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Abstract: Ecological environment assessment would be helpful for a rapid and systematic
understanding of ecological status and would contribute to formulate appropriate strategies for the
sustainability of heritage sites. A procedure based on spatial principle component analysis was
employed to measure the ecological status in Bayinbuluke; exploratory spatial data analysis and
geo-detector model were introduced to assess the spatio-temporal distribution characteristics and
detect the driving factors of the ecological environment. Five results are presented: (1) During
2007–2018, the average values of moisture, greenness, and heat increased by 51.72%, 23.10%, and 4.99%
respectively, and the average values of dryness decreased by 56.70%. However, the fluctuation of
each indicator increased. (2) The ecological environment of Bayinbuluke was improved from 2007
to 2018, and presented a distribution pattern that the heritage site was better than the buffer zone,
and the southeast area was better than the northwest area. (3) The ecological environment presented
a significant spatial clustering characteristic, and four types of spatial associations were proposed for
assessing spatial dependence among the samples. (4) Elevation, protection partition, temperature,
river, road, tourism, precipitation, community resident, and slope were statistically significant
with respect to the changes in ecological status, and the interaction of any two factors was higher
than the effect of one factor alone. (5) The remote-sensing ecological index (RSEI) could reflect
the vegetation growth to a certain extent, but has limited ability to respond to species structure.
Overall, the framework presented in this paper realized a visual and measurable approach for
a detailed monitoring of the ecological environment and provided valuable information for the
protection and management of heritage sites.
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1. Introduction

Natural World Heritage Sites (NWHSs) represent areas of outstanding universal value from the
view of aesthetic importance, geology, ecosystems or biodiversity [1–3]. A global consensus has been
reached that NWHSs are significant components in global ecosystem protection which is so exceptional
as to transcend national boundaries and to be of common importance for present and future generations
of all humanity [1]. However, in recent years, NWHSs have been experiencing unprecedented pressures
due to climate change, natural disaster, and human activities [4–9]. The World Heritage Committee
summarized a list of factors affecting the heritage values of World Heritage properties. The list includes
a series of 14 primary factors and 83 secondary factors. Those factors have caused changes of the
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ecosystem structure and processes, threatened the integrity and compromised values, and posed great
threats to the sustainable development of NWHSs [10–12]. At present, 17 NWHSs are inscribed in the
List of World Heritage in Danger because the properties are threatened by serious and specific danger.

Monitoring is a vital process to highlight management success and identify management programs
that need improvement once a property has World Heritage status [13,14]. Collecting and analyzing
observations provides the information needed to assess how the site is performing over time with
respect to a wide variety of social and ecological issues, allowing managers to adapt measures as
necessary [15–17]. For the management and protection of world heritage, the World Heritage Centre
has implemented projects such as periodic reports, state of conservation, and reactive monitoring
to track the conditions of NWHSs [1]. These monitoring information and data allow the World
Heritage Committee to evaluate the status at the sites and, eventually, to decide on the necessity of
adopting specific measures to resolve recurrent problems. However, in the process of monitoring the
heritage sites, it is inevitably necessary to choose appropriate strategies in regard to the constraints
from human and financial resources [18,19]. In a vast area in particular, information collection
would take a great deal of manpower and time, and sometimes it might be impossible for the
lack of appropriate equipment and tools. In addition, limited traffic infrastructure in the NWHSs
implies that accessibility is also an inevitable factor that should be taken into account [20]. Therefore,
it is necessary to provide an economical and feasible monitoring method to achieve systematic
monitoring while meeting strict protection and management requirements. With the development of
remote-sensing science, remote-sensing data has being frequently applied to monitor the NWHSs for
increasingly longer time series, wider range, and the improvement of spatial, spectral, and temporal
resolution [21]. The combination of geographical information systems and remote-sensing technology
allows researchers and managers to monitor ecological status in an effective and reliable way [22,23],
realize investigation, prediction and forecast of spatial and temporal changes and scenarios [24,25],
and provide supported decision-making strategies [26,27]. However, most of these applications
employed a single ecological factor, such as the Normalized Difference Vegetation Index or the land
surface temperature [28,29]. Given the complexity of the system, a synthetic indicator would be better
for undertaking a comprehensive consideration of various factors [14,20].

Xinjiang Tianshan is a serial heritage site, consisting of four components, namely, Tomur,
Bogda, Kalajun-Kuerdening, and Bayinbuluke. As the representative in Tianshan Mountains of
an intermountain basin, Bayinbuluke is typical alpine wetland ecosystem in the arid temperate zone
with a beautiful landscape of bending rivers and marshes. After it was inscribed on the World Heritage
List, Bayinbuluke executed a strict protection and management program to meet the requirements of
integrity, protection, and management set out in the Operational Guidelines for the Implementation of
the World Heritage Convention. However questions remain: as a traditional pasture on the southern
slope of the Tianshan Mountains in Xinjiang, animal grazing occurs here [30], and the vast grassland
meander landscape has attracted a growing number of tourists [31]. Do these factors have an impact on
the ecological environment in Bayinbuluke? What is the trend of the ecological environment after being
inscribed on the world heritage list? The exploration of these issues is conducive to the management of
the heritage site. In this study, we used the humidity index, greenness index, dryness index, and heat
index extracted from remote-sensing data to evaluate the ecology status with the spatial principal
component analysis method. Then, exploratory spatial data analysis and a geo-detector model were
employed for further study of ecological environment quality. Specific objectives were included to
(1) assess ecological status with remote-sensing data in Bayinbuluke; (2) analyze the temporal and
spatial distribution characteristics of ecological status; (3) judge the explanatory power of influencing
factors and the interaction between factors; and (4) explore the correlation between remote-sensing
results and filed survey data.



Sustainability 2019, 11, 6385 3 of 18

2. Materials and Methods

2.1. Study Area

The Bayinbuluke is located in Hejing County, Xinjiang, China (central coordinates: N42◦47′53′′,
E84◦09′50′′), with a total area of 109,448 ha and a buffer zone of 80,090 ha (Figure 1). The study
area is situated in the intermontane Youerdusi Basin, and the Kaidu River originating from Aierbin
Mountain crosses the center of the basin, forming a broad floodplain and swamp grasslands. In the
arid continental climate zone, the study area has a short summer, a long and freezing winter, and a very
short frost-free period all year round. The annual average temperature is −4.6 ◦C, and the annual
average precipitation is 276 mm, mainly concentrated from June to August [32]. Because of frosty
weather and frozen soil, there are hardly any large trees in this region, the main vegetation types are
Alpine steppe and Alpine marsh meadow. Bayinbuluke is the best habitat for breeding and a summer
habitat for wild birds. There are abundant species of birds in Bayinbuluke with in total 119 species of
all kinds, such as cranes, egrets, golden eagles, bar-headed geese, grey geese, whooper swans, tundra
swans and mute swans.
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Figure 1. Sketch map of Bayinbuluke.

The heritage values of Bayinbuluke can be summarized as follows: (1) Bayinbuluke is the best
representative of the large inter-montane basins of the Tianshan Mountains. (2) Bayinbuluke is the
typical representative of an alpine wetland ecosystem in the arid temperate zone. (3) Bayinbuluke is the
best representative of a beautiful landscape of bending rivers and marshes of the Tianshan Mountains.
(4) Bayinbuluke is China’s largest breeding ground for swans, as well as the northern hemisphere’s
most southern limit for the breeding of wild swans.
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2.2. Data Source and Pre-Processing

To evaluate the ecological environment quality in Bayinbuluke, remote-sensing data, spatial
data, the material declarations for Xinjiang Tianshan NWHS, and filed survey data were collected.
Each thematic layer was processed with the same resolution (30 meter), projected coordinate
system (WGS_1984_UTM_45N) and spatial boundary. (1) Remote-sensing data. Landsat images
(column number:145; row number:30) in 2007 and 2018 were downloaded from the United States
Geological Survey (https://www.usgs.gov/). The images were preprocessed with the ENVI 5.3 image
processing software. Radiometric correction converted the digital number of the raw images to
reflectance at sensor, and then, FLAASH atmospheric correction was employed to reduce the deviations
caused by light and atmosphere. (2) Spatial data. Digital elevation model (DEM) data and thematic
maps about temperature and precipitation were obtained from the Resources and Environment
Data Cloud Platform (http://www.resdc.cn/). Altitude and slope were retrieved from DEM data.
(3) The material declarations for Xinjiang Tianshan NWHS. The material contained the Bayinbuluke
nomination text and spatial information on the river, road, tourism attractions, and community
settlements of the study area. (4) To verify whether the results were in accordance with reality,
a field survey was conducted from July 18, 2018 to July 23, 2018. There were 31 samples taken
close to the villages and tourism attractions were selected due to budget constraints and poor road
accessibility. Grass vegetation samples were collected in the main transects of 1 m× 1 m, and then, plant
species, quantity, height, coverage, and aboveground biomass were measured. The Margalef richness
index (Rm), Shannon–Wiener diversity index (H’), Simpson diversity index (D), Pielou evenness
index (JSW), and Gini uniformity index (Jgi) of each sample was calculated with regard to species
diversity index [33,34].

2.3. Methodology

2.3.1. Ecological Indicators Extracted

Land surface information extracted from remote sensing images are widely used to evaluate
ecological conditions because it is an effective describing way to ecological quality. The remote-sensing
ecological index (RSEI) is constructed to assess ecological environment [23,35].

• Land surface moisture

Tasseled cap transformation has been extensively applied in ecological assessment studies [36],
due to the components of Tasseled cap having a direct impact on the physical parameters of the earth’s
surface [37]. As a wetness component, the land surface moisture (LSM) was calculated based on the
reflectance of bands. The calculation of LSM is expressed as follows:

LSMOLI = 0.1511 ∗ bBlue + 0.1972 ∗ bGreen + 0.3283 ∗ bRed + 0.3407 ∗ bNIR − 0.7117 ∗ bSWIR1 − 0.4559 ∗ bSWIR2 (1)

LSMTM = 0.0135 ∗ bBlue + 0.2021 ∗ bGreen + 0.3102 ∗ bRed + 0.1595 ∗ bNIR − 0.6806 ∗ bSWIR1 − 0.6109 ∗ bSWIR2 (2)

where the bBlue, bGreen, bRed, bNIR, bSWIR1, bSWIR2 is the planetary reflectance of blue, green, red,
near-infrared and mid-infrared band of the Landsat 5 TM image and Landsat 8 OLI image respectively.

• Greenness

Vegetation growth describes the confrontation between vegetation and natural environment [38].
Normalized Difference Vegetation Index (NDVI) was employed to measure vegetation coverage and
growth with near-infrared band and red band for the capacity to represent greenness. [39,40]. NDVI
can be calculated as follows:

NDVI = (bNIR − bRed)/(bNIR + bRed) (3)

where bRed and bNIR represent the planetary reflectance of red band and near-infrared band respectively.

https://www.usgs.gov/
http://www.resdc.cn/
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• Dryness

Normalized Difference Imperviousness and Soil Index (NDISI) can effectively distinguish
impervious and soil features without covering water before processing impervious surface
information [41]. The Impervious Built-up Index (IBI) has been commonly used to map built-up
lands accurately. In addition to the built-up lands, patches of bare land or sparsely vegetated ground
occurred in the deforested or abandoned locations across the study area. For this reason, Soil Index (SI)
was also employed to represent these bare areas. NDISI was composed of IBI and SI, as proposed here:

IBI =
{
2 ∗ bSWIR1/(bSWIR1 + bNIR) − [bNIR/(bNIR + bRed)

+ bGreen/(bGreen + bSWIR1)]
}
/
{
2 ∗ bSWIR1/(bSWIR1 + bNIR)

+bNIR/(bNIR + bRed) +bGreen/(bGreen + bSWIR1)]
} (4)

SI = [(bSWIR1 + bRed) − (bBlue + bNIR)]/[(bSWIR1 + bRed) + (bBlue + bNIR)] (5)

NDISI = (IBI + SI)/2 (6)

where bBlue, bGreen, bRed, bNIR, bSWIR1 is the planetary reflectance of blue, green, red, near-infrared and
mid-infrared band of the Landsat 5 TM image and Landsat 8 OLI image respectively.

• Land surface temperatures

A unique feature of thermal infrared band in remote sensing data is the capability to measure
land surface temperatures (LST) [42]. All satellite-based studies of heat island have verified a close
relationship between the satellite-derived surface temperature and land surface temperature [43,44].
The calculations of LST were expressed as follows [45]:

Lλ = gain ∗DN + bias (7)

Tb = K2/ln(K1/Lλ + 1) (8)

LST = Tb/[1 + (λTb/ρ) ln ε] (9)

where Lλ is the at-satellite spectral radiance values of the thermal bands, i.e., Band 6 of Landsat TM
and Band 10 of Landsat OLI; gain and bias is the gain value and offset value of the corresponding band,
both of the values can be queried from the header file of corresponding image. Tb is the at-satellite
brightness temperature, K1 and K2 are the band-specific thermal conversion constants of thermal
bands, at Band 6 of Landsat TM, K1 = 607.76 W/

(
m2
· sr·µm

)
, K2 = 1260.56K; at Band 10 of Landsat

OLI, K1 = 774.89 W/
(
m2
· sr·µm

)
, K2 = 1321.08 K. λ is the wavelength of the thermal infrared band;

ρ = 1.4380 ∗ 104 µm; ε is the surface specific emissivity.

2.3.2. Construction of Remote-Sensing Ecological Index (RSEI)

The initial data was standardized in a range from 0~1 to remove the influence of different
measurement units. For the index which has positive correlation with RSEI, the equation is expressed
as follows:

Xi = [xi −min(xi)]/[max(xi) −min(xi)] (10)

While, for the index which has negative correlation, the equation is:

Xi = [max(xi) − xi]/[max(xi) −min(xi)] (11)

where, Xi is the standardized value of variable i, xi is the measured value of variable i.
Principal component analysis is skilled in reducing the dimensionality of a dataset by converting

a set of observed correlated variables into a set of linearly uncorrelated variables through orthogonal
transformation [46]. Moreover, spatial principal component analysis does not rely on the prior
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knowledge or experience of researchers, which can reduce subjective influence to some extent [47].
Remote-sensing data and geographic information system provide an available technique in integrating
and analyzing a series of spatial data. Regarding the difficulty in quantifying spatial and temporal
variations, the spatial principal component analysis, integrating the geographic information system
and principal component analysis [48], was employed here. The principal components are selected
based on the fact that the first principal component represents the greatest amount of variance in
the data. If the accumulated variance represents over 85% of the total, the remaining components
can be ignored. The spatial principal component analysis provided objective results in the process of
evaluating the ecological environment. A synthetic index (i.e., RSEI) that will allow for a quick and
quantitative assessment of ecological environment is calculated as follows:

RSEI = r1PC1 + r2PC2 + r3PC3 + . . .+ riPCi (12)

where i is the quantity of principal component (PC) that remained and ri is the contribution ratio of PCi.
The contribution ratio ri is calculated as follows:

ri = pi/
n∑

i=1

pi (13)

where pi represents the contribution ratio of principal component pi, and n is the significant number of
principal components that remain.

Based on the result of spatial principal component analysis (Table 1), the formulas of RSEI in 2007
and 2018 are expressed as:

RSEI2007 = 0.7617PC1 + 0.1738PC2 + 0.0478PC3 (14)

Table 1. The result of spatial component principle analysis.

PC
Eigenvalues Contribution Ratio

of Eigenvalues/%
Cumulative Contribution

of Eigenvalues/%

2007 2018 2007 2018 2007 2018

1 0.0175 0.0236 76.1691 84.5994 76.1691 84.5994
2 0.0040 0.0035 17.3846 12.4391 93.5537 97.0385
3 0.0011 0.0008 4.7784 2.8382 98.3322 99.8767
4 0.0004 0.0000 1.6678 0.1233 100.0000 100.0000

RSEI2018 = 0.8460PC1 + 0.1244PC2 + 0.0284PC3 (15)

The distribution maps of ecological status in 2007 and 2018 were drawn by the raster calculation
tool in Arcgis10.5 software. Referring to the characteristics of the Bayinbuluke, the values were
divided into five grades which represent very bad, bad, moderate, good, excellent, respectively,
i.e., RSEI < 0.8: Grade I (very bad); 0.8 ≤ RSEI < 0.9: Grade II (bad); 0.9 ≤ RSEI < 1.0: Grade III
(moderate); 1.0 ≤ RSEI < 1.1: Grade IV (good); RSEI ≥1.1: Grade V (excellent).

The Remote-Sensing Ecological Body Index (RSEBI) was employed to estimate the overall
differences in ecological status, and it is calculated as follows:

RSEBI =
n∑

i=1

Pi∗Ai/S (16)

where Pi is the ecological environment grade; 1 to 5 are assigned to Grade I to Grade V respectively; Ai
denotes the area of grade i; S is the total area of Bayinbuluke.
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2.3.3. Exploratory Spatial Data Analysis

Exploratory spatial data analysis is a collection of methods used to describe and visualize the
spatial distribution of an attribute. It is also used to suggest spatial regimes or other forms of spatial
heterogeneity [49] by identifying atypical locations or spatial outliers and discovering the patterns of
spatial association. In practical application, global spatial autocorrelation and local indicator of spatial
association (LISA) are often adopted to investigate the spatial characteristics of observations.

• Global Spatial Autocorrelation

Global spatial autocorrelation is employed to measure if and how much the attribute is
autocorrelated in the whole region. Global Moran’s I statistics is defined by the following [50,51]:

I =

∑n
i=1

∑n
j=1 wi j(xi − x)

(
x j − x

)
1
n
∑n

i=1(xi − x)2
∗
∑n

i=1
∑n

j=1 wi j
(17)

where x = 1
n

n∑
i=1

xi; n is the number of spatial units, xi and x j are the observations of spatial units i and j,

respectively; wi j is an element of the spatial weight matrix W which describes the spatial arrangement
of all the spatial units in the sample, if spatial units i and j were adjacent, wi j is 1, otherwise, wi j is 0.
The values of Global Moran’s I range from −1 to 1.

• Local indicator of spatial association (LISA)

LISA is the most commonly used indicator among the local indicators for spatial association [52].
It can be used to determine the correlation degree of an attribute between a unit and its adjacent units
throughout the region. LISA is useful to identify local spatial cluster patterns and spatial outliers [53],
and it was defined as:

LISA =
(xi − x) × n

∑n
i=1 wi j∑n

i=1 wi j(xi − x)2 (18)

2.3.4. Geo-Detector Model

The geo-detector model is new statistical method to detect spatial stratified differentiation among
the geographical elements and reveal the driving factors behind it. The study area is characterized
by spatial stratified heterogeneity if the sum of the variance of subareas is less than the regional total
variance; and if the spatial distribution of the two variables tends to be consistent, there is statistical
correlation between them [54]. The Q-statistic in the geo-detector has already been applied in many
fields of natural and social sciences which can be used to measure spatial stratified heterogeneity, detect
explanatory factors, and analyze the interactive relationship between variables. In this paper, factor
detection and interaction detection were employed to analyze the driving force and the interaction
between multiple elements. The level of which geographical element X explained the spatial variation
of attribute Y was detected by the following formula:

q = 1−
1

nσ2

t∑
h=1

Nhσ
2
h (19)

where q is the explaining power of a variable on a spatial attribute; t is the categories or partitions
of variables; Nh is the quantity of sample units in subfields; n is the quantity of sample units in the
whole area; L is the quantity of subfields; σ2 is the variance of a single variable of the entire region;
and σ2

h is the variance of the subfield.
Interaction judgement has the ability to detect whether the various variables formed a combined

effect on the ecological environment, or whether the influence between different variables
was independent. The basis for interaction type is shown in Table 2.

User
高亮
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Table 2. Types of interaction between two covariates.

Reference for Judging Interaction Type

q(x1∩ x2) < Min(q(x1), q(x2)) non-linear weakening effect
Min(q(x1), q(x2)) < q(x1∩ x2) < Max(q(x1), q(x2)) single factor non-linear weakening effect

q(x1∩ x2) > Max(q(x1), q(x2)) mutual strengthening effect
q(x1∩ x2) = (q(x1) + q(x2)) independence
q(x1∩ x2) > q(x1) + q(x2) non-linear strengthening effect

Regard with the actual situation, nine variables were designed and listed in Table 3.

Table 3. Considered independent variables of ecological vulnerability.

Variables Standard of Classification

Elevation (×1) Extracted from digital elevation model (DEM) data and classed into five
categories with natural breaks.

Slope (×2) Extracted from DEM data and classed into five categories with natural breaks.
Precipitation (×3) Classed into five categories with natural breaks.
Temperature (×4) Classed into five categories with natural breaks.

River (×5) Kernel density of river is created, and classed into five categories with
natural breaks.

Road (×6) Kernel density of road is created, and classed into five categories with
natural breaks.

Community resident (×7) Kernel density of town and grazing point is created, and classed into five
categories with natural breaks.

Tourism (×8) Kernel density of tourism infrastructures is created, and classed into five
categories with natural breaks.

Protection partition (×9)

In 2007, Bayinbuluke was divided into experimental area, core area and buffer
zone according to national nature reserve requirements.

In 2018, Bayinbuluke was divided into construction prohibited district,
construction limited district, exhibition district and buffer zone according to the

management plan of Xinjiang Tianshan.

2.3.5. Spatial Econometric Model

After determining the spatial correlation of the regional unit attributes, the spatial interaction
between different areas should be introduced into the model as a variable to construct a spatial
econometric model, which mainly includes three types of model: ordinary least squares (OLS), spatial
lag model (SLM) and a spatial error model (SEM). In the spatial correlation test, if the spatial lag model
Lagrange multiplier test statistic LMLAG and spatial error LMERROR are not significant, then the OLS
regression were selected. If LMLAG is more significant than the spatial error LMERROR, the SLM is
selected, otherwise, the SEM is selected [47,55].

The SLM can be calculated as follows:

y = ρWy + βX + ε (20)

where, y is the dependent variable matrix; X is the argument matrix; the parameter β reflects the
influence of the independent variable on the dependent variable; W is a spatial weights matrix; and ε
represents the residual items.

The SEM can be calculated as follows:

y = βX + (1− λW)−1ε (21)

where, λ is the coefficient of autocorrelation for the SEM.

User
高亮
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3. Results

3.1. Characteristics of Land Surface Moisture (LSM), Normalized Difference Vegetation Index (NDVI),
Normalized Difference Imperviousness and Soil Index (NDISI) and Land Surface Temperatures (LST)

From the spatial distribution of ecological factors (see in Figure 2), LSM and NDVI were higher
in the eastern and lower in the western areas, which were closely related to the distribution of the
river system. By contrast, the values of NDISI and LST were higher in the western part and lower in
the eastern part. In 2007–2018, the moisture and temperature of land surface were decreased in the low
vegetation coverage area in west and north, and the improvement of vegetation cover in southeast and
the middle swamp and wetland area was obvious.Sustainability 2019, 11, x FOR PEER REVIEW 9 of 18 
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Figure 2. Spatial distribution of land surface moisture (LSM), Normalized Difference Vegetation
Index (NDVI), Normalized Difference Imperviousness and Soil Index (NDISI) and land surface
temperatures (LST).

The statistics of four indicators are shown in Table 4. The average value of LSM, NDVI, LST
increased during the period of 2007–2018, while NDISI decreased. Among them, the increase in LSM
was large, with a rate of 51.72%, followed by LST, with a rate of 23.10%, and NDVI, with a rate of
0.81%. The NDISI was on the decrease, and its mean value decreased from −0.0866 in 2007 to −0.1357
in 2018, indicating a significant decrease in built-up land and bare land in the study area. The standard
deviation of LSM, NDVI, NDISI and LST increased, indicating that the extreme differences in moisture,
greenness, dryness and heat tend to be obvious.

Table 4. Statistics of LSM, NDVI, NDISI and LST in 2007 and 2018.

Statistics Max Min Mean Std

2007

LSM 0.1017 −0.3154 −0.1191 0.0539
NDVI 1 −1 0.6078 0.1723
NDISI 1 −1 −0.0866 0.1259

LST 36.0341 11.5327 25.7443 3.0094

2018

LSM 0.2712 −0.8618 −0.0575 0.0540
NDVI 1 −1 0.6381 0.1809
NDISI 1 −1 −0.1357 0.1363

LST 46.3081 19.3833 31.6922 5.0246

3.2. Characteristics of Ecological Environment

Redundancy of data occurs frequently and should be considered when processing data [56].
The variance inflation factor (VIF) and tolerance index (TOL) were employed to measure the potentially
redundant features for the purpose of effectiveness of dimensionality reduction. If VIF > 10 or TOL < 0.1,
this indicated that the disturbance of multicollinearity in the dataset was serious [57]. VIF and TOL
were computed with the sample points related to RSEI and principal components in 2007 and 2018
(see in Table 5). The result showed that VIF < 10 and TOL > 0.1, both of which illustrated that the
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redundancy among the principal components were acceptable, and the selection of indicators and
methods were desirable.

Table 5. Results of variance inflation factor (VIF) and tolerance index (TOL).

Index PC1 PC2 PC3

2007
VIF 1.0346 1.0588 1.0279
TOL 0.9666 0.9445 0.9729

2018
VIF 1.0001 1.0002 1.0001
TOL 0.9999 0.9998 0.9999

According the principal component analysis method, the values of RSEI were calculated and
divided into five grades. As seen in Figure 3, ecological environment presented a distribution
pattern that the NWHS was better than the buffer zone, and the southeast area was better than the
northwest area. In 2007, the ecological environment grade was dominated by Grade III, mainly
distributed in the heritage site and the northeast of the buffer zone. The areas with Grade IV and
Grade V were embedded in the Grade III, mainly distributed along the rivers. The areas with Grade
II were mainly distributed in the buffer zone, and Grade I areas were mainly concentrated in the
northern of the buffer zone, where the density of rivers was scarce, and the main landscape was low
coverage grassland. In 2018, the ecological environment grade was dominated by Grade IV, mainly
distributed in the heritage site and the southeast of the buffer zone. Most of the areas with Grade
III were replaced by the areas with Grade IV and Grade V. The areas with Grade I and Grade II
were mainly concentrated in the west of the buffer zone, and their area were significantly reduced.
The ecological environment of Bayinbuluke has been improved as a whole, the RSEBI increased from
2.7017 in 2007 to 3.5225 in 2018.
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The area of each ecological status grade was calculated and shown in Figure 4. In 2007, the areas
with Grade I to Grade V were 217.30 km2, 568.21 km2, 698.22 km2, 385.84 km2, and 25.80 km2, respectively.
From 2007 to 2018, the areas with Grade IV and Grade V increased to 673.11 km2 and 444.09 km2,
respectively, while the areas with Grade I, Grade II, and Grade III decreased to 128.85 km2, 316.27 km2,
and 330.06 km2, respectively. Area conversion mainly occurred between adjacent levels, and presented
a conversion from the low level to the high level. The main types of shift included Grade V to Grade IV,
Grade IV to Grade III, Grade III to Grade II, Grade III to Grade I, Grade II to Grade I.

3.3. Spatial Clustering of Ecological Environment

The RSEI map in 2007–2018 were used to examine the Global Moran’s I, which can describe
the overall correlation. According to Figure 5, the Global Moran’s I passed the significance test
(at 0.02 significance level) in all years, implying that the ecological environment quality in Bayinbuluke
had significant spatial autocorrelation characteristics. From the perspective of the evolution trend,
the Global Moran’s I from 2007 to 2018 showed the characteristics of increasing, the spatial clustering
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degree of ecological environment in the research area was continuously strengthened, and the clustering
level was enhanced.
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The Local Moran’s I index was employed to assess the spatial dependence among the samples. Four
types of spatial associations were proposed as follows (see Figure 6): High-High Cluster type, High-Low
Outlier type, Low-High Outlier type, and Low-Low Cluster type. High-High and Low-Low Cluster
correspond to positive spatial autocorrelation, while High-Low and Low-High Outlier correspond to
negative spatial autocorrelation. The characteristics of local spatial agglomeration were summarized:

1O High-High Cluster type. The spatial difference of the High-High Clustering type was small.
The values of samples and their adjacent samples were high, and they showed a significant positive
correlation. Most of the High-High Clustering samples were distributed in the middle of the
study area in the areas of Aerle, Bayintala, Bawuerken, Haerwusu, Wulanwusu, Yikeyuwulezen,
and showed a blocky distribution.

2O High-Low Outlier type. The sample itself has higher ecological quality, while its adjacent samples
have lower ecological quality, showing a negative correlation of “high itself, low surrounding”.
High-Low Outlier samples were scattered in the fringes of the study area, and showed a point-like
distribution structure.

3O Low-High Outlier type. The value of the sample was low, and the values of the adjacent samples
were high. Low-High Outlier type showed a negative correlation of “low itself, high surrounding”,
and they mainly distributed along the river.
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4O Low-Low Cluster type. The spatial difference of Low-Low Clustering type was small.
The samples and their adjacent samples were both in low ecological quality, and showed
a significant positive correlation. The number of “Low-Low” Cluster samples gradually decreased,
and they mainly distributed in Aolunbuluke, Wulalianyinge, Halahatecahan, Haersala, Aerxiate,
and showed a blocky distribution.
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3.4. Relationship between Detected Factors and Ecological Environment

According to the analysis of the geographical detector (Table 6), the q statistics of the detected
factors in 2007 were ranked as follows: elevation (0.3314) > protection partition (0.3072) > temperature
(0.1691) > river (0.1604) > road (0.1393) > tourism (0.0691) > precipitation (0.0617) > community
resident (0.0244) > slope (0.0193); the q statistics in 2018 were ranked as follows: elevation (0.2949) >

protection partition (0.2318) > precipitation (0.2045) > tourism (0.1464) > river (0.1400) > temperature
(0.0863) > road (0.0509) > community resident (0.0405) > slope (0.0114).

Table 6. The detection result of different factors of ecological environment quality.

Factors q2007 Statistic q2018 Statistic Absolute Change
of q Statistic

Relative Change
of q Statistic

Elevation (x1) 0.3314 *** 0.2949 *** −0.0365 −11.01%
Slope (x2) 0.0193 *** 0.0114 *** −0.0079 −40.93%

Precipitation (x3) 0.0617 *** 0.2045 *** 0.1428 231.44%
Temperature (x4) 0.1691 *** 0.0863 *** −0.0828 −48.97%

River (x5) 0.1604 *** 0.1400 *** −0.0204 −12.72%
Road (x6) 0.1393 *** 0.0509 *** −0.0884 −63.46%

Community resident (x7) 0.0244 *** 0.0405 *** 0.0161 65.98%
Tourism (x8) 0.0691 *** 0.1464 *** 0.0773 111.87%

Protection partition (x9) 0.3072 *** 0.2318 *** −0.0754 −24.54%

*** p < 0.001; ** p < 0.01; * p < 0.05.

All factors were statistically significant with respect to the changes in the ecological status.
Precipitation, temperature, road, community resident, tourism and protection partition were selected
to determine the interaction effect on the changes in ecological environment for the larger variations of
their absolute change and relative change. The interaction detection result was higher than the effect of
one variable alone, and the interaction of any two factors showed non-linear strengthening or mutual
strengthening (Table 7). The greatest interaction was the non-linear enhancement of precipitation ∩
protection partition, which meant that the difference of ecological status in different precipitation under
the same protection partition or different protection partition at the same precipitation was the largest.
In 2007, the interaction of precipitation ∩ protection partition (0.4235), temperature ∩ protection
partition (0.3829), and community resident ∩ protection partition (0.3625) were the significant control
factors for the ecological condition in the Bayinbuluke. In 2018, the top three significant control factors
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were the interaction of precipitation ∩ protection partition (0.4812), tourism ∩ protection partition
(0.3531), and temperature ∩ protection partition (0.3380).

Table 7. Interaction between factors in the ecological environment.

xi∩xj. 2007 2018

q(xi∩xj) Explanatory q(xi∩xj) Explanatory

x3∩ x4 0.2718 non-linear strengthening effect 0.3380 non-linear strengthening effect
x3∩ x6 0.2623 non-linear strengthening effect 0.2876 non-linear strengthening effect
x3∩ x7 0.0953 non-linear strengthening effect 0.2407 mutual strengthening effect
x3∩ x8 0.1548 non-linear strengthening effect 0.2630 mutual strengthening effect
x3∩ x9 0.4235 non-linear strengthening effect 0.4812 non-linear strengthening effect
x4∩ x6 0.2970 mutual strengthening effect 0.1811 non-linear strengthening effect
x4∩ x7 0.2340 non-linear strengthening effect 0.1859 non-linear strengthening effect
x4∩ x8. 0.2986 non-linear strengthening effect 0.3362 non-linear strengthening effect
x4∩ x9. 0.3829 mutual strengthening effect 0.3122 mutual strengthening effect
x6∩ x7. 0.2129 non-linear strengthening effect 0.2043 non-linear strengthening effect
x6∩ x8 0.2363 non-linear strengthening effect 0.1991 non-linear strengthening effect
x6∩ x9 0.3588 mutual strengthening effect 0.3154 non-linear strengthening effect
x7∩ x8 0.1796 non-linear strengthening effect 0.2308 non-linear strengthening effect
x7∩ x9 0.3625 non-linear strengthening effect 0.2635 mutual strengthening effect
x8∩ x9 0.3465 mutual strengthening effect 0.3531 mutual strengthening effect

3.5. The Correlation between RSEI and Survey Data

In case there is spatial heterogeneity between samples, the spatial regression model should be used
to avoid the estimation error. Therefore, we used the spatial regression model to discuss the spatial
heteroskedasticity and spatial dependence of survey data for the analysis of remote-sensing results.
Then, an OLS model, a SLM, and a SEM were established. To choose the best model fitting the data,
the regression models were evaluated by the results from the Lagrange Multiplier tests [58]. In this
test, both LMlag (LMlag = 4.3842, P = 0.0363) and LMerr ((LMerr = 4.6380, P = 0.0313) were significant
for RSEI. Then, the robust model forms (i.e., RLMerr and RLMlag) was considered. The statistic of
RLMerr (0.8716) was higher than RLMlag (0.6178), which indicates the SEM was a better alternative.
Moreover, the Akaike information criterion (AIC) of SEM (−88.9148) was lower than OLS models
(−80.1745) and SLM (−81.8813). This criterion is based on maximum likelihood function, and lower
values denote best model fit [58,59]. Table 8 presented the result of standardized regression coefficients
from the SEM. In this model, aboveground biomass, coverage, and Shannon diversity index presented
significant positive association with the remote-sensing result, while the Simpson diversity index
had a significant and negative coefficient. In addition, Margalef richness index, Pielou evenness
index, and Gini evenness index were not significant among the independent variables. The estimated
parameters and their significance in the regression model revealed that the remote-sensing result could
reflect the basic situation of vegetation growth to a certain extent, but had limited ability to respond to
species structure such as evenness or richness.

Table 8. Standardized regression coefficients from spatial error model (SEM) explaining RSEI in 2018.

Indicator Coefficient Z-Value P-Value

Aboveground biomass 0.0136 3.4296 0.0006
Coverage 0.1654 2.2483 0.0246

Margalef richnenss index −0.0282 −0.5946 0.5521
Shannon diversity index 0.3903 3.4411 0.0006
Simpson diversity index −1.5964 −2.2801 0.0226
Pielou evenness index −0.1494 −1.4639 0.1432
Gini evenness index 1.0209 1.7188 0.0857
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4. Discussion

4.1. Driving Mechanism of Ecological Environment

Altitude and precipitation are the mainly natural factors affecting the ecological environment
of Bayinbuluke. Elevation itself has a correlation with climate and topographic factors, and affects
the distribution of vegetation, river and landscape patterns on a large scale [60,61]. In the material
declarations for Xinjiang Tianshan NWHS, the natural vegetation in Bayinbuluke can be divided into
Alpine steppe and Alpine marsh meadow from the high to the low altitude. Alpine steppe includes
Stipa purpurea steppe, Stipa grandis steppe and miscellaneous grass prairie. This kind of vegetation
grows at an elevation of 2500–2600 m, and the community is composed of cold-tolerant plants such
as Stipa subsessiliflora, S.purpurea, S.krylovii, Festuca pseudovina, Gentiana decumbens, potentilla bifurca,
Agropyron cristatum, poa sp. and Schultzia sp. On the slopes and pediment of the mountains, there is
widespread alpine Stipa purpurea steppe; on the wet basin floor, there is marsh meadow and
marsh vegetation. Alpine marsh meadow mainly includes Carex meadow which is located in the
basin bottom. Herb species growing in marsh meadow account for more than 60% of all plant species
in the heritage site, such as Carex uesicaria and C.microglochin, as well as wet and mesic grass such
as Potamogeton lucens, Utricularia sp., Hippuris vulgaris, Trigloch in palustre, Alopecurus arundinaceus
and Deschampsia caespitosa. There is also an abundant distribution of submerged plants and emergent
plants in the lakes and rivers, as well as Utricularia, Halerpestes cymbalaris and Potamogeton malaianus in
the water. Precipitation of the growing season (May–September) in 2018 increased by 9.88% compared
with 2007, and the RSEBI of 2018 is greater than 2007. The impact of precipitation on the ecological
environment in our study supports the findings of some previous studies. For instance, Zhao et al. [62]
studied the relationship between interannual vegetation change and climate factors, and found that
increasing precipitation induced an increase in NDVI in general. Mo et al. [63] concluded that most
of the area in the arid basin shows a strong positive correlation between precipitation and NDVI at
different temporal and spatial scales.

Anthropogenic factors include conservation management and tourism activities. The management
plan of Xinjiang Tianshan divided Bayinbuluke into construction prohibited district, construction
limited district, exhibition district and buffer zone. Then, corresponding protection requirements
for each district was proposed. Construction prohibited district and construction limited district
are the main distribution district of high RSEI, and human activities such as tourism and grazing
are prohibited here. As the hotpots of biodiversity and major habitat for species, these districts are
typical areas that reflect the biological and ecology value of Bayinbuluke. With the improvement of
protection management requirements, tourism activities have gradually concentrated in the exhibition
district, and the construction of tourism infrastructures and roads have had a certain negative impact
on the ecological environment [64–66]. In addition, grazing activities are allowed in buffer zone.
The adaptability of vegetation species to grazing disturbances is limited, the carrying capacity
and the rehabilitation of grassland depend on grazing intensity, grazing strategies, and different
livestock [67–69]. Therefore, grazing also has a complex impact on the ecological quality of the
buffer zone.

4.2. Disadvantage and Further Advancement

Indicators extracted from remote-sensing image allowed us to achieve a rapid and objective
evaluation and a more detailed understanding of the ecology environment of heritage sites for the
superiority of spatial visualization. Considering the important values of the study area in terms
of biodiversity and ecosystem, the field survey data verified RSEI from the aspects of meadow
coverage, aboveground biomass, and plant community diversity. The evaluation results obtained by
remote-sensing data have a positive relationship with vegetation growth, however, the relationship of
vegetation community structure and remote-sensing result was not obvious, which may be detrimental
to the diagnosis of degradation caused by changes in vegetation types, such as species invasion
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and excess population. More samples should be surveyed to explore the relationship between
different levels of ecological environment and plant community diversity. With the development of
monitoring techniques and tools, the equipment such as remote-sensing satellites, unmanned aerial
vehicle, and infrared camera provides multi-scale and multi-dimensional monitoring data for heritage
site monitoring. A remote-sensing–unmanned aerial vehicle–ground survey synergy monitoring
system should be taken into account in future research. In addition, the outstanding universal value of
the site and the management plan of heritage sites impose requirements on the function of different
regions. For instance, the function of a construction-prohibited district is the main area for the protection
of outstanding universal value, while exhibition district provides services to support tourism, local
residents, and management. Therefore, protection management requirements and main functions of
different regions should be taken into account for a more pertinent evaluation.

5. Conclusions

Ecological status assessment is significant to improve the management of heritage sites and ensure
their sustainability. This study attempted to assess the ecological environment with remote-sensing
data in a raster scale, which would be helpful for a rapid and systematic understanding of NWHSs.
The results showed that the moisture, greenness, and heat increased, and the dryness decreased
during 2007–2018 in Bayinbuluke, while the extreme differences of the four indicators tended
to be apparent. The ecological status of Bayinbuluke had been improved as a whole, and the
ecological environment quality presented a distribution pattern that the NWHS was better than
the buffer zone, the southeast area was better than the northwest area, and the ecological grades
presented a conservation from the low level to the high level. There was a significant spatial
autocorrelation characteristics of ecological environment quality in Bayinbuluke, and the clustering
degree was continuously strengthened. Elevation, protection partition, temperature, river, road,
tourism, precipitation, community resident, and slope were statistically significant with respect to
the ecological status. The interaction of any two factors was higher than the effect of one variable
alone, and showed non-linear strengthening or mutual strengthening. The remote-sensing result
reflected the basic situation of vegetation growth to a certain extent, but had limited ability to response
species structure such as evenness or richness. The framework presented in this paper provides
a visual and measurable approach for a detailed understanding of ecological environment, and the
method can be employed to other heritage sites with suitable datasets, particularly in the sites
representing significant on-going ecological/biological processes and development of ecosystems.
Furthermore, multi-dimensional data and protection management requirements should be taken into
account for a more pertinent evaluation.
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