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Abstract
Aquatic ecosystems are subject to spatiotemporal variations that are important to quantify and understand for a proper 
assessment of their diversity and complexity. The objective of the present study was to develop a simple model that gives 
a numerical value to homogeneity and other spatiotemporal attributes for an easier analysis of aquatic ecosystem structure. 
The model allows for the comparison among different ecosystems, or different periods of time or zones of a given aquatic 
ecosystem. The model developed sets a numerical value to homogeneity, establishes the fraction of the ecosystem that 
contains a given percentage of the total amount of a compound, quantifies the fraction of the aquatic ecosystem in which no 
detectable levels of the measured compound are found, identifies the fraction of the ecosystem that represents an adequate 
habitat for a given process, and defines a simplified bidimensional vector of heterogeneity. This model is applicable to the 
two main maps used in the field of limnology: maps showing a particular parameter over two spatial dimensions, and maps 
showing a particular parameter over one spatial and one temporal dimension. The model was tested with different parameters 
obtained from three contrasting aquatic ecosystems, a highly polluted Mexican highland reservoir, a naturally acidic German 
bog lake, and a mesotrophic Patagonian lake.
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List of symbols
λP  Dead area/section of parameter P
λP,X  Unidimensional (X) dead section of parameter P
ΩP,X,Y  Magnitude of the bidimensional (X, Y) vector of 

anisotropy for parameter P
ωP,X,Y  Direction of the bidimensional (X, Y) vector of 

anisotropy for parameter P
A  Grid cell area
A′  Cumulative normalized grid cell area

A%

P
  Fraction of the map that contains a given per-

centage (superscript %) of parameter P
A%

P,X
  Unidimensional (X) fraction of a profile, that 

contains a given percentage (superscript %) of 
parameter P

CCH4  Concentration of disolved methane
CDO  Concentration of dissolved oxygen
D  Depth
Eh,P  Relative absolute error of homogeneity factor for 

parameter P
FP  Flux of parameter P
hP  Homogeneity factor of parameter P
hP,X  Unidimensional (X) homogeneity factor of 

parameter P
KS,CH4  Apparent affinity constant for methane
KS,DO  Apparent affinity constant for dissolved oxygen
L  Length
L′  Cumulative normalized length
MP  Methanotrophic potential
MP  Magnitude of parameter P present in grid cell 

area
M′P  Cumulative normalized magnitude of parameter 

P
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NP,X  Unidimensional (X) magnitude of parameter P
N′P,X  Unidimensional (X) cumulative normalized mag-

nitude of parameter P
t  Time

Abbreviations
CV  Coefficient of variation
DO  Dissolved oxygen
IC  Inorganic carbon
LF  Lake Grosse Fuchskuhle
LG  Lake Guadalupe
LG#  Sampling sites in LG (1–8)
LH  Lake Hambre
MAD  Median absolute deviation
NHM  Numerical homogeneity model
RWCS  Relative water column stability
TC  Total carbon
TN  Total nitrogen
TOC  Total organic carbon

Introduction

Aquatic ecosystems are subject to variations on different 
scales and dimensions, i.e. across diel cycle and seasons 
(temporal), or depth- and lengthwise (spatial), collectively 
referred to as spatiotemporal variations. For instance, ther-
mal stratification promotes strong vertical gradients of dis-
solved oxygen (DO), methane  (CH4), carbon dioxide  (CO2) 
concentration, and other physicochemical parameters. 
Depending on the mixing regime (Hutchinson and Löffler 
1956; Imboden and Wüest 1995), the water column stratifi-
cation often disappears, once or several times per year, thus 
adding a temporal dimension to vertical variations. Aquatic 
ecosystems are also subject to longitudinal variability caused 
by interactions with the contiguous terrestrial ecosystem, 
river inlets, and lateral transport, but also caused by zona-
tion, morphology, and geology of the ecosystem (Giling 
et al. 2017; Hofmann 2013; Wik et al. 2013). These spa-
tiotemporal variations are often radical, transitioning from 
oxic to anoxic, mesophilic to psychrophilic or photic to aph-
otic conditions, among others, in relatively short distances 
or timeframes.

Evidently, spatiotemporal variability has a large impact 
on the biogeochemical processes occurring in aquatic eco-
systems. This can be illustrated by the  CH4 emissions to the 
atmosphere of which aquatic ecosystems have been identi-
fied as a major global source (Bastviken et al. 2004). Over-
all,  CH4 emissions depend on the complex balance between 
methanotrophy and methanogenesis; i.e.,  CH4 oxidation 
and production, respectively, which in turn depend on the 
environmental conditions found in the aquatic ecosystem. 
Since  CH4 diffusive emissions are proportional to the surface 

dissolved  CH4 concentration (Weber et al. 2019), they will 
be the result of the biological and transfer processes occur-
ring in the sediments, along the entire water column (Sepul-
veda-Jauregui et al. 2018a), and potentially along longitudi-
nal gradients caused by lateral transport (Hofmann 2013). 
Ebullitive emissions, will depend mostly on the conditions 
found in the sediments as well as gas/water mass transfer 
during bubble migration to the surface, which also depends 
on the conditions found along the water column (Delwiche 
and Hemond 2017). Other illustrative examples are primary 
production and heterotrophic respiration; the first depends 
mostly on light penetration and  CO2 concentration, and is 
therefore subject to high spatiotemporal variability lim-
ited to the upper layers of the water column (Pannard et al. 
2008; Winder and Hunter 2008), while the latter depends on 
organic matter and DO concentrations (Jane and Rose 2018).

Taking into consideration the spatiotemporal variability 
of aquatic ecosystems is beneficial to reach a proper assess-
ment of the diversity and complexity of these environments. 
Through the recent development of high-frequency sensors 
at an affordable cost, measurements can be now distrib-
uted through time and/or space at high resolution, for the 
assessment of variability in one or more dimensions. The 
large datasets generated are usually presented in the form 
of contour or heat maps, which allow for a clear visual rep-
resentation of the distribution of the studied parameters. 
Two distinct heat maps are typically used, maps showing a 
particular parameter over two space dimensions, hereafter 
termed “space–space maps”, and maps displaying a particu-
lar parameter over one time and one space dimension, here-
after termed “space–time maps”. Space–space maps may 
represent a parameter distribution over a vertical section of 
the aquatic ecosystem (Hofmann 2013; Steinle et al. 2015; 
Watkins et al. 2015) or over the surface area of the ecosys-
tem (Gerardo-Nieto et al. 2017; Kaizu et al. 2011), while 
space–time maps usually represent a parameter profile over 
the water column and a given period of time (Bellido et al. 
2013; Hofmann et al. 2010; Murase et al. 2005; Striegl and 
Michmerhuizen 1998). These maps facilitate a qualitative 
awareness of spatiotemporal distributions, identify hot- and 
cold-spots (Bagstad et al. 2017; Giling et al. 2017), and elu-
cidate the overall structural properties of ecosystems at dif-
ferent scales (He et al. 2002).

Going further, a quantitative approach to the structural 
properties of an aquatic ecosystem assigns a numerical 
value to the spatiotemporal variations of a given parameter 
in space–space or space–time distributions. There is an 
extensive literature on methods to assess spatiotemporal 
distributions in a diversity of ecosystems. These methods 
allow for the treatment of occurrence (based on magni-
tude) or abundance (based on presence–absence) data-
sets, and for the determination of specific properties of 
the studied ecosystem. The main methods have been listed 
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and compared (Fraterrigo and Rusak 2008; Legendre and 
Fortin 1989; Veldtman 2005). Among them, Moran’s I 
(Moran 1950), Geary’s C (Geary 1954), K-means (Thah 
and Sitanggang 2016), semivariogram (Matheron 1963) 
or spatially stratified heterogeneity (Wang et al. 2016) 
methods, allow for the numerical quantification of het-
erogeneity as well as for the determination of structural 
parameters, such as patchiness or anisotropy (Legendre 
and Fortin 1989; Rosenberg 2000). However, these meth-
ods are sophisticated and complex, they often require 
significant computing effort, they are better adapted to 
large scale with space–space dimensions, and generally 
not well-adapted for the characterization of continuous 
variations of environmental properties (Gustafson 1998). 
Although the listed methods, and other such as spectral or 
wavelet analysis, have been applied to continuous environ-
mental data, their focus has been segregation of patterns 
in large datasets (Legendre and Fortin 1989), with a sub-
stantial computational effort (Li 1995; Rajala et al. 2018).

Thus, there is still a demand for simple numerical 
methods to characterize spatiotemporal dispersion of 
environmental parameters in aquatic ecosystems. Gonza-
lez-Valencia et al. (2016) suggested a numerical model to 
describe spatial variations of  CH4 emissions from landfills, 
that can be easily applied with slight computing effort. 
The objective of this study was to adapt and expand the 
previously reported model, called numerical homogene-
ity model (NHM) to describe and quantify spatiotem-
poral variations of environmental parameters in aquatic 
ecosystems, with the attributes hereafter described. First, 
the NHM should be easily applicable with no specialized 
background on numerical methods and with little com-
puting effort. Second, the model should give a numerical 
value to the spatiotemporal variations of any intensive or 
extensive property. Third, the NHM should be applicable 
to continuous or discrete data. Fourth, the model should 
be applicable to describe spatiotemporal variations of a 
given parameter over one time, one space, two space–time 
or two space–space dimensions. Fifth, the NHM should 
support comparisons among ecosystems, as well as among 
periods of time or sections of a given ecosystem. Sixth, 
preferably, the NHM should detect and quantify regions 
with a specific structural property, including but not lim-
ited to the fraction of the ecosystem that contains a certain 
level of a given parameter, and to quantify possible dead 
volumes, i.e., the fraction that contains no detectable level 
of the measured parameter. Seventh, the NHM should ena-
ble the combination of the structural properties of several 
parameters, to determine the available habitat for a given 
biogeochemical process; e.g., light and  CO2 concentration 
for primary production,  CH4 and DO concentration for 
oxic methanotrophy, or organic matter and DO concentra-
tion for heterotrophic respiration. In this work a numerical 

homogeneity model was developed and tested with data 
obtained in different lakes and reservoirs.

Numerical homogeneity model

Our NHM was developed to give a numerical value to homo-
geneity and spatiotemporal variation attributes represented 
in space–space or space–time heat maps. Space–space 
maps can be a vertical section of the aquatic ecosystem; 
i.e., depth-length maps, which allow for the characteriza-
tion of the water column homogeneity along a longitudinal 
transect. Space–space maps can also represent the surface 
of the aquatic ecosystem, to test for instance spatial distri-
bution of gas emissions, or any horizontal section of the 
ecosystem to quantify the parameter distribution at a fixed 
depth. Space–time maps would generally represent the water 
column homogeneity along a period of time, although the 
space dimension might be any characteristic length.

The model first establishes a homogeneity factor (hP) that 
gives a numerical value to the spatial distribution of a given 
parameter indicated by subscript P. For the determination of 
hP, the heat map is partitioned into a grid of n sub-regions, 
each one corresponding to one parameter value (Pi=1,2,…,n). 
It is important to note that each P value can be a measured 
parameter or a product of interpolated contour maps. Each 
Pi is associated with a grid cell area (Ai=1,2,…,n) that can 
be constant in the case of interpolated maps or variable in 
the case of experimental data. In the case of space–space 
maps, A represents an actual area  (m2), whereas in the case 
of space–time maps, A is a mixed parameter with units of 
length–time, e.g., m d. Next, we multiply the parameter Pi by 
the corresponding Ai to obtain a quantity of the compound 
of interest, or the magnitude of any other variable, present 
in the grid cell (MPi=1,2,...,n). We reorder the MPi subscripts 
so that MP1 ≥ MP2 ≥ ⋯ ≥ MPn, keeping for each MPi the cor-
responding Ai. We finally establish a cumulative normal-
ized parameter M′Pj (Eq. 1) that varies from 0 to 1, which 
is coupled to a cumulative normalized A′ function (Eq. 2).

The spatial (space–space maps) or spatiotemporal 
(space–time maps) distribution of the parameter in the eco-
system is then obtained by graphing the pair (M′j, A′j), and 
the homogeneity of the parameter P distribution is given by 

(1)0 ≤ M
�

Pj
=

∑j

i=1
MPi

∑n

1
MPi

≤ 1

(2)0 ≤ A
�

j
=

∑j

i=1
Ai

∑n

1
Ai

≤ 1

User
高亮
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hP (%; Eq. 3), which is represented by the hatched area in 
Fig. 1a.

The significance of this quantity is that for a homogene-
ous distribution, hP = 100%, while for a nonhomogeneous 
distribution, 0 ≤ hP < 100%. In Fig. 1a, presented as theoreti-
cal example, the straight line indicates the trend of M′

Pj
 that 

would be observed in a perfectly mixed water volume in the 
case of depth-space maps, or a perfectly mixed water column 
over a time interval in the case of depth-time maps 
(hp = 100%).

In addition, we define a second parameter that gives the 
percentage of the total space–space or space–time map 
that contains a given percentage of the total amount of the 
parameter P ( A%

P
 ). In A%

P
 , superscript % indicates the cor-

responding percentage, from 0 to 100%, of the parameter P. 
For example, in the case of a space–space map, A80

DO
 is the 

percentage of the ecosystem section that contains 80% of the 
total dissolved oxygen (DO). It is worth mentioning that if 
a compound is absent in a section of the ecosystem, its cor-
responding A100

P
 will be less than 100% (Fig. 1a). Therefore, 

the complementary fraction of A100

P
 , i.e., 100 − A100

P
 , gives 

a new parameter that we define as the dead area (λP), which 
represents the percentage of the section area that does not 
contain a detectable amount of P. The parameters A100

P
 and 

λP are dependent upon the lower limit of detection of the 
method used for P measurements and cannot be considered 
strictly as true characteristics of the ecosystem. However, if 
the lower limit of detection of the method is close to zero, 
little differences between λP and the actual dead section of 
the ecosystem is expected.

The model for the determination of hP, A%

P
 , and λP is 

applicable to an entire aquatic ecosystem, as shown above, 

(3)0 ≤ hP =
1 − � 1

0
M

�

P
dA

�

0.5
⋅ 100 ≤ 100%

but also to a specific section of it, or even to a single time 
or space dimension. Consequently, it allows, for instance, 
to discriminate longitudinal and depth distributions in 
space–space maps, or depth and temporal distributions in 
space–time maps. When the NHM is used to establish a sin-
gle dimension distribution, additional subscripts are added 
to the homogeneity parameters for clarity: (1) subscript D, 
when only referring to depth profiles, e.g., hP,D, (2) subscript 
L, when only referring to longitudinal profiles, e.g., A%

P,L
 

and (3) subscript t, when only referring to temporal profiles, 
e.g., λP,t. It is worth mentioning that in the case of a single 
dimension analysis, each parameter Pi is not associated with 
a grid cell area (Ai=1,2,…,n), as in two-dimensional analysis, 
but with a characteristic length (Li=1,2,…,n); i.e., distance or 
time between two measurements or two interpolated data. 
Similarly, NP,X replaces MP in the single dimension analysis, 
which is obtained by multiplying the parameter by the char-
acteristic length. Therefore, the procedure of data treatment 
is similar, except that Eq. (3) is replaced by Eq. (4).

Thus, the model also allows the comparison between two 
single dimension distributions. For comparison, we suggest 
a new parameter which describes the overall heterogeneity 
(ΩX,Y; Eq. 5), where subscripts X and Y represent the space 
or time dimensions being compared, and where heterogene-
ity is considered as the complement of homogeneity; e.g., 
100 − hP, expressed in percent. It is worth mentioning that 
the maximum value of ΩX,Y is 141%, as a result of the square 
root of 20,000 when hP,X and hP,Y are 0%.

(4)0 ≤ hP =

1 − � 1

0
N

�

P,X
dL

�

0.5
⋅ 100 ≤ 100%

(5)
0 ≤ �P,X,Y =

√

(

100 − hP,X
)2

+
(

100 − hP,Y
)2

≤ 141%

Fig. 1  a Example of a homo-
geneity graph showing the 
cumulative distribution of the 
M’ parameter over A′ (solid 
line), the distribution that would 
be observed in a perfectly 
homogeneous system (dot-dash 
line), and a graphical represen-
tation of the determination of 
A
%

P
 and λP. The dashed area rep-

resents the integral of Eq. (3). 
b Theoretical representation of 
the simplified bidimensional 
vector of anisotropy
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Additionally, we also define an angle (ωX,Y, expressed 
in degrees, Eq. 6) which represents the angle of ΩX,Y with 
respect to a Y = X straight line (Fig. 1b). The Y = X line 
represents the direction in which both dimensions being 
compared have an equal heterogeneity, and therefore a ωX,Y 
of − 45° means that heterogeneities are only observed in 
the X dimension, and conversely a ωX,Y of + 45° means that 
heterogeneities are only observed in the Y dimension.

The significance of ΩP,X,Y and ωP,X,Y is as follows; if depth 
and longitudinal homogeneities are combined, ΩP,L,D will 
give the overall heterogeneities with consideration to longi-
tudinal and depth axis, while ωP,L,D will indicate the domi-
nant direction of heterogeneities; i.e., negative values for 
longitudinal dominant heterogeneities, and positive values 
for vertical dominant heterogeneities (Fig. 1b). As such, a 
ΩL,D of 120 and a ωP,L,D of 0°, would indicate strong het-
erogeneities, equally distributed longitudinally and depth-
wise, while ΩP,L,D of 10 and ωP,L,D of 45°, would indicate 
relatively low heterogeneity but exclusively along the depth 
profile (Y-axis, Fig. 1b). Both ΩX,Y and ωX,Y, are parameters 
that define the magnitude and direction of heterogeneities in 
the X–Y dimensions and can be considered, together, as a 
simplified bidimensional vector of anisotropy.

Materials and methods

Study site, monitoring stations, and dates

A 450-ha tributary reservoir called Lake Guadalupe (LG) 
was selected to test our numerical model (19.6310  N, 
99.2567 W; Fig. S1). LG is a tropical highland reservoir that 
is 2240 m above sea level and 25 km northwest of Mexico 
City. Its general properties, as well as its limnological char-
acteristics, have been reported previously (Gonzalez-Valen-
cia et al. 2014; Sepulveda-Jauregui et al. 2013). Briefly, LG 
is dendritic, and its major axis runs southwest to northeast, 
where the dam is located (Fig. S1). In the western region, 
LG receives untreated urban wastewater discharges from 
three polluted tributary rivers, making LG a highly polluted 
ecosystem (Sepulveda-Jauregui et al. 2013). During the dry 
season (usually from October to June), LG serves as a water 
source, and a considerable decrease in its volume is usu-
ally observed. The lake has been previously characterized 
as monomictic, with a mixing period from November to 
April (Sepulveda-Jauregui et al. 2013). The present study 
was conducted from September to May to cover the period 
before, during, and after water column overturn, as well as 
from maximum to minimum reservoir volume. During this 

(6)−45◦ ≤ �P,X,Y = arcos

(

100 − hP,X

�P,X,Y

)

− 45 ≤ 45◦

period, four sampling campaigns were conducted in Septem-
ber, December, March, and May.

Sampling methods

Eight equidistant monitoring stations were established 
along the longitudinal axis of LG, covering the fluvial, tran-
sitional, and lacustrine zones (Fig. S1). At each monitoring 
station, in situ water quality measurements were taken at 
1-m depth intervals from the water surface to the bottom, 
i.e., temperature, pH, and DO concentration (CDO), using a 
multiparametric probe (556 MPS, YSI, USA). At the same 
depths, dissolved  CH4 concentrations (CCH4) were deter-
mined in situ using a previously described method based 
on headspace equilibration by infrared tunable diode laser 
absorption spectroscopy (Sepulveda-Jauregui et al. 2012). 
At each location and depth, water samples were taken with 
a horizontal 2.2-L Van Dorn bottle (WILDCO, USA). Water 
samples were transferred to polypropylene containers and 
handled using standard methods (APHA 2012). After trans-
fer to the laboratory, the total carbon (TC), inorganic carbon 
(IC), total organic carbon (TOC), and total nitrogen (TN) 
were measured using a total C and N analyzer (Shimadzu 
TOC-VCSN + TN1 module, Shimadzu, Mexico). Superficial 
and bottom water temperatures were measured every 30 min, 
during the complete sampling period, at three locations 
(LG1, LG4, and LG6; Fig. S1) using temperature loggers 
(HR, Thermotracker, Mexico) with 0.1 °C resolution. Water 
density values derived from the superficial and bottom water 
temperatures were used to determine the relative water col-
umn stability (RWCS; Padisák et al. 2003). If the RWCS was 
higher than 56.5, the lake was considered fully stratified, if it 
was less than 16.3, it was considered fully mixed, and at an 
intermediate RWCS value, the lake was considered partially 
stratified (Branco et al. 2009).

Space–space and space–time mapping

First, we used the data collected in LG, at all depths and 
locations, to elaborate vertical section maps. In comple-
ment, to test our numerical model with surface heat maps, 
we processed  CH4 flux data previously reported (Gerardo-
Nieto et al. 2017) from the small, round-shaped, subantarctic 
Lake Hambre (LH; 53.6035S, 70.9525W), a mesophilic lake 
located 50 km south of Punta Arenas, Chile. Similarly, to 
test our numerical model with space–time heat maps, we 
used CDO and CCH4 data previously reported by Sepulveda-
Jauregui et al. (2018b) that were obtained from Lake Grosse 
Fuchskuhle (LF; 53.1054N, 12.9846E), which is a small, 
naturally acidic bog lake located in a forested area of the 
Mecklenburg-Brandenburg Lake District in north-eastern 
Germany. This lake was artificially divided three decades 
ago into two distinctive sections, northeast and southwest. 
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We used data collected over 1-year, from the northeast sec-
tion, from August 2014 until July 2015.

Multiparametric estimations for process prediction

The NHM allows to combine the structural properties of 
several combined parameters for predictive purposes. To test 
that capability of the NHM, we combined CDO and CCH4 data 
from LG and LF to estimate the methanotrophic potential 
(MP;  %). Each CDO and CCH4 measurements (same loca-
tion and same depth) were combined according to a double 
Monod model (Segers 1998; Eq. 7);

where MP is the methanotrophic potential which represents 
the percentage of the maximum methanotrophic rate that 
would be observed with no CDO and CCH4 limitations, and 
KS,CH4 and KS,DO are the apparent affinity constants, for  CH4 
and DO, respectively, and with respective values of 0.110 
and 0.624 mg  L−1 (Martinez-Cruz et al. 2015). Once MP 
values were determined for each sampling point, heat maps 
were generated from data interpolation and processed with 
the NHM.

Statistical analyses, mapping, and error 
determination

In all cases, the measured parameters were used to establish 
maps from data interpolation using Surfer 11.0 software 
(Golden Software, USA). Selection of the best interpolation 
method, among inverse distance to a power, Kriging, mini-
mum curvature, natural neighbour, nearest neighbour, radial 
basis function, and modified Shepard’s method all of them 
included in the Surfer software, was based on two criteria: 
the mean absolute error and the mean bias error (Willmott 
and Matsuura 2006). The maps produced were used to test 
the NHM. We also estimated the impact of sampling density 
on NHM, using the vertical section maps of CDO and CCH4, 
in LG. With that purpose, we produced reduced datasets by 
eliminating a given number of profiles or a given number of 
depth data. Each combination of reduced dataset was tested; 
i.e., C(n, k), where n is the total number of profiles or depths 
measured, and k is the number of profiles or depths consid-
ered in the reduced dataset. For each combination, a map 
was generated by interpolation and the factor h was deter-
mined. All hP determined for a given (n, k) were averaged, 
compared to the original hP of the complete dataset, and the 
relative absolute error was determined. It is worth mention-
ing that the reduced datasets obtained by reduction of the 
number of profiles or depths were treated separately to seg-
regate both effects. Additionally, we numerically determined 

(7)MP = 100 ⋅
CCH4

KS,CH4 + CCH4

⋅

CDO

KS,DO + CDO

the impact of outliers on NHM parameter hP, the coefficient 
of variation (CV) defined as the ratio between the standard 
deviation and the mean, and the median absolute deviation 
(MAD). The latter was performed by simulating a set of 
300 data with normal distribution and adding an increasing 
percentage of outliers from 0 to 5%, 10 times higher than the 
mean of the dataset. The tests for sampling density and outli-
ers were performed in MATLAB (R2015a, Mathworks Inc.).

Results and discussion

DO and CCH4 concentrations in LG

According to the water column temperature (Fig. S2), the 
lake was fully mixed from November until March. Fig-
ure 2 shows the vertical section maps of CDO, which ranged 
from < 0.01 (lower limit of detection) to 6.72  mg  L−1, 
observed in the fluvial zone during winter (December), and 
was below the saturation concentration of 7.34 mg  L−1 that 
was calculated from an atmospheric pressure of 0.77 atm 
and a superficial water temperature of 17.4 °C (Meteored 
2016). Most of the water column was anoxic, and the aver-
age CDO over the entire transect were 0.51, 0.37, 0.85, and 
0.66 mg  L−1 in September, December, March, and May, 
respectively. An oxycline was observed in all seasons, at a 
depth that varied from 0.5 m in December at LG1 to 4 m in 
March at LG4. In December, a longitudinal gradient of CDO 
was observed from the fluvial to the lacustrine zones. These 
relatively low CDO were a result of wastewater discharges 
that have previously been reported (Gonzalez-Valencia et al. 
2014; Sepulveda-Jauregui et al. 2013).

Figure 3 presents vertical section maps of CCH4 that show 
a clear stratification in all seasons except December, and 
with a methanecline observed at the same depths as the 
oxycline. Depth gradients of dissolved  CH4 are a common 
feature of stratified lakes (Encinas Fernandez et al. 2014; 
Striegl and Michmerhuizen 1998). A negative relationship 
was observed between CCH4 and CDO, with high CCH4 levels 
where low CDO were observed, which suggests that there 
is an interaction between these compounds; i.e., the pres-
ence of DO promotes  CH4 oxidation (Sepulveda-Jauregui 
et al. 2018b). CCH4 levels varied over four orders of magni-
tude, from 0.007 to 13.55 mg  L−1, observed respectively in 
March at the epilimnion and in May at the hypolimnion. The 
average CCH4 concentrations over the entire transect were 
2.09, 2.06, 1.43, and 3.23 mg  L−1 in September, December, 
March, and May, respectively. The  CH4/DO molar ratio over 
the entire water column ranged from 2.86 in March to 8.39 
in May. Because the molar ratio of methanotrophy is 0.5 mol 
of  CH4 oxidized per mole of oxygen, the observed  CH4/DO 
molar ratio indicates that at the reservoir scale,  CH4 was in 
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excess, so DO was the limiting factor for  CH4 oxidation in 
most of the water column in all seasons.

Two‑dimensional analysis

Figure 4 shows the spatial distributions of CCH4 and CDO 
over LG transect, which confirms that by graphing the pair 
(M′j, A′j), the NHM gave in all cases an asymptotic shape 
that allows to visualize the homogeneity, and to quantify hP, 
A%

P
 , and λP. In all seasons, CDO was heterogeneously distrib-

uted, with hCDO ranging from 10 to 35% and A80

CDO
 ranging 

from 8 to 28% (Table 1), so during the most heterogeneous 
period, 8% of the lake section contained 80% of the total 
DO. In addition, because of a clear, anoxic section in the 
water column, A100

CDO
 ranged from 27 to 70%, indicating a 

range of dead section for DO (λCDO) of 30 to 73%, i.e., the 
percentage of the reservoir section that could be considered 
anoxic. CCH4 was more homogeneously distributed than DO 
in all seasons, with hCCH4 ranging from 39 to 86% and A80

CCH4
 

ranging from 30 to 69% (Table 1). hCDO and A80

CDO
 were 

inversely proportional to hCCH4 and A80

CCH4
 , respectively. 

This was particularly clear in December when the water 
column was well mixed, with the highest hCCH4 and A80

CCH4
 

and the lowest hCDO and A80

CDO
 , among seasons. In contrast, 

in March, the CDO and CCH4 had similar distributions, which 
corresponded to the maximum hCDO and A80

CDO
 and the mini-

mum hCCH4 and A80

CCH4
 . Therefore, the spatial distributions 

of CCH4 and CDO were linked, and a more homogeneous 
distribution of CCH4 promoted a more heterogeneous DO dis-
tribution, and vice versa. The correlation observed between 

Fig. 2  Heat maps and NHM 
parameters of dissolved oxygen 
(CDO) concentrations in Lake 
Guadalupe. a September, 
b December, c March, and 
d May. ND: not detected 
(DO < 0.01 mg/L). Black area 
represents bathymetry data
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hCDO and hCCH4 indicates that both compounds were linked 
through methanotrophy; i.e., a higher hCDO and A80

CDO
 result-

ing in higher DO availability for methanotrophy and  CH4 
oxidation, resulting in lower hCCH4 and A80

CCH4
 , and recipro-

cally. Thus, the effects of stratification and mixing regime on 
the NHM parameters are complex and no direct link between 
them can be established. Indeed, the NHM in LG showed 
that mixing, observed in December, promoted the homoge-
neity of CCH4 but suppressed the homogeneity of CDO. This 

observation suggests that NHM cannot be considered as an 
indicator of the stratification.

A two-dimensional, depth-length analysis was also per-
formed from TOC, IC, and TN concentration data in LG, and 
Table 1 shows the hP, A%

P
 , and λP determined. These three 

parameters were more homogeneously distributed than CCH4 
and CDO. The hTOC ranged from 85% in December to 99% in 
March, and the spatial distribution of IC ranged from a hIC of 
50% in September to 99% in March. The lower hIC observed 

Fig. 4  Homogeneity graphs of 
dissolved methane (CCH4; solid 
lines) and dissolved oxygen 
(CDO; dashed lines) concentra-
tions over the entire transect of 
Lake Guadalupe in a Septem-
ber, b December, c March, and 
d May. Simplified bidimen-
sional vector of anisotropy in 
September (long-dashed line), 
December (dot-dot-dash line), 
March (short-dashed line), May 
(dotted line) and mean vector 
(solid line) for CCH4 (e) and 
CDO (f)
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was mainly caused by a longitudinal gradient (hIC,D, 98.9%; 
hIC,L, 55.9%). The spatial distribution of TN was very close 
to what was observed with the TOC, with a hTN ranging from 
85% in December to 98% in March. The higher hP observed 
with TOC, IC, and TN suggests that these compounds were 
in excess in all sections of the lake, in contrast to  CH4 and 
DO. Moreover, while the processes involved in  CH4 and DO 
exhibited marked vertical gradients, the TOC, IC, and TN 
were more subject to longitudinal than vertical gradients, as 
previously observed in other aquatic ecosystems (Descloux 
et al. 2017).

To test the NHM with surface heat maps, we processed 
 CH4 flux data (FCH4) previously reported by Gerardo-Nieto 
et al. (2017) from Lake Hambre. Figure S3 shows surface 
heat maps over three seasons, the corresponding NHM 
graphs and the parameters hFCH4, A80

FCH4
 , and λFCH4. In this 

case too, the model gave the standard asymptotic shape 
observed with CCH4 and CDO in LG, but in this case with no 
λFCH4, except 2% observed during winter. It is noteworthy 
that, although the mean magnitude of FCH4 changed among 
seasons; i.e., 4.16, 23.04, and 1.55 mg m−2  day−1, in spring, 
summer and winter, respectively, the corresponding hFCH4 
were similar (Figure S3d), suggesting that, in contrast to 
hCCH4 observed in LG, the spatial homogeneity stayed con-
stant over seasons; i.e., 78.3, 77.0, and 65.1%. Overall, these 
results confirm that, as expected, comparison of parameter 
distribution among seasons is possible using the NHM.

The NHM was also tested with depth-time maps of CDO 
and CCH4 data, from the northeast section of LF, previously 
published (Sepulveda-Jauregui et al. 2018b). Figure 5a, b 

shows the heat maps generated from these data that were 
measured at the same position over 1 year at 0.5-m depth 
intervals. As in LG, a negative relationship was observed 
between CCH4 and CDO in both depth and time, with higher 
CCH4 levels where lower DO concentrations were observed, 
and vice versa. The average CCH4 and CDO over the entire 
depth-time map were 0.23 and 4.89 mg  L−1, respectively. 
In contrast to what was observed in LG, the  CH4/DO molar 
ratio over the entire water column and year was 0.095, i.e., 
up to two orders of magnitude below the ratio observed in 
LG, and below the theoretical ratio of 0.5 mol of  CH4 oxi-
dized per mole of oxygen. Therefore, in LF, the  CH4/DO 
molar ratio indicated that DO was present in excess, in most 
of the water column. Consequently, in LF, CDO was more 
homogeneously distributed than CCH4, with hCDO, A80

CDO
 , and 

λCDO values of 60.0, 48.4, and 0.9%, respectively, in com-
parison with hCCH4, A80

CCH4
 , and λCCH4 values of 14.3, 11.0, 

and 19.9%, respectively. This opposite pattern, compared to 
LG, is explained by the absence of a significant anoxic water 
column and by the excess of DO, compared to  CH4; i.e., low 
 CH4/DO molar ratio.

Single‑dimension analysis in LG

As mentioned, the NHM allows the discrimination of longi-
tudinal and depth distributions of any parameter and there-
fore to establish the main direction of heterogeneities. For 
example, when applied to the CDO data for September in 
LG, the clear depth gradient observed at 200 m from the 
dam (Fig. 2a) was numerically confirmed by hCDO,D, A80

CDO,D
 , 

Table 1  Homogeneity 
parameters (hP and A80

P
 ) and 

mean concentrations of several 
parameters in Lake Guadalupe 
at different times

Values in parentheses are standard deviations

Parameter September December March May

CH4 hCCH4 (%) 58 86 39 43
A
80

CCH4
 (%) 48 69 30 35

Mean conc. (mg  L−1) 2.09 (1.56) 2.06 (0.59) 1.43 (1.70) 3.23 (3.60)
DO hCDO (%) 20 10 35 24

A
80

CDO
 (%) 16 8 28 20

Mean conc. (mg  L−1) 0.52 (0.96) 0.37 (1.06) 0.86 (1.08) 0.66 (1.07)
TOC hTOC (%) 90 85 99 91

A
80

TOC
 (%) 75 72 80 75

Mean conc. (mg  L−1) 11.16 (1.98) 27.4 (7.44) 26.65 (0.36) 21.1 (3.15)
IC hIC (%) 50 71 99 93

A
80

IC
 (%) 42 59 80 76

Mean conc. (mg  L−1) 5.78 (6.26) 11.25 (5.74) 26.65 (0.42) 31.47 (3.92)
TN hTN (%) 95 85 98 97

A
80

TN
 (%) 77 73 79 79

Mean conc. (mg  L−1) 1.95 (0.17) 2.88 (0.80) 6.47 (0.28) 8.81 (0.83)
MP hMP (%) 26 17 52 34

A
80

MP
 (%) 21 14 44 27

Mean MP (%) 13 (21) 11 (23) 20 (0.17) 19 (24)
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and λCDO,D, with values of 9.6, 8.2, and 80.6%, respectively, 
while the absence of a clear longitudinal gradient at 2-m 
depth was confirmed by hCDO,L, A80

CDO,L
 , and λCDO,L, with 

values of 94.2, 73.4, and 0.0%, respectively. In contrast, the 
depth distribution analysis of CCH4 in December, when mix-
ing and small gradients were observed, showed that hCCH4,D, 
A80

CCH4,D
 , and λCCH4,D were 94.9, 78.6, and 0.0%, respectively, 

at 200 m from the dam, while the longitudinal distributions 
were 68.6, 61.7, and 0.0% for hCCH4,L, A80

CCH4,L
 , and λCCH4,L, 

respectively, at 2-m depth. Therefore, in the latter case, CCH4 
was subject to a stronger longitudinal gradient than depth 
gradient during mixing.

These longitudinal and depth profiles were used to deter-
mine the bidimensional simplified anisotropic vectors in 
LG; i.e., ΩP,L,D and ωP,L,D. Figure 4e shows the results of 
these determinations for CCH4, as well as the mean vector, 
determined from Eqs. (5) and (6), while Fig. 4f shows these 
same parameters for CDO. Overall, ΩCDO,L,D and ωCDO,L,D 

were higher than ΩCCH4,L,D and ωCCH4,L,D, respectively, 
which confirms that CDO was more heterogeneously and 
anisotropically distributed. For both DO and  CH4, the mean 
ωP,L,D, were positive, indicating that the depth profiles were 
more heterogeneous than longitudinal profiles, and more evi-
dently for CDO. It is worthwhile to mention that ωCCH4,L,D 
was negative in December, but not during the three other 
periods. The latter indicates that during most of the year the 
 CH4 distribution was dominantly controlled by stratification, 
more than by the lateral input of wastewater at the west of 
the lake. Contrastingly when mixing occurs, the lateral input 
of organic matter prevailed on the  CH4 distribution.

Multiparametric estimations for processes 
prediction

As previously mentioned, the NHM possesses a predictive 
capacity to establish the available habitat for a given process. 
As an example, we used CCH4 and CDO data from LG to test 
the capability of the NHM to establish the methanotrophic 
potential. Figure 6 shows the vertical section maps of MP 
as well as the corresponding hMP, A%

MP
 , and λMP (also pre-

sented in Table 1). Notably, this analysis showed that the 
methanotrophic potential was limited to only a small sec-
tion of LG, as evidenced by a small A%

MP
 and a large λMP 

(Fig. 6). Furthermore, this potential is, as expected from CDO 
and CCH4 profiles, more heterogeneously distributed along 
depth profiles than longitudinal profiles. It should be noted 
that this analysis confirmed that  CH4 was in excess in most 
of the water column, compared to DO, as previously estab-
lished. This was confirmed, first, by analyzing separately 
the proportionality parameters CCH4/(CCH4 + KS,CH4) and 
CDO/(CDO + KS,DO), of the Monod model used to establish 
MP. This analysis showed that DO was more limiting than 
 CH4 in 75, 90, 54, and 69% of the lake section, in Septem-
ber, December, March and May, respectively. Additional 
evidence is the fact that hMP and A80

MP
 were positively cor-

related to hCDO and A80

CDO
 and inversely correlated to hCCH4 

and A80

CCH4
 (Table 1). We applied the same strategy in LF and 

determined that MP was also limited to a small fraction of 
the depth-time section (Fig. 5c). Overall, this MP analysis 
shows that NHM also allows to determine the section of a 
lake that is prone to harbor a given biological process, in 
complement to mapping that allows qualitative assessment 
of the latter.

Statistical analysis

The NHM also allows to guide field sampling campaigns. 
Since data distribution and homogeneity are unknown a 
priori, it is not possible to define the number of samples 
required to describe accurately the aquatic ecosystem. 
Therefore, it is not uncommon to determine the sampling 
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density based on a two-step approach, the first being a quali-
tative/semiquantitative survey to detect areas of interest, and 
the second being the study itself. The statistical analysis of 
the first step can inform if the sampling procedure was ade-
quate. To determine the adequacy of sampling procedures, 
we suggest using hP as the characteristic parameter, as it 
reflects data distribution. Therefore, the impact of sampling 
density can be assessed through the relative absolute error 
on hP (Εh,P), and sampling density can be modified by reduc-
ing artificially the number of depth or longitudinal measure-
ments. If a given reduction of the sampling density results 
in little change of Εh,P or in a Εh,P below a given limit (e.g., 
10%), the sampling strategy might be considered adequate. 
To illustrate that, we considered the interpolated matrix of 
CCH4 and CDO in LG as the reference, and we determined 
Εh,P for reduced datasets of depth or longitudinal measure-
ments (Fig. S4). As observed, the impact on Εh,P of reduced 
datasets, was highly dependent on the season and the studied 
parameter. Overall, Εh,CDO was usually higher than Εh,CCH4, 
which can be easily explained by lower hCDO, compared to 
hCCH4. Similarly, in December, when hCDO and hCCH4 were 
the lowest and the highest, respectively, the impact of reduc-
ing sampling density had the highest impact on Εh,CDO and 
the lowest on Εh,CCH4.

Strengths and weaknesses of the model

Our numerical model is easily applicable with no specialized 
background on numerical methods and with slight comput-
ing effort. The model accurately describes the spatial and 
spatiotemporal distributions of any parameters by assigning 
a numerical value to homogeneity and other spatiotemporal 
attributes, which are otherwise qualitatively assessed. We 
have seen that the NHM allows to quantify homogeneity in 

two space–space or space–time dimensions but also in one 
space or time dimension, which in turn allows to compare 
them to establish a simplified vector of anisotropy. In addi-
tion to homogeneity, the NHM also establishes the fraction 
of the ecosystem that contains a given percentage of the total 
amount of a compound or parameter ( A%

P
 ), or in which no 

detectable levels of the measured parameter are found (λP). 
The NHM combined with a process model, also allows to 
establish the percentage of an ecosystem that is an appropri-
ate habitat for a given process, as exemplified in this work 
with methanotrophy.

A comparison of the main attributes of the NHM and 
other simple statistic methods are listed in Table S1a. The 
primary and main objective of the NHM is the determina-
tion of hP, which is in many ways similar to CV or MAD. 
Indeed, both hP and CV or MAD parameters are assigning 
a numerical value to data dispersion. However, several dif-
ferences exist between these parameters. First, as opposed 
to CV or MAD, hP is based on weighted parameters; i.e. 
each parameter data is associated with a grid cell area (two-
dimensions analysis) or length (one-dimension analysis). 
Therefore, except in the case of CV or MAD determined 
from regular grids, in which each measurement is equally 
weighted, hP will be more representative of the ecosystem 
than CV or MAD. Second, in the NHM, hP, A%

P
 , and λP, are 

normalized bounded parameters with a range of 0–100%, 
which facilitate comparison among ecosystems, as well as 
among periods of time or sections of a given ecosystem. 
Third, CV is based on root-mean-square deviations, which 
results in a more important weight assigned to outliers, and 
therefore over-represents them. This is not the case of the 
NHM, where each measurement is weighted only by the grid 
cell area or length, similarly to MAD, where each datum is 
equally weighted. To illustrate the latter, Figure S5 shows 

Fig. 6  Heat maps and NHM 
parameters of the methano-
trophic potential in LG, in 
September (a), December (b), 
March (c) and May (d). Black 
area represents bathymetry data
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a large impact of outliers on CV, and a limited effect on hP 
and MAD. This is further illustrated in Figure S6, where 
data with the same mean and different distributions have a 
slight effect on hP and MAD, whereas CV tends to be more 
variable.

Instead of a single CV or MAD analysis, a standard sta-
tistical analysis of data distribution often takes into account 
a combination of statistical parameters, including mean, 
variance, and CV for normally distributed data, or robust 
estimators such as median, geometric mean, MAD, inter-
quartile range for non-normally distributed data. These mul-
tiple standard approaches may be an alternative or comple-
ment to NHM, with the purpose of establishing the central 
tendency and dispersion of the dataset. In this regard, it is 
worth mentioning that, when based on interpolated maps, 
the NHM model intrinsically includes standard statistical 
analysis during the interpolation step, automatically per-
formed and based on several methods, the best of which is 
selected during data analysis; e.g., Surfer software, as used 
in the present work.

The NHM might be a simple but useful tool to better 
constrain aquatic ecosystems functioning. First, as observed 
in LG with CDO and in LF with CCH4, a low hP, or A%

P
 , as 

well as a high λP, is a clear indicator of limiting condi-
tions, meaning that the uptake of the measured compounds 
exceeds its availability. Contrarily, high hP and low λP, are 
indicators of an excess of the measured compound. This 
was clearly observed with TOC, IC, and TN concentrations 
data in LG, not surprising as the lake receives large waste-
water discharges. When combined, the hP of two related 
compounds being inversely correlated, suggest a coupling 
between them, as observed for  CH4 and DO in LG and LF, 
both being coupled through aerobic methanotrophy. In 
LG,  CH4 was dominant over DO, while the opposite was 
observed in LF. Second, the NHM allows for a comparison 
of homogeneity among space–space or space–time dimen-
sions, and to determine a simplified anisotropic vector. A 
radical case was CCH4 measured in December in LG, with a 
ωCCH4,L,D of − 33.5°. This angle means that the longitudinal 
gradient of CCH4 was by far superior to depth gradient, which 
is in agreement with the large discharge of wastewater at the 
west of the lake, promoting methanogenesis and flowing to 
the east, progressively diluted by mixing of the water col-
umn. On the contrary, CDO measured in September in LG 
exhibited a ωCDO,L,D of + 41.9°, showing unequivocally that 
during stratification the biological processes involved in DO 
production/uptake are almost exclusively evident along a 
vertical axis. Hence, the comparison of homogeneity among 
different dimensions and the simplified anisotropic vector 
inform about the dominant axis along which the succes-
sions of biological processes take place and may help to 
establish the origin and fate of the compounds involved in 
a specific biogeochemical process. Third, the NHM allows 

for comparison among ecosystems or sections within one of 
them, and as such, might be adopted by other researchers, 
allowing to build a unified database of spatio-temporal vari-
ability in aquatic ecosystems, at a global scale.

Despite the strengths of the NHM, several weaknesses are 
worth mentioning. First, the NHM is based on an ordered 
cumulative function that loses the coordinates information 
related to each measurement. Thus, the model informs about, 
for instance, the percentage of the ecosystem section that 
contain a given percentage of a compound or that does not 
contain a significant level of it ( A%

P
 and λP), but the model 

fails in informing the location of these sections. Therefore, 
the NHM may advantageously be combined with a heat 
map to mitigate the loss of information. Similarly, the NHM 
parameters are scaled by the mean, which is a strength to 
allow for independent comparison among ecosystems but 
does not contain any magnitude information about the stud-
ied parameter. This can be solved by combining the NHM 
parameter with the mean, as usually done when reporting 
CV or standard deviation. In conclusion, the NHM might 
be a potential tool, easy to apply in combination with other 
methods, to better describe the high spatiotemporal vari-
ability in aquatic ecosystems. Since the model allows to 
combine several dimensions of different nature, hP, A%

P
 , λP, 

ΩP,X,Y, and ωP,X,Y can be used to quantify any combination 
of spatial and temporal variations, at any scale.
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