Journal of Environmental Planning and Management

ISSN: 0964-0568 (Print) 1360-0559 (Online) Journal homepage: https://www.tandfonline.com/loi/cjep20

2
g
a
2}

€Y Routledge

Taylor &Francis Group

Detection of spatial-temporal variations in forest
canopy surface temperature in response to
urbanization: a case study from Longyan, China

Zhifeng Wu, Wang Man & Yin Ren

To cite this article: Zhifeng Wu, Wang Man & Yin Ren (2019): Detection of spatial-
temporal variations in forest canopy surface temperature in response to urbanization: a
case study from Longyan, China, Journal of Environmental Planning and Management, DOI:
10.1080/09640568.2019.1661227

To link to this article: https://doi.org/10.1080/09640568.2019.1661227

A
h View supplementary material &

@ Published online: 31 Oct 2019.

N
CJ/ Submit your article to this journal

||I| Article views: 15

A
& View related articles '

P

(&) View Crossmark data &'

CrossMark

Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalinformation?journalCode=cjep20


https://www.tandfonline.com/action/journalInformation?journalCode=cjep20
https://www.tandfonline.com/loi/cjep20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/09640568.2019.1661227
https://doi.org/10.1080/09640568.2019.1661227
https://www.tandfonline.com/doi/suppl/10.1080/09640568.2019.1661227
https://www.tandfonline.com/doi/suppl/10.1080/09640568.2019.1661227
https://www.tandfonline.com/action/authorSubmission?journalCode=cjep20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=cjep20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/09640568.2019.1661227
https://www.tandfonline.com/doi/mlt/10.1080/09640568.2019.1661227
http://crossmark.crossref.org/dialog/?doi=10.1080/09640568.2019.1661227&domain=pdf&date_stamp=2019-10-31
http://crossmark.crossref.org/dialog/?doi=10.1080/09640568.2019.1661227&domain=pdf&date_stamp=2019-10-31

Journal of Environmental Planning and Management, 2019 £y Routledge
https://doi.org/10.1080/09640568.2019.1661227 & W Taylor &Francis Group

‘ W) Check for updates

Detection of spatial-temporal variations in forest canopy surface
temperature in response to urbanization: a case study from
Longyan, China

Zhifeng Wu?®, Wang Man®* and Yin Ren*

*Key Laboratory of Urban Environment and Health, Key Laboratory of Urban Metabolism of
Xiamen, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, P. R. China;
*Department of Spatial Information Science and Engineering, Xiamen University of Technology,
Xiamen, P. R. China

(Received 5 November 2018, final version received 22 August 2019)

Urban forests are fundamental components of localized surface energy budgets.
Understanding the factors controlling urban forest surface temperatures (UFSTs)
should be helpful in mitigating the negative effects of urbanization on urban energy
budgets. This study aimed to identify the factors controlling the spatial-temporal
pattern of UFSTs by utilizing a variety of data layers and spatial statistical analysis
methods. Our results showed that UFST values become more spatially
heterogeneous as urbanization progresses. Elevation and degree of slope were the
main factors explaining the increase in spatial heterogeneity. Human activities were
also significantly related to variations in UFST. Interactions between human
activities and almost all environmental factors were related to higher UFST values.
Therefore, human activity directly impacts on the spatial heterogeneity of UFST
and indirectly affects variations in landscape patterns. Human activities compatible
with ecologically sustainable development should be considered for mitigating the
deterioration of urban thermal environments.

Keywords: urban forest; interactive influence; driving mechanism; human activity;
GeoDetector model

1. Introduction

Urbanization has become a core concern worldwide due to its negative impacts on
land use and eco-environmental changes. Rapid conversion from natural (especially
forested) landscapes to urban areas with complex impervious surfaces has led to rad-
ical alterations in land surface characteristics in cities (Oke 1982). Variations in urban
surface characteristics are known to alter local climates by modifying processes that
influence the energy balance of urban surfaces (Coutts, Beringer, and Tapper 2007).
Local climate modification may lead to changes in coupled human-ecological systems
and declines in the well-being of people dependent on services provided by natural
ecosystems (Jenerette et al. 2007).

China has undergone rapid urbanization over the past four decades, which has led
to a rapid loss of forest cover and increases in impervious surfaces in many regions of
China (Lin ef al. 2019). Urban forests are an integral component of urban ecosystems
in that they provide a wide variety of ecosystem services to urban inhabitants, such as
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reducing water and air pollution, providing recreational and aesthetic qualities, and
regulation of urban thermal environments (Jim and Chen 2009; Zhang et al. 2018). An
examination of the ramifications of forest loss during urbanization could be used by
policymakers to decide how to best manage, protect, and preserve urban forests and
ecosystem services.

Earth’s ecosystems are becoming increasingly impacted by urbanization and so, to
a great extent, human quality of life will depend on how we make urban environments
more sustainable for humans (Alberti 2010). Establishing a healthy urban environment
requires additional insights into how environmental elements converge and interact to
form and influence urban ecosystem functions and dynamics (McPhearson et al.
2016). Although urban systems have, for decades, been conceptualized as being com-
plex and dynamic, empirical examinations of relationships between various patterns of
urbanization and agent interactions have only recently been a focus of study (Alberti
2016). Due to this complexity, scholars need to apply an interdisciplinary approach to
address the complex interactions and the uncertainties surrounding such interactions. In
addition, capturing the often non-linear interactions demands multiple types of data
and new analysis techniques (Alberti 2017).

Previous studies have shown that many environmental factors are responsible for
the growth rate of vegetation, such as elevation, topography, soil properties (e.g., tex-
ture and fertility), soil moisture, and human influences (Calfapietra, Penuelas, and
Niinemets 2015; Cantlon 1953; Fadrique, Homeier, and Woods 2016). Environmental
factors not only affect plant growth rates, but they also impact vegetative growth form,
reproduction, and the abundance and diversity of plant communities (Bauman et al.
2013). However, environmental factors do not act independently of one another; rather,
they jointly influence vegetation structure and heterogeneity (Ren et al. 2016). Thus,
spatial variations in the intensity of biotic or abiotic factors are responsible for the
high degree of spatial and temporal heterogeneity of landscape composition and con-
figurations (Rodig et al. 2017). Direct and indirect effects of human activities can fur-
ther reinforce landscape heterogeneities and the resulting heterogeneities may
negatively influence the cooling efficiencies of urban forests.

Although previous studies have applied field survey data and/or remote sensing
images at a variety of resolutions to study the relationship between land surface tem-
perature and ecological measurements, such as forest area, tree density, plant species
richness, and vegetation index (Kuang et al. 2014; Li et al. 2011), research that dir-
ectly focuses on canopy surface temperatures of urban forests are limited. In addition,
although many studies have applied multivariate regression models to analyze the rela-
tionship between surface temperatures and environmental factors one at a time (Guo
et al. 2015; Wang and Ouyang 2017), few studies have addressed the characteristics of
interactions (e.g., strengths and types) between land surface temperatures and a suite
of environmental factors. Complicated interactions among controlling factors limit our
understanding of the underlying mechanisms for variations in urban forest surface tem-
peratures (UFSTs), thus making it difficult to accurately estimate the cooling potential
of urban forests.

In order to identify factors that potentially influence the heterogeneity of UFSTs, it
is important to first identify and quantify the spatial variability of UFST. Generally,
there are three different approaches for characterizing the spatial heterogeneity of
UFSTs: landscape metrics, spatial statistics, and statistical modeling (Wagner and Fortin
2005). Landscape metrics have been widely used to quantify forest landscape structure,
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including characterizing the variety and abundance of forest patch types within a land-
scape and the spatial arrangement, position, and orientation of urban forest patches.
Some studies have detected the effects of landscape patterns on urban thermal environ-
ments (Kong et al. 2014; Liu, Peng, and Wang 2018; Zhang et al. 2017), but they all
suffered from problems related to the autocorrelation of landscape metrics (Wagner and
Fortin 2005). After Chen et al. (2014) used 45 class-level metrics to investigate the spa-
tial patterns of land surface temperature in Beijing, China, they suggested that future
investigators should carefully select useful and representative metrics when modeling
specific ecological processes.

In our study, we applied spatial statistics (hotspot analysis) and statistical modeling
(GeoDetector modeling) to quantify spatial heterogeneity and explore the factors
potentially controlling landscape patterns. We believe that the integration of spatial
statistical analysis methods and data from multiple sources can be used to effectively
identify and quantify the spatial variability of UFSTs.

The main purpose of our study was to identify the interactive influences of a suite
of environmental factors that might affect variations in surface temperatures in urban
forests. Two hypotheses have been proposed regarding the mechanism(s) involved in
controlling UFST: (1) linear and non-linear relationships between variations of UFST
and environmental factors coexist to affect temperature regimes and (2) human activ-
ities alter UFSTs via interactions with other environmental factors. We integrated
remote sensing technology, field surveys, and used spatial statistical analyses to iden-
tify the factors most responsible for variations in UFSTs in a typical urban environ-
ment in China. We hope that our results can be used to optimize the spatial
configuration of urban forests at a landscape scale and thus provide a tool for urban
planners who wish to better manage urban thermal environments.

2. Materials and methods
2.1. Study area

We conducted this study in the city of Longyan, located in the southwest part of Fujian
Province, China. We specifically focused on the Xinluo District of Longyan
(24.78-25.59 °N, 116.67-117.19 °E) where the highest human population density occurs.
Longyan, situated in a landscape dominated by mountains and hills, has a subtropical,
maritime monsoon climate, with an annual average air temperature varying from 18.7°C
to 21°C and an average annual precipitation varying from 1,031 to 1,369 mm.
Approximately 81% of Longyan was covered by forest before experiencing rapid devel-
opment from 2000 to 2010. According to Longyan’s statistical yearbook, urban land-use
cover increased from 35.98% in 2000 to 45.05% in 2010. Estimating the variation in
biophysical attributes of forest stands in Longyan is important for sustainably developing
the regional ecosystem and improving human quality of life (Figure 1).

2.2. Methods

Our methods comprised three steps (Figure 2). First, we obtained UFST data from
thermal remote-sensing images from Landsat-5TM, classified UFST into hot/cool
regions at an appropriate threshold distance by employing a spatial statistical analysis
tool, and then normalized the data (methods detailed in next section). Second, we built
a spatial database to integrate the normalized UFST data, Forest Management Planning
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Figure 1. Location of the study area.
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Figure 2. Flow chart of our methodological approach. Step 1: Retrieve surface temperatures
and identify hot/cool spots in spatial data. Step 2: Screen and map factors believed to impact
ground surface temperatures. Step 3: Determine primary factors controlling temperature
distributions and driving mechanisms.

Inventory (FMPI) data, population density data, and digital elevation model (DEM)
data (methods detailed below). Third, we applied the GeoDetector model to the spatial
database to identify the main factors potentially controlling variations in UFST, using
UFST data derived from step 1 as the dependent variable and other environmental fac-
tors as independent variables (methods detailed below).
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2.2.1. Acquiring UFST data and identifying hot and cool spots

We obtained two cloud-free, Landsat-5 Thematic Mapper (TM) images (Row/Path:
120/43) from the United States Geological Survey (USGS) acquired on 1 September
2003 and 16 August 2009. We then rectified the images to the Universal Transverse
Mercator coordinate system (50N) and resampled the data by applying the cubic con-
volution algorithm with a pixel size of 30 x 30 m. We manipulated the thermal infrared
bands of pre-processed Landsat-5TM images to calculate UFST in three steps. First,
we converted digital numbers (DNs) of the thermal bands to at-sensor radiance using
the scaling parameter equations provided by Chander and Groeneveld (2009). Second,
we converted at-sensor radiance values to at-sensor temperatures, according to
Planck’s Law. Third, we converted at-sensor temperatures to UFSTs using land surface
emissivity data (Supplementary material, Appendix 1). To evaluate the interactions of
environmental factors that could potentially influence UFST, we normalized UFST
data using the following equation:

T, = (UFST — Ty)/T; (1)

where T, is the normalized value of UFST and 7} is the background surface tempera-
ture, defined as the average value obtained for the study area. (To a certain extent,
such non-dimensionalization can eliminate the influence of viewing angle and differen-
ces in image acquisition times.)

In order to characterize the driving mechanism(s) possibly responsible for the
spatial heterogeneity of UFSTs, we used hot-spot analysis (local Getis—Ord G}) to
reclassify our UFST data into types of regions, referred to as areas with either sig-
nificantly high temperatures (hot spots) or significantly low temperatures (cool
spots). We applied an Increment Spatial Autocorrelation (ISA) tool to identify the
optimal threshold distance for identifying boundaries of specific clustered regions.
ISA measures spatial autocorrelations for a series of distances and creates a line
graph of those distances and their corresponding z-scores. The z-scores reflect the
intensity of spatial clustering. Statistically significant peak z-scores indicate distan-
ces where spatial processes promoting clustering are most pronounced. The z-scores
are calculated by continuously increasing the threshold distance from 0 to 5,000 m.
We found that at a distance of 3,487.65m, the z-scores were greater than our
threshold value of 1.96. Therefore, we used 3,500 m as our optimal distance thresh-
old. We then set our optimal threshold distance of 3,500m to generate a cluster
map (Figure 3). Based on the generated z-scores, regions with an absolute value
greater than 1.96 were used to define clustering regions. Positive values identified
hot spots, whereas negative values identified cool spots. Areas with an absolute
value of z smaller than 1.96 were assumed to be non-significant regions (neither
hot nor cool).

2.2.2. Creating our spatial database

We obtained environmental spatial data for 2003 and 2009 from a variety of sources.
These data were used to determine the independent or interactive influences of spatial
variables on spatial distributions of UFSTs. The first type of data we used were FMPI
data, which we obtained mostly from field surveys, with a sampling accuracy higher
than 90%. These data comprised a large number of patches of similar size from which
we obtained site-specific data on soil properties and forest attributes and into which
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Figure 3. Spatial distribution maps of GiZ scores for two years of spatial data for Longyan,
China. GiZ scores represent temperature at specific locations, based on local Getis—Ord G;
data set at optimal threshold distance of 3,500 m.

we incorporated data on spatial features, attributes, and metadata. We obtained human
population density data from the spatial interpolation of demographic census data
based on nighttime light images, which we used as a proxy for characterizing the
intensity of human activities at any given location. We created a topographic dataset
using DEM data in which we included geomorphic attributes, such as slope gradient
and slope aspect.

We rectified all data, including the normalized UFST data, FMPI data, population
density data, and topographic maps, to the Universal Transverse Mercator project sys-
tem (datum WGS84, UTM Zone N50), thus allowing us to define an FMPI patch as
the basic unit for our datasets. We then remapped our reclassified UFST, population
density, and DEM data using the zonal statistics function in the ArcGIS 10.0 platform.
We averaged values of all the pixels of normalized UFST, population density, and
DEM data and added them as new attributes of the FMPI dataset. In this way, we uni-
fied all the environmental factors and normalized UFST data to a common spa-
tial resolution.

2.2.3.  Determining the main controlling factors and driving mechanisms

The third step in our methods focused on using the GeoDetector model to deter-
mine the environmental factors that most influence UFST. GeoDetector is a statis-
tical model based on spatial-explicit, stratified heterogeneity of spatial phenomena.
Its key underlying assumption is that if a spatial factor (Y) is controlled by another
spatial factor (X), then factor X will present a spatial distribution similar to that of
factor Y (Wang, Zhang and Fu 2016). GeoDetector has successfully identified
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factors controlling the spatial heterogeneity of a variety of phenomena (Shi ef al.
2018; Xu et al. 2017). The GeoDetector model consists of three types of detectors,
each designed for a specific purpose (Wang and Hu 2012): (1) a factor detector
used to quantify the impact of an environmental factor on a given research target,
(2) an ecological detector used to explore the relative importance of factors in
shaping environmental heterogeneity, and (3) an interaction detector to reveal
whether the various environmental factors show independent or interactive effects.
In our study, we applied the interaction detector to determine the main factors con-
trolling UFSTs. With this detector, we could assess the degree of interaction
between two factors (X;, X;) by comparing ¢(X; NX;) with a logical or arithmetic
operation between ¢(X;) and ¢(X2). For example, when g¢(X;NX3) > g(X;) or
q(Xz), the two factors (X;, X;) enhance each other; when g¢(X;NX;)
> q(X;) and ¢(X;), the two factors bi-enhance each other; and, when
(X1 NX2) > q(X1) + ¢q(Xa), the two factors non-linearly enhance each other. In
contrast, when ¢(X; NX;) < g(X1) [or/and/+] ¢(X>), the two factors weaken, bi-
weaken, or non-linearly weaken each other (Table 1). In this present study, we
imported various types of environmental data layers into the GeoDetector model as
independent variables, and imported normalized UFST data (7r) as depend-
ent variables.

3. Results
3.1. Variations in UFSTs and stand structure

When we combined Landsat-5 images from 2003 and 2009 with their corresponding
FMPI data (30,342 patches in 2003 and 33,720 patches in 2009), we generated a mul-
tiple-source data layer that mapped UFST for each urban forest patch with its associ-
ated environmental factors, all at the same landscape spatial scale. In 2003 and 2009,
Tr were all near zero (Figure 4(a)), but the UFSTs in 2009 showed less variation
(0.11) than in 2003 (0.15).

From 2003 to 2009, the total area of all urban forest patches increased from
217,361 to 218,677 ha over a 6-year time frame. However, average patch size, declined
from 105.84 to 97.37 ha over the 6-year period (Figure 4(d)). Tree canopy density also
declined from 42% = 29% (mean + 1 standard deviation) to 39% + 28% (Figure 4(b)).
Forest canopy density expresses degree of tree stocking. The degree of forest canopy
density is usually expressed in percentages and has been used to indicate the degree of
forest degradation (Joshi et al. 2006). Average stand age declined from 23.7 to
21.8 years (Figure 4(c)). Variations in stand structure, including patch size, canopy
density, and stand age, indicate that the structure of urban forests changed over the 6-
year time frame.

Pinus massoniana, Acacia confusa, Cunninghamia lanceolate, and Phyllostachys
heterocycle were the most common tree species in the study area. These four tree
species comprised more than 90% of the total forest cover in both 2003 and 2009
(Figure 5). However, during the six years of our study, the relative cover of these four
species changed. For example, the coverage of Pinus massoniana declined by 7.94%
(from 37.03% in 2003 to 29.09% in 2009) and Acacia confusa increased by 6.20%
(from 27.14% in 2003 to 33.34% in 2009).
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Table 1. Interactive influences that can be detected by an interaction detector when two
individual variable types are combined.

Relationship Type Formula Symbol
Enhance Ordinary q(X1NXz) > q(Xy) or q(X2) 1
Bivariate q(X1 NX;) > q(X;) and q(X2) 1
Nonlinear gXiNXs) > qg(X) + qX2) 1
Independent Ordinary gXinNXy) =qX1) + q(Xe) -
Weaken Ordinary q(X1 NXy) < g(Xy) or q(X2) !
Bivariate gXiNXy) < g(X;) and q(X2) (3
Nonlinear gXiNXy) < g(X) + qX2) N

Note: ge[0 ~ 1] indicates the strength of the interaction between two individual factors, wherein a higher
value of ¢ indicates a stronger influence on the heterogeneity of UFST. X; (X;) is a selected environmental
factor that might explain the spatial patterns of UFSTs.
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Figure 4. Mean stand structure of urban forests for 2003 and 2009 for all urban forest patches.
Panels: (a) relative UFST, (b) canopy density, (c) stand age, and (d) patch size.

3.2. Changes in human population density

Human population density in the study area grew slowly (by 4.44%) from 2003 to
2009. Areas in the southwestern and southeastern parts of the study area showed an
increase in human population density, whereas population density declined in the north-
eastern part of the study area. Local Getis—Ord G; statistics indicated that hot and cool
spots of population density and UFSTs were distributed similarly, both temporally and
spatially (Figure 6). The hot spots located in southwestern and southeastern parts of the
study area in 2003 clearly expanded by 2009 and the many fragmented hot spots of
2003 had fused together by 2009. The change in the pattern of population distribution
followed the proposed economic development and land-use spatial layout of the city’s
master plan (1998-2020), which was based on government priorities for developing the
southwestern and southeastern regions of the city.

3.3. Influences from multiple environmental factors on UFST

We used 11 environmental factors as independent variables in the GeoDetector model
to identify the important factors controlling the spatial heterogeneity of UFST. These
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Figure 6. Population densities of the wvarious clustering regions in Longyan, China,
classified using local Getis—Ord G;.

variables included soil properties, forest attributes, topography/geomorphology, and
population density. The general directions of the associations (positive or negative rela-
tionships) between two specific variables were examined with Pearson correlation
coefficients. Our model output showed that topographic characteristics were the pri-
mary environmental parameters related to the spatial patterns of UFST values in 2003
and 2009. Elevation and degree of slope were related more significantly to landscape
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patterns of UFSTs than were any of the other potential factors, not only for the study
area as a whole, but also for the three types of spatial clusters on the landscape.
Population density (PD) was also associated with the UFST patterns on the landscape.
Specifically, population density (PD) was one of the top three highest determinants of
UFST patterns for the entire study area (2003 and 2009) and for the locations of cool
spots (2003 and 2009) (Figure 7).

The complex interactions between environmental factors made it difficult for us
to understand the full role each factor plays in controlling UFSTs. Therefore, we
explored the simultaneous interactions of many environmental factors using the
interaction detector of the GeoDetector model. The model showed that all selected
environmental factors interacted with one another in describing the spatial hetero-
geneity of UFST and that all the interactions either represented ordinary enhance-
ment of the spatial heterogeneity of UFST (i.e., wherein the interacting influence
of Factor X1 and Factor X2 is greater than the individual influence of Factor X1 or
Factor X2 separately) or represented non-linear enhancement (wherein the interact-
ing influence of Factor X1 and Factor X2 is greater than the sum of the contribu-
tions from both Factor X1 and Factor X2 together) (Table 1). Elevation and degree
of slope were the most significant environmental factors (i.e., those with highest ¢
values) in their degree of interaction with other factors, especially for 2003 data.
Specifically, elevation and degree of slope interacted with other factors in areas of
hot spots, mainly in an ordinarily enhanced manner, whereas in areas of cool spots,
the two factors interacted with a different set of environmental factors, primarily in
a non-linearly enhanced manner. Population density and slope aspect were also
important in their interactive influences on variations in UFSTs. In 2009, degree of
slope, elevation, and slope aspect also displayed either an ordinary or a non-linear
enhanced interaction with other factors in hot spots. Furthermore, in 2009, popula-
tion density was the most significant factor interacting with all other factors in a
non-linear enhanced way (Figure 8).

When focusing only on interactive influences between population density and
other environmental factors, all interactions in different regions and time periods
exhibited enhancing influences, mainly non-linear enhancements (Figure 8), many
of which were statistically significant. By partitioning the study area into three
types of heat intensities, the data seemed to suggest quite different possible explan-
ations for the contributions of various environmental factors for UFST values.
Environmental factors (including forest patch area, dominant species, canopy dens-
ity, stand age, soil depth, and humus depth) interacted significantly with population
density in hot spots in the study area in 2003, whereas for cool spots, environmen-
tal factors (including patch area, dominant tree species, stand age, site index, and
humus depth) interacted significantly with population density. In 2009, all environ-
mental factors showed statistically significant interactive effects with population
density relative to UFST for hot spots, but no factor represented a significant
relationship.

4. Discussion
4.1. Spatial patterns of heterogeneity in UFST

Each land surface component in an urban landscape exhibits unique radiative and ther-
mal properties, which is determined by specific conditions in its surrounding
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Figure 8. Interaction matrices between various environmental factors related to hot and cool
spots for 2003 and 2009. *Indicates a significant interaction effect.

environment. Large numbers of surface types and high spatial complexity generate a
limitless number of possible permutations in surface energy absorption and dissipation.
Because these surface types are typically smaller than the spatial resolution of widely
used remotely sensed imagery, such as the Advanced Spaceborne Thermal Emission
Reflection Radiometer (90 x 90m resolution for its thermal infrared band) and the
Landsat Thematic Mapper (120 x 120 m resolution for its thermal infrared band), it is
very likely that both vegetation and impervious surfaces are contained in one pixel in
urban areas (Weng and Lu 2008). Therefore, pixels with various combinations of spec-
tral characteristics complicate our understanding of the underlying mechanism(s)
responsible for landscape heterogeneity.

In this study, we focused only on the urban, forested landscape and thus mostly
avoided potential problems associated with mixed pixels. This focus was helpful in
detecting changes in surface temperature and evaluating potential driving factors.
However, we still found detectible spatial heterogeneity in UFST values even in rela-
tive homogeneous landscapes, although the variation was much less among urban for-
est patches than between vegetated and impervious-dominated patches. Spatial
heterogeneity is a structural characteristic of landscapes that can be quantified by
describing variability in the properties of its constituent components. Each heteroge-
neous landscape is composed of discrete, homogeneous patches that can be differenti-
ated by biotic and abiotic structures or compositions (Pickett and Cadenasso 1995).
Because similar controlling factors tend to develop in similar landscape patches, care-
ful classification of a heterogeneous landscape into relatively homogeneous regions is
helpful for uncovering complicated causes for relatively fine-scale mechanisms that
may underlie the dynamics and structure of the entire landscape matrix. By classifying
our study area into three relatively homogeneous types of area based on thermal reflec-
tion characteristics (hot spots, cool spots, and neither hot nor cool spots), we could
gain insight into the principal factors contributing to the generation of spatial hetero-
geneity in an urban landscape.
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4.2. Independent and interactive influences on UFST values

The provisioning of ecosystem services is strongly influenced by land-use configura-
tions and the many environmental parameters that contribute directly or indirectly to
the formation of specific landscape configurations. Maximizing the production of eco-
system services that natural forest cover provides requires an understanding of how
alterations to environmental conditions in a landscape (at various spatial and temporal
scales) affect ecosystem services. The fact that topographic characteristics (such as ele-
vation and degree of slope) showed more influence on UFSTs than the other environ-
mental factors we measured is probably due to the fact that growing conditions (e.g.,
light, moisture, and soil nutrients) are all strongly influenced by topography (Cantlon
1953). The effects of topography on species composition, productivity, and microsite
environmental conditions have been well documented (Sariyildiz 2015; Scowcroft,
Turner, and Vitousek 2000). Specifically, topography is an important factor influencing
the heterogeneity of habitats, thus contributing to physiognomic differentiation of
vegetation (Baldeck Claire et al. 2013), ultimately leading to differences in the com-
position and structure of plant communities (Rodrigues et al. 2018).

Based on a quantification of interactions among socio-economic status, elevation,
vegetation characteristics, and land surface temperatures, some research has suggested
that environmental conditions influence microclimates and climate adaptation strategies
of vegetation at a local scale (Irmak ef al. 2018; Tayyebi and Darrel Jenerette 2016).
We found that interactions among dominant species and elevation enhanced the cool-
ing effect of urban forests. Although human population density only appeared to have
a dominating influence on hot spots in 2009, it showed linear or non-linear interactions
with many other environmental factors.

A non-linear relationship between two factors can have a greater influence than the
combination of direct actions of two factors. This type of influence was especially not-
able in areas of hot spots, where population density appeared to interact with all other
factors in ways that suggest that human activities might appreciably influence many
environmental characteristics, although independent influence of population density
might not be as obvious.

Research on urban heat island (UHI) effects usually attribute the development of
UHI to human activities that release anthropogenic heat or other pollutants into the
atmosphere (Salamanca et al. 2014; Smith, Lindley, and Levermore 2009). However,
this study shows that modifications to land surface properties and urban surface geo-
metries by humans are probably the main causes of UHI effects. In fact, it is very
likely that human activity also influences the thermal environment in other ways. For
example, urban development reconfigures urban landscapes and changes the growing
conditions of remnant vegetation by modifying topographic characteristics and soil
properties (Zheng, Myint, and Fan, 2014). There is a significant and positive correl-
ation between land surface temperature and the amount of impervious surfaces in a
given area (Li et al. 2011). Urban sprawl contributes to the loss of natural vegetation
cover and its forest fragmentation, which in turn leads to incremental increases in land
surface temperatures. A number of studies have shown that even at small spatial
scales, variations in geomorphologic conditions create a variety of environmental con-
ditions that, in turn, affect recruitment and growth of vegetation (Sariyildiz 2015). In
our study area, tree species composition and stand structure changed in measurable
ways in just six years, which we believe is a response to an increased intensity of
human alterations to the landscape and changes in land use. Human activities introduce
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ecological and biological changes to urban forests, which can lead to a deterioration of
the urban thermal environment. This can occur even when sensible heat is not directly
released into the atmosphere, or if the total cover of greenspace is not altered much.

Our results suggest that we should search for not-so-obvious implications of human
activities in future studies, particularly those that may have great potential for
changing heat dynamics in developed landscapes. Examining human activities and
natural processes in a historical context could also help reveal how human activities
have shaped ecosystem patterns and services in the urban landscape (Hessl and
Graumlich 2002). In addition, with ongoing urbanization and ever-more intense
human activities, interactions between humans and the environment will continue to
intensify the UHI effect. Therefore, the regulation of human activities that deterior-
ate urban thermal environments should be considered to help ameliorate the effects
of UHI effects.

4.3. Implications

In this study, we analyzed the independent and interactive influences of various envir-
onmental factors on variations in UFST. The methodological approach we applied in
this study provides insight for future research. Rather than focusing on one data
acquisition approach (such as remote sensing or field observation), we used a variety
of environmental datasets to unearth the complex relationships between environmen-
tal factors and the provisioning of ecosystem services. More attention should be paid
not only to urban planning or urban forest management options, but also to the most
influential, underlying factors associated with human activities (i.e., human actions
should be carefully implemented to minimize the potential side effects on
urban vegetation).

Although there have already been many studies focusing on environmental stress,
such as heat stress and high concentrations of pollutants in soil, and on vegetation
function and growth in urban areas (Biasioli, Barberis, and Ajmone-Marsan 2006;
Calfapietra, Penuelas, and Niinemets 2015; Chahal, Toor, and Brown 2010), research
on interactive influences between multiple environmental factors on urban vegetation
(and the ecological services it provides) are limited and should be expanded in
the future.

The influence of environmental stress to changing heat conditions on any single
plant may be negligible, but if extrapolated over an entire city, the impacts could be
significant and extensive on local ecosystems. Therefore, more work on heat impacts
should be conducted at various temporal and spatial scales. The partitioning of hetero-
geneous landscapes of interest into homogeneous areas, by aggregating common char-
acteristics of neighboring landscape components, is useful for revealing potential
causes for specific landscape patterns. Therefore, due to the complex interactions
among various environmental factors, better approaches are needed for classifying
landscapes into homogeneous areas (clusters).

As a key strategy for improving environmental quality and sustainable develop-
ment, the implementation of green infrastructure has attracted much concern in recent
years. However, with rapid urbanization, urban sprawl invades existing greenspace and
leads to highly fragmented urban forest patches. Because urbanization will likely con-
tinue in future decades, it is important to identify green infrastructure designs that can
optimize ecosystem services of urban forests. Studies have shown that the urban
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forests located at various distances from urban centers differ in their cooling capacities
(Marando et al. 2019). Therefore, specific management policies may be necessary to
implement cost-effective improvements in the cooling capacity of urban forests that
optimize cooling effects. Comprehensive consideration of ecosystem health and serv-
ices should also be given in future studies.

5. Conclusions

We analyzed the independent and interactive influences of environmental factors on
UFST by thoroughly integrating remote sensing images, field surveys, and spatial stat-
istical analyses. Our results showed that during rapid urbanization, the degree of spa-
tial aggregation of UFSTs increased. Among the many potential influencing factors,
topographic characteristics (elevation and degree of slope) were the one most signifi-
cantly related to the spatial heterogeneity of UFST. Human activities were also signifi-
cantly related to variations in UFST for both time periods we examined (2003 or
2009) and to almost all spatial clusters of hot and cool spots. Interactions between
human activity and many environmental factors also showed a statistically significant
relationship with variations in UFST across the landscape. For hot spot areas in par-
ticular, interactions between human activities and almost all environmental factors
tended to result in more spatially heterogeneous landscapes. Although our study con-
centrated on the core (city center) of a major urban area in China, we believe that our
research approach can also be applied to investigate spatial variations of UFSTs in
other urban areas. Furthermore, our results can provide insight for future studies on
urban greenspace management and the evaluation of ecological services provided by
remnant urban forests.
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