expressing the permissible 

range of nitrate or phosphate concentrations (specified by experts, researchers, or authorities, 

depending on the case). The 



INP( p, )  provides a characterization of the excess nutrient pollutant in 

the space-time domain 



D  of interest under conditions of in-situ uncertainty. Accordingly, the SSI-

based nutrient pollutant characterization involves the S/TRF pair  



{NP( p), INP( p, )}, 

where the 



NP( p) is a function of 



p , whereas the 



INP( p, )  is a function of both 



p  and 



 . 
 

 Sets of one-point (



p ) and two-point (



p ,



p ) SSI can be derived by considering the polluted sub-

domain 



  of the original domain 



D  according to the 



 -thresholds of the nitrate and phosphate 

concentrations 



NP( p). In mathematical terms, the polluted sub-domain is expressed as 



 { p : NP( p)  or INP( p, ) 1} D . 

Note that 



 0 implies that 



 D, as is intuitively expected. The one-point SSI are functions of the 

threshold 



  and can be used to evaluate different kinds of 



 -exceeding global nutrient pollutant 

averages. Yet, the one-point SSI do not describe the space-time dependency (connectivity) of 

pollutant values, which is what the two-point SSI do. The two-point SSI are functions of both the 



  

and the space-time lag 



p  p  p  between the points 



p  and 



p . A list of SSI selected for the 

purposes of the present study are presented in Figs 2b-c. The fundamental SSI operator is 



A
Q

[] |Q |
1 dp [] , 
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where Q and 



  express any of the regions D, 



  and 
  



p, depending on the case and the SSI 

considered. The SSI are expressed on the basis of this operator. For illustration, the relative area of 

excess pollution (RAEP) is an one-point SSI defined from the above operator 



A
Q  by letting 



QD 

and 



  , i.e.,  



RAEP()  A
D

[1] | D |
1 dp , 

which varies between 0 (when 



  0) and 1 (when 



 D).    
 

 Interpretatively, the RAEP measures the areal fraction of the over-polluted sub-region 



  (i.e., the 

probability that pollution exceeds 



  at a point 



p ). The MEP (also defined in Fig 2b) is a one-point 

indicator that denotes the mean of the nutrient pollutant concentrations at the threshold (



 )-exceeding 

points of the region D (i.e., the mean over-polluting concentration over D). MEDP is the mean 

difference between the pollutant concentration and 



  at the same points. And, CMEP measures the 

mean difference between the pollutant concentration and 



  conditioned on the event that the pollutant 

concentration exceeds 



  (i.e., the focus of CMEP is on points of 



  rather than of D) Clearly, the 

MEP, MEDP and CMEP are physical one-point indicators of over-pollution (i.e., they refer to various 

averages of ζ-exceeding pollutant concentrations, with units in mg/L), whereas the RAEP is a 

topologic indicator of over-pollution (i.e., it denotes the ζ-exceeding areal fraction, and is unitless). 

Regarding the relationships between the one-point physical indicators, it is valid that  



CMEP()MEP()MEDP()  

where the equalities hold if the entire region is over-polluted, i.e., 



| |  |D |. 

 Among the two-point indicators, the non-centered indicator covariance (NIC, see Fig 2c) is a two-

point SSI defined by letting 



QD and 



 p, (



p  denotes the over-polluted 



  sub-region 

translated by 



p), i.e.,  



NIC(p, )  | D |
1 dp

p
 .  

Interpretatively, the NIC measures the connectivity (dependency) between over-polluting 

concentrations over space-time domain D (i.e., the probability that pollution exceeds 



  at both 

points



p  and 



p  separated by the space-time lag 



p). The PIR (pollution interaction ratio, also defined 

in Fig 2c) expresses the ratio of the probability that over-pollution occurs at both points



p  and 



pp  

divided by the probability that over-pollution occurs at either one of these points. The conditional 

excess covariance (CEC, Fig 2c) measures the space-time connectivity between nutrient 

concentrations conditioned by the event that both points belong to the over-polluted sub-region. While 

NIC and PIR are unitless, the CEC has physical units ((mg/L)2).  

       Interestingly, the SSI are linked to each other by certain functional relationships as shown in Fig 

2a. This implies that one can start with the SSI that are the easiest to calculate from the available data, 

and then conveniently derive all the other SSI from the calculated ones using these relationships. The 

PIR indicator can be determined in terms of the RAEP and NIC indicators as 



PIR
NIC

2RAEP NIC
. 

For numerical, if 



PIR1, then 



RAEPNIC , i.e., the over-pollution two-point connectivity is equal 

to the over-pollution area ratio. Another two-point indicator, the centered indicator covariance (CIC, 

Fig 2a), is directly obtained via the relationship  



CIC NIC  RAEP2 .  

The CIC is a two-point indicator that measures how far from independency a pair of 



 -exceeding 

pollutant concentrations across space-time are (i.e., in a sense it measures the relative strength of 

spatiotemporal connectivity compared to space-time independency. As such, the larger the CIC is, the 

farther the pollutant values at points



p  and 



pp  are from being independent.  
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 In a similar manner, an interesting feature of the SSI theory is that new and useful quantities can 

be developed on the basis of the standard SSI, depending on the study objectives. For illustration, the 

indicator variogram (IV, Fig 2a) is defined as the difference  



IV  RAEPNIC ,  

which is interpreted as the difference (unitless) between the probability that pollution exceeds 



  at 



p  

and the probability that pollution exceeds 



  at both 



p  and 



p . And, the over-polluting connectivity 

odds (OCO, Fig 2a) is defined as  



OCO  NIC
12RAEPNIC

, 

which is a useful two-point indicator (unitless) when one wants to compare 



 -exceeding and non 



 -
exceeding pollution probabilities between pairs of space-time points. Notice that if 



OCO  0, then 



NIC 0  (i.e., zero over-pollution connectivity); and if 



OCO 1 , then 



RAEP 1
2

 (i.e., the over-

polluted sub-area is half the entire area). For all the above reasons, the setup summarized in Figs 2a-c 

can be very useful in the efficient calculation of the SSI in practice. We will provide more details on 

the physical interpretation of the SSI in the context of the study of nutrient pollutants in China’s near 

Seas, see next. 

 

3.   Results 

3.1 Descriptive statistics and spatial mapping 

The descriptive statistics of nitrate and phosphate concentration data are displayed in Table 1. 

According to the China seawater quality regulations (GB 3097-1997, http://www.sac.gov.cn/), the 4th 

grade water quality standard (indicating poor quality seawater, Table 2) values for nitrate and 

phosphate are 0.5 and 0.045 mg/L, respectively. The maximum nitrate concentrations were calculated 

as 4.008, 0.981, 4.216, 2.522 mg/L at the BS, YS, ECS and SCS, respectively. Clearly, in the BS, ECS 

and SCS the nitrate concentrations were found to be 5 to more than 8 times larger than the standard 

value (0.5 mg/L), whereas in the YS the nitrate concentration was almost double the standard value. 

And, the maximum phosphate concentrations were found to be 0.157, 0.109, 0.307 and 0.1660 mg/L, 

which are all much larger than the standard value (0.045 mg/L). Overall, the sampled nitrate and 

phosphate concentrations were in the range of 0.001-4.216 mg/L and 0.0001-0.3079 mg/L, 

respectively; and, we noticed that the ECS, in particular, experienced the highest variation of nitrate 

and phosphate concentrations. 

The nitrate and phosphate concentration maps generated by the BME method are plotted in Fig 3 

(using the SEKS-GUI software). The empirical covariance values and fitted space-time covariance 

models are both presented in Fig S3 of the Supplementary Information (S.I.). From the annual average 

pollution maps (left of Fig 3), we visually concluded that the nitrate and phosphate distributions 

exhibit similar spatial patterns. This was supported quantitatively by the q-statistic value (



 0.71) 

measuring the spatial correlation of the nitrate and phosphate distributions (the q-statistic was 

calculated using the Geodetector software, see http://www.geodetector.org/; Wang et al 2010, 2016; 

and Text S3 of the S.I.). Moreover, based on these maps, it was found that higher pollution levels 

emerge in the middle of China around the Yangtze and Qiantang river estuaries, the nitrate and 

phosphate concentrations were much lower in the seawater of Bohai Rim and South China Sea, 

whereas light pollution was found in the Liaohe and Pearl river estuaries, and, nitrate and phosphate 

concentrations exhibited a globally decreasing trend from the estuaries toward the open sea.  

       The maps at selected times (right of Fig 3) show that the nitrate concentrations were much higher 

in March (during the cold season, the mean nitrate concentrations were equal to 0.288 and 0.772 at the 

Bohai Rim and the Yangtze River delta, respectively) than during August (during the warm season, 

the mean concentrations were equal to 0.185 and 0.572at the Bohai Rim and the Yangtze River delta, 

respectively). This was more obvious in the Liaohe river and Yangtze river estuaries, whereas the 

Pearl River estuary shows a different pattern. Higher phosphate concentrations occurred during 

October, especially at the Liaohe river estuary. The extent of phosphate pollution was geographically 

much wider along the coastal region of the ECS. Overall, the nutrient pollution of the coastal waters 

http://www.geodetector.org/
User
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in the four China Seas (BS, YS, ECS and SCS) was dominated by the major rivers (e.g., Yangtze and 

Pearl rivers).  

 

 These pollutants mainly come from terrestrial agriculture activities, as well as domestic and 

industrial sewages (Wang et al. 2018; Wang et al. 2019; Yu et al. 2019). Fig 4 presents monthly 

variations of nitrate and phosphate concentrations at the selected regions indicated in Fig 3. The 

Yangtze river delta was the most polluted region for each month. Nitrate and phosphate concentration 

peaks were observed during March, April, October and November. River discharge dominated the 

global distribution of nutrient pollution (Qu et al. 2010; Liu et al. 2015). Nutrient concentration is 

lower in the summer, when there is higher precipitation. Generally, higher precipitation will bring 

more terrestrial attributes to the sea, whereas in the present case study nutrient concentrations seem to 

be negatively coordinated with river discharge, this phenomenon (lower nutrient concentration during 

summer) may be partly due to the dilutive effect (higher precipitation run-off occurred during June, 

July and August in China), and higher precipitation induced by climate change is expected to increase 

the riverine total nutrient loading in the future (Sinha et al. 2017). Although nitrate and phosphate 

concentrations exhibited similar global distributions, they varied locally from one geographic region 

to another and during different seasons, which suggests that distinct remediation strategies are needed 

to adequately satisfy the required seawater quality standards. 

 

3.2  Calculation of SSI for nitrate and phosphate concentrations 

3.2.1 One-point SSI 

Based on the BME-generated space-time predictions of nitrate and phosphate concentrations, a set of 

SSI was calculated that offered additional information to be used in pollution risk assessment. This set 

includes one-point (i.e., local) indicators (REAP, MEP, MEDP and CMEP) and two-point (i.e., non-

local) indicators (NIC, CEC and PIR). 

 As noted above, the MEP, MEDP and CMEP are physical indicators of over-pollution, whereas 

the RAEP is a topologic indicator of over-pollution. Accordingly, the plots of Fig 5 illustrate how the 

physical indicators change as functions of the areal indicator. The RAEP, MEP, MEDP and CMEP 

denote, respectively, the areal fraction of the over-polluted region, the mean over-polluting nutrient 

concentration, the mean of the part of the nutrient concentrations that exceeds the threshold, and the 

nutrient pollutant mean conditioned by the over-pollution condition (as noted earlier, given the values 

of a small set of these indicators, the corresponding values of the remaining indicators can be 

conveniently found from them). Let us consider some worth-noticing particular cases (A, B and C 

correspond to the indicated points in Fig 5):  

 (A) When the nitrate and phosphate threshold values are equal to 0.5 and 0.045 mg/L, 

respectively, the corresponding RAEP values are equal to 0.11 and 0.026, respectively. The physical 

interpretation of these results is that in about 11% and 2.6% of the space-time domain of interest the 

nitrate and phosphate concentrations, respectively, are higher than the corresponding 4th grade 

seawater quality standards.  

 (B) For RAEP=0.5, the nitrate and phosphate thresholds are 0.205 and 0.013 mg/L, respectively, 

indicating that during 2015 in China’s near Seas about half of the nitrate and phosphate concentrations 

were higher than 0.205 and 0.013 mg/L, respectively.  

 (C) For RAEP=1, the CMEP, MEP and MEDP indicators have in practice the same value over the 

entire space-time study domain D (as is anticipated by the SSI theory). 
 

 Fig 5 shows that the MEP and MEDP share the same range of values, i.e., between 0 and the 

mean nitrate and phosphate concentrations 0.271 and 0.015 mg/L, respectively. MEP offers a global 

assessment of the expected nutrient over-pollution (i.e., exceeding the specified threshold) in a 

fraction Θ of the domain D, whereas MEDP measures the difference between excess 



NP( p) 

concentrations and the 



 -threshold averaged over D. As it can be seen, CMEP



MEP



MEDP, which 

was expected in theory. The double equality CMEP=MEP=MEDP holds if RAEP=1 (i.e., the entire 

region is over-polluted or a zero threshold is assumed); moreover, the equality MEP=MEDP also 

holds if RAEP=0 (i.e., there is no over-pollution or the threshold is very large). By comparing the 
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rates of the decreasing physical MEDP and regional RAEP values with increasing 



  values (see, Fig 

S4), we concluded that the differential nutrient concentrations over the polluted regional fraction of 

China’s near Seas decrease faster than the polluted regional fraction itself; and that MEDP reaches a 

zero value at a high threshold value (about 2.2 and 0.05 mg/L for nitrate and phosphate, respectively). 

CMEP measures the average of over-polluting nutrient concentrations (i.e., at points within the over-

polluted sub-region Θ). The CMEP of both nutrients increase almost linearly as threshold increases, 

which implies that this indicator can detect the existence of highly polluted areas along China’s near 

Seas. Based on MEDP, another useful indicator, the coefficient of indicator dispersion (CID) can be 

calculated as  



CID 
MEDP( )

NP(p)
, 

which measures the ratio of over-pollution dispersion normalized by the mean pollution throughout 

the entire domain of interest. In this study, CID was found to be equal to 0.007 and 0.0001 for the 

nitrate and phosphate pollution, respectively. The physical meaning of these values is that the average 

threshold-exceeding nitrate and phosphate concentrations are a small percentage of the corresponding 

mean pollutant values.  
 

3.2.2 Two-point SSI 

Selected two-point indicators, i.e., the NIC, CEC and PIR indicators introduced earlier (Fig 2 and 

Table S1), are plotted in Figs 6 and 7 for specific nutrient (nitrate or phosphate) threshold 



  values. 

As noted above, the NIC in Fig 6 is a measure of nutrient over-polluting connectivity between points 

separated by the space-time lag 



p  (s,t) , where 



s  is the spatial lag (distance) and 



t  is the time 

lag (separation). Nutrient connectivity can be also interpreted as the probability that pollution exceeds 



  at both points



p  and 



p  separated by 



p . The CEC indicator measures the space-time connectivity 

between nutrient concentrations conditioned by the over-polluted points. The PIR indicator measures 

the co-variation strength of joint over-pollution incidences at points



p  and 



p  vs. the alternate case 

that over-pollution occurs at either one of these points. That is, PIR may be interpreted as the ratio of 

the probability that nutrient concentrations exceed a threshold at both space-time points 



p  and 



p  

over the probability that nutrient concentrations exceed the threshold at either 



p  or 



p ). 

 Visually, the NIC, CEC and PIR plots in Figs 6 and 7 are surfaces that vary with the space-time 

lag 



p . It is worth-noting that the NIC and PIR surfaces decrease with increasing 



 , whereas the CEC 

surface increases with increasing 



 . The physical meaning of this behavior is that spatiotemporal 

nutrient connectivity increases as a function of 



 , but the relative strength of this connectivity 

compared to independency decreases with 



 . We also observe that for the nitrate and phosphate 

pollutants, the NIC values are higher for smaller 



  thresholds, which indicates that higher 

connectivity exists between nitrate or phosphate concentrations exceeding these 



  values at both 

points 



p  and 



p . As is shown in Figs 6 and 7, the PIR decreases as the threshold 



  increases, and the 

drop rate was faster at smaller spatial distances and time separations, indicating that high nutrient 

pollutant concentrations were rather clustered. 

 For numerical illustration, if the nitrate threshold values are 



 =0.2 and 0.5 mg/L, the 

corresponding NIC values are 0.41 and 0.06, respectively (Fig 6), indicating that 41% and 6% of the 

point pairs separated by 



p  (s,t)  within the domain of interest D (i.e., China’s near Seas during 

2015) exceeded the 1st and 4th grades seawater quality standards (GB 3097-1997, 

http://www.sac.gov.cn/, Table 2). Also, at the same spatial distance 



s  and time separation 



t , the 

nitrate NIC decreases faster for a small threshold than for a large one, i.e., the NIC experiences a 

steeper decline. For numerical illustration, for 



 =0.2 mg/L the nitrate NIC ranges from 0.49 to 0.35 

and the decreasing rate was higher than for 



 =0.5 mg/L, when the NIC ranges from 0.094 to 0.034. 

This indicates that the nitrate NIC values were more clustered for larger than for smaller 



  values. 

Regarding phosphate pollution, if the threshold values are 



 =0.015 and 0.045 mg/L, the 

corresponding NIC values were 0.346 and 0.007, respectively (Fig 7), indicating that 34.6% and 0.7% 

http://www.sac.gov.cn/
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of the point pairs separated by 



p  within the domain of interest exceeded the 1st and 4th grades 

seawater quality standards. The CEC values for nitrate and phosphate showed a large variation at 

different space-time lags (Figs 6 and 7). Peaks and valleys were observed at certain lags, e.g., peaks 

were observed at the spatial distance 



s 150 km and temporal separations 



t 2 and 4 months, 

whereas valleys were observed at the distance 



s 50 km and separations 



t 2 and 4 months. These 

observations regarding the CEC behavior can help explain the seasonal changes and fluctuations of 

nutrient concentrations and their space-time connectivity variations, thus providing useful information 

about the locations of extremely polluted area and the occurrences of pollution events. 

 

4. Discussion-Conclusions 

The nitrate and phosphate concentrations showed similar overall distributions throughout the space-

time domain of interest, i.e., along China’s near Seas during the year 2015. Extremely high 

concentrations were observed at the Yangtze river, Pearl river and Liaohe river estuaries. Nitrate 

pollution was much more serious than phosphate pollution, with 11% of individual domain points 

(based on RAEP calculations) and 6% of joint domain points (based on NIC calculations) exceeding 

the 4th grade seawater quality standard. It was found that the annual space-time average nitrate and 

phosphate concentrations were 0.271 and 0.015 mg/L, respectively. The temporal nitrate and 

phosphate patterns exhibited certain differences including the emergence of seasonally high values. 

Hence, incorporating key dynamics (e.g., temporal variations) in future investigations is necessary for 

an adequate nutrient pollution modeling and mapping in the space-time domain of interest, and the 

same is true regarding the local marine environment and seasonal human activities. 
 

4.1 BME implementation 
 

The BME method was employed to model composite space-time nutrient pollutant spread and predict 

nitrate and phosphate concentrations at unmonitored locations and times by incorporating, in a 

composite manner, both spatial and temporal pollutant variations. Unlike traditional Kriging and 

similar techniques, BME makes no restrictive assumptions concerning the linearity of the predictor 

and the Gaussian (normal) probability distribution of the samples, i.e., non-linear predictors and non-

Gaussian distributions are generally assumed that are more realistic model features that can better 

depict the in situ variations of nutrient pollutant concentrations. Based on a limited set of samples 

along China’s near Seas obtained during 2015, BME provided a probabilistically complete 

characterization of the space-time nutrient pollutant distributions and generated pollutant 

concentration predictions that accounted for both spatial and temporal pollutant correlations and 

cross-dependencies.  
 

 Regarding the BME implementation, as has been shown in several previous studies (e.g., Lee et 

al. 2008; Yu et al. 2009; Gao et al. 2014; Jiang et al. 2019), BME can provide more accurate attribute 

estimates than the mainstream geostatistical techniques for space-time analysis and SSI assessment 

purposes; it can produce useful information based on limited datasets; it is easily implemented and 

cost-effective compared to other numerical modeling techniques; and, it has the distinctive ability to 

assimilate various types of environmental information, both core and site-specific. Accordingly, given 

its successes in other scientific fields, the potential usefulness of BME modeling in Oceanography 

deserves serious consideration (e.g., ocean models, considered as core knowledge in the BME 

framework, can be combined with remote sensing data, considered as site-specific data, to improve 

the large-scale prediction accuracy of ocean attributes).  

 For the BME implementation in practice to function optimally, the availability of sufficient input 

information is needed. With this in mind, in the present study, the pollutant prediction accuracy was 

affected by two main factors: (a) The first factor is that, in general, BME is sensitive to the 

distribution and density of the available nutrient concentration samples (this is, also, valid for other 

prediction techniques). Monthly samples were mostly collected during March, May, August and 

October, whereas considerable uncertainty characterized the estimation of nutrient concentrations 

during other months and, as a consequence, the global temporal trend analysis. And, the high temporal 

variability and low temporal correlation of nutrient concentrations can also affect the monthly 

prediction accuracy. (b) The second factor is that coastal waters are heavily affected by land-sea 
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interactions, and considerable differences in pollution status may exist at a small scale (both spatial 

and temporal) under different marine hydrodynamics and biogeochemical conditions (Khangaonkar et 

al. 2018; Ren et al. 2016). Yet, even under these limitations of input information, it was found that 

BME performed well. 

 As regards future research, and in light of the above considerations, frequent in-situ temporal 

monitoring is suggested to enable the development of a robust space-time model of nutrient 

distributions. Also, the incorporation of informative environmental data and ocean physical laws in to 

BME modeling can reduce uncertainties and generate better pollutant predictions (Lang and 

Christakos 2018).  

 

4.2 SSI implementation 
 

Nutrient loading and spread can vary significantly over short distances and during different time 

periods, and the space-time pollutant distributions are often characterized by non-negligible in-situ 

uncertainties. SSI analysis offered a rigorous quantitative nutrient pollution assessment that accounted 

for both the natural variabilities (at a local and a global scale) as well as the uncertainty sources of the 

pollution phenomenon. The physical interpretations of the quantitative results of the SSI analysis can 

improve the understanding of the pollution phenomenon along China’s near Seas during 2015. For 

example, the NIC indicators of the nitrate and phosphate concentrations both decrease as functions of 

the spatial and temporal lags, with the spatial decline being larger than the temporal one. The physical 

meaning of the NIC behavior is that the actual nitrate and phosphate distributions exhibit similar 

spatial clusters over China’s near Seas. We notice that when temporal dynamics are considered, the 

clustered trend was not so obvious in the pollutant time series. As regards the CEC indicator, its range 

of variation was larger and its declining trend was more distinct when high threshold 



  values were 

considered (e.g., the width of the nitrate CEC range was about 0.4 (mg/L)2 when     



  0.5  mg/L, but 

only 0.04 when     



  0.2  mg/L), which indicates that higher CEC values were clustered locally in 

specific areas of China’s near Seas. Also, it was found (Figs 6 and 7) that the spatial correlation range 

was about 140km for nitrate and 80-100km for phosphate. Physically, this means that the actual nitrate 

distribution was more dispersed geographically than the phosphate distribution. Such useful space-

time information gained by SSI analysis can guide pollution management and facilitate effective 

policy-making.  

 Overall, the one- and two-point SSI have been shown to be useful tools that can improve the 

quantitative description of seawater pollution across space-time. Although the nutrient dataset 

considered in this study was collected during a single year (2015), the SSI analysis of nutrient datasets 

obtained during multiple years can be considered, when available. This means that a more detailed 

and long-term seawater data quality monitoring is needed to get a more comprehensive understanding 

of the evolution of annual nutrient pollutant variations along China’s near Seas. 
 

4.3 Nutrient Pollution in China and Relevant Pollution Management Issues 

Following China’s reform and opening-up policy initiative of 1978, water quality problems became 

much more serious as a result of the increasing population, rapid agriculture development and 

urbanization (Wang et al. 2018, Yu et al. 2019). Extreme nutrient pollution can be observed in most of 

China’s estuaries (Fig 3), and terrestrial inputs are still the most important external sources of 

nutrients (nitrate, N, and phosphate, P) in coastal waters. Controlling both N and P loadings from 

upstream is believed to be a reliable management strategy of restoring seawater quality along the 

entire freshwater-marine continuum (Conley et al. 2009; Paerl et al. 2009, 2018). In terms of the 

RAEP indicator, we found that a high nitrate or phosphate threshold value (point A in Figs 5a and b) 

lies on the cusp of a steep RAEP increase, which is very important from a management perspective. 

Indeed, this information indicates that a relatively small increase in the quantity of nitrogen 

introduced in to the system could lead to a large increase in the regional area that exceeds the 4th grade 

seawater quality standards. The sensitivity of these coastal conditions is also reinforced when looking 

at the impacts of small nitrate threshold reductions. The RAEP for a nitrate threshold of 0.4 mg/L (3rd 

grade seawater quality standard) is 0.2, which implies an increase of about 9% of the threshold 

exceeding area compared to the 4th grade seawater quality standard. The corresponding conditions for 
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phosphate concentrations are not as sensitive. Indeed, the RAEP for a phosphate threshold of 0.03 

mg/L (3rd grade seawater quality standard) is about 0.096 which implies an increase of about 7% of 

the threshold exceeding area. The RAEP indicator can also determine the pollution remediation area 

for cost evaluation purposes. And, if it is assumed that the remediation target and remediation cost are 

linked by a linear relationship (i.e., lower remediation target and higher N or P concentrations need 

more remediation cost), the MEDP indicator (average difference between excess N or P concentration 

vs. the specified threshold, i.e., the difference between current pollution level and remediation target) 

could express the remediation cost. 

       Adequate long-term seawater quality monitoring data is still in high demand for improving the 

scientific characterization and assessment of nutrient pollution in China. In turn, comprehensive 

characterization and assessment are fundamental prerequisites for identifying those suitable 

management interventions that can recover a degraded marine ecosystem in coastal waters. And, 

further quantitative analysis of nutrient thresholds and their evolution can support the restoration of 

safe and sustainable nutrient levels in the environmentally heterogeneous China’s near Seas. Lastly, 

considered in synergy, the proposed BME and SSI approaches can be useful to researchers and 

practitioners seeking an adequate assessment of marine environmental impacts, which is a prerequisite 

of effective remediation policy-making.     
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Figure 1: Spatial distribution of sampling sites along China’s near Seas (monthly sampling; for illustration, the 

black dots indicate samples obtained during March of 2015), and the study area boundary (orange line, 12 

nautical miles). 
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Figure 2: (a) Relationships between calculated SSI (circles) and derived SSI (squares), (b) definitions of one-

point SSI, (c) definitions of two-point SSI. More details can be found in the Supporting Information, Table S1. 
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Figure 3: BME-generated spatial maps of (a) nitrate and (b) phosphate concentrations. In particular, the 

annually averaged maps are shown on the left, whereas selected monthly maps for the coastal sea sub-regions of 

Bohai Rim, Yangtze River delta and Pearl River delta (from top to bottom) are shown on the right. 
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Figure 4: Box-plots of monthly (a) nitrate and (b) phosphate concentration variations for the selected regions of 

Bohai Rim (BR, 37368 pixels), Yangtze River delta (YR, 35820 pixels) and Pearl River delta (PR, 30060 pixels) 

indicated by red squares in Fig 3 during the period 2015-01 to 2015-12 (-01 denotes the month of January, -02 

denotes February etc.). 
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Figure 5: Plots of one-point SSI (CMEP, MEP, MEDP, RAEP) and threshold 



  for (a) nitrate and (b) 

phosphate concentration distributions. The red circles indicate the cases of (A) the special threshold values 



 (nitrate)  0.5mg /L  and 



 (phosphate)  0.045mg /L , (B) the RAEP=0.5, and (C) the RAEP=1. 
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Figure 6: Two-point SSI (NIC, PIR & CEC) plots as functions of the selected nitrate concentrations threshold 



  (0.1, 0.2, 0.3, 0.4, 0.5 and 0.6 mg/L) based on space-time BME estimation. Detailed plots for selected 

thresholds (based on the 1st and 4th grades of seawater quality standards GB 3097-1997, 0.2 and 0.5 mg/L, see 

also Table 2) are shown on the left and right. 
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Figure 7: Two-point SSI (NIC, PIR & CEC) plots as functions of the selected phosphate concentrations 

threshold 



  (0.005, 0.015, 0.025, 0.035, 0.045 and 0.055 mg/L) based on space-time BME estimation; plots for 

selected thresholds (based on the 1st and 4th grades of seawater quality standards GB 3097-1997, 0.015 and 

0.045 mg/L, see also Table 2) are on the left and right for details. 
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Table 1: Summary statistics of samples obtained at Bohai Sea (BS), Yellow Sea (YS), East China Sea (ECS) 

and South China Sea (SCS) from January to December of 2015. 

Region Samples 
Nitrate (mg/L) Phosphate (mg/L) 

Min Max Mean Std dev Min Max Mean Std dev 

BS 652 0.010 4.008 0.299 0.304 0.0006 0.1570 0.0138 0.0127 

YS 977 0.001 0.981 0.214 0.198 0.0004 0.1090 0.0137 0.0130 

ECS 1187 0.020 4.216 0.703 0.608 0.0001 0.3079 0.0370 0.0263 

SCS 1146 0.001 2.522 0.214 0.369 0.0003 0.1660 0.0073 0.0124 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2: China’s seawater quality standard (GB 3097-1997) for nitrate and phosphate (mg/L). 

Nitrate 

Less than 

Phosphate 

Less than 
Class Suitable for: 

0.2 0.015 I Marine fishery waters, marine nature reserves etc. 

0.3 

0.030 

II 

Slightly polluted 

Aquaculture, seawater baths etc. 

0.4 III 

Moderately polluted 

Industrial water use, coastal scenic area. 

0.5 0.045 IV  

Heavily polluted 

Sea port waters, marine development zone 

 
 

 
 


