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13 Abstract: Groundwater pollution is a critical concern in karst areas. This study used 

14 the PLEIK (P: protective cover; L: land use; E: epikarst development; I: infiltration 

15 conditions; K: karst development) method to assess the vulnerability of groundwater 

16 pollution in Guangxi Province, which is the largest karst area in China. The pollution 

17 sources and attenuation consist of groundwater pollution hazards. The attributions for 

18 the vulnerability and hazard were measured using the geodetector method from 

19 geographical information system in Luzhai County in Guangxi. The results confirmed 

20 that the vulnerability of groundwater pollution was higher in karst areas than in non-

21 karst areas. In Guangxi, 36.35% of the groundwater samples were polluted. A total of 

22 49.73% of the areas in Luzhai County contained hazardous levels of pollution. The 

23 risk assessment map, which interacted with the vulnerability and hazards, was 58.2% 

24 similar to the groundwater pollution distribution. The influence of the hazard on 

25 groundwater pollution was 2.6 times that of the vulnerability. It is crucial to control 

26 pollution sources to prevent groundwater pollution.

27

28 Main finding:

29 The influence of the hazard on groundwater pollution was 2.6 times that of the 

30 vulnerability in the karst areas of Guangxi Province, China.

31

32 Keywords: PLEIK; Geodetector; covered karst area; vulnerability assessment; 

33 hazard assessment
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34 1 Introduction
35 Karst is a specific type of terrain that develops over limestone and dolomite due to 

36 the dissolution of carbonate rocks from erosion and subsequent physicochemical 

37 processes (Zwahlen et al., 2004; Darnault, 2008). The soil layers of karst areas in 

38 southwest China are thin with a surface-ground bilayer structure, which makes it easy 

39 for pollutants to enter aquifers through the weak overlying strata and sinkholes (Li et 

40 al., 2018). Once contaminated, karst groundwater resources are difficult to salvage 

41 without expending significant efforts and costs (Zwahlen et al., 2004; Wang et al., 

42 2012; Guo et al., 2007). Groundwater contamination in karst areas has become an 

43 increasingly critical issue. Intrinsic vulnerability, hazard and risk assessments are 

44 crucial tools to ensuring groundwater protection (Wang et al., 2012; Zhang et al., 

45 2016).

46 The intrinsic vulnerability of groundwater is determined by the geological and 

47 hydrogeological characteristics of an area. Intrinsic vulnerability is, however, 

48 independent of the contaminants’ nature and scenario (Zwahlen et al., 2004). Because 

49 the karst groundwater system has a complicated structure, diverse types of karst areas 

50 have different hydrological characteristics (Zou et al., 2014). One of the most widely 

51 used intrinsic vulnerability models is DRASTIC, which is a generic model built by the 

52 US EPA that incorporates various physical components of both aquifers and the 

53 overlying substrate (Beynen et al., 2012). The DRASTIC method has some limitations 

54 when applied to karstic aquifers due to the surface-ground bilayer structure in karst 

55 areas (Polemio et al., 2009). Because the conduit network and the connected joints 

56 and fractures divide a more compact zone of limestone in karst areas, the EPIK 

57 method was developed for karst aquifers by taking the karst network into 

58 consideration (Hamdan et al., 2016). European approaches for the protection of karst 

59 groundwater were developed in the COST Action 620 project, where the COP method 

60 first assessed the vulnerability of karst regions based on an origin-pathway-target 

61 model (Entezari et al., 2016). The EPIK model can be applied to the bare karst area in 

62 South China, which has a rich karst surface zone and network, whereas the COP 



ACCEPTED MANUSCRIPT

63 model better suits North China’s shallow buried karst area with a weak karst surface 

64 zone (Zou et al., 2014). The PLEIK model was the best fit for examining the covered 

65 karst in China because it highlighted protective cover and land use patterns (Zou et 

66 al., 2014; Wen et al., 2016; Dai et al., 2015). 

67 Hazard assessment quantifies the potential degree of harmfulness for each type of 

68 hazard and is determined using the toxicity and quantity of dangerous substances 

69 (Zwahlen et al., 2004). There are three methods for such an assessment. First is the 

70 spatial analysis of the positions and types of pollution, including those from overlying 

71 and buffer sources (Li et al., 2018; Kazakis et al., 2015). Alternatively, the weighted 

72 sum model accounts for the different parameters of pollution sources, including land 

73 use, pollutant amounts, toxicity, and mobility (Bai et al., 2012; Zhang et al., 2016). 

74 Finally, the product model takes not only the attributes of pollution sources into 

75 consideration but also their attenuation, infiltration, technical status, and control 

76 policy (Li et al., 2017; Andreo et al., 2006; Shrestha et al., 2016; Wang et al., 2012). 

77 The parameters of each method are adjustable according to the available data. 

78 As vulnerability and hazard assessment methods become more widely used, 

79 doubts have increased regarding their applicability, accuracy, and reliability (Wang et 

80 al., 2012; Iva´n et al., 2017). Few researchers have validated assessment results. 

81 Shrestha et al. (2016) used Pearson’s r correlation coefficient to perform a statistical 

82 comparison of the vulnerability and risk using an observed nitrate level. The results 

83 indicated that the correlation coefficient is positive for risk and negative for 

84 vulnerability. Cui et al. (2016) contrasted the pollution risk and distribution maps 

85 qualitatively, which displayed a coherent distribution. Li et al. (2017) identified 

86 inconsistencies in the relationship between the risk map and organic contamination. 

87 However, the explanatory power of the vulnerability and pollutant sources for 

88 groundwater pollutant concentration is still relatively unexplored.

89  In this study, the PLEIK method was used to assess the vulnerability of covered 

90 karst areas in southwestern China. We evaluated the hazard map of pollutant sources 

91 using the geostatistical method from geographical information science. Utilizing the 

92 CCME WQI method (Wang et al. 2018), we then evaluated the groundwater pollutant 
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93 classes based on the field sampling. Finally, the geographical detector method (Wang 

94 et al. 2010) was used to quantitatively evaluate the relationships between the 

95 groundwater pollution classes, the vulnerability, and the hazard. The results revealed 

96 the explanatory power of the vulnerability, the hazard, and their interactions 

97 concerning groundwater pollution, which should greatly aid groundwater protection 

98 and management efforts.

99

100 2 Material and Methods

101 2.1 Study area

102 Guangxi Province lies in southern China and occupies a total area of 236.7 

103 thousand square kilometres. It spans from  N to  N in latitude and 20.90° 26.38°

104  E to  E in longitude under a subtropical monsoon climate (Figure 1). 104.47° 112.07°

105 In Guangxi, there are large areas of well-developed tropical karst landscape from the 

106 northeast to the southwest. The aquifer rock formations are divided into five 

107 categories, including loose rock formations, pure carbonate rock formations, impure 

108 carbonate rock formations, clastic rock formations, and intrusive rock formations. 

109 Correspondingly, the types of groundwater in Guangxi contain pore water in loose 

110 rock, pore water in clastic rock, fissure-cavern water, and bedrock fissure water. The 

111 main source of groundwater is precipitation; however, other sources exist, including 

112 the river water supply, irrigation sources, and other miscellaneous water sources in the 

113 karst area. Groundwater in Guangxi is shallow freshwater and is mainly used in 

114 industrial and agricultural production as well as domestic drinking water. Therefore, it 

115 is crucial to protect groundwater from pollution.

116

117 2.2 Data

118 There were a total of 1029 field samples that were used to evaluate the 

119 groundwater pollution in Guangxi Province (Figure 1). The analysis indexes had 30 

120 items, including 8 inorganic indicators (NH4+, As, Cd, Cr6+, Pb, Hg, NO2- and 

121 NO3-), 2 organic indicators (trichloromethane and tetrachloromethane), 16 volatile 
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122 indicators (1,1,1-trichloroethane, trichloroethylene, tetrachloroethylene, 1,2-

123 dichloroethane, 1,1,2-trichloroethane, 1,2-dichloropropane, tribromomethane, 

124 chloroethylene, 1,1-dichloroethylene, chlorobenzene, o-dichlorobenzene, p-

125 dichlorobenzene, methylbenzene, ethylbenzene, xylene and styrene) and 4 semi-

126 volatile indicators (BHC, -BHC, DDT and HCB). These samples covered all γ

127 hydrogeological units in the study area, which controlled the main underground rivers 

128 and karst springs in the basin. 

129

130 Fig. 1. Study area and field sample distribution

131

132 2.3 Methods

133 2.3.1 PLEIK

134 The vulnerability of covered karst areas were assessed using five factors: 

135 protective cover (P), land use (L), epikarst development (E), infiltration conditions (I) 

136 and karst development (K). 

137 P encompasses all geotechnical layers above the groundwater table, including the 

138 overlying non-karst strata and karst strata above the groundwater table. In karst areas, 
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139 P has a significant defensive effect against pollution. Once pollutants get through the 

140 protective cover, they quickly and heavily contaminate the groundwater. One of the 

141 most important parameters for the protective cover is the soil thickness. The thinner 

142 the protective cover’s soil, the more vulnerable the covered karst area becomes. The 

143 soil thickness was divided into four categories (Table 1). Another crucial attribute of 

144 the protective cover is the degradation ability of the soil. The stronger the degradation 

145 ability is, the lower the vulnerability. The cation exchange capacity (CEC) was 

146 selected as a proxy to reflect the protective cover’s degradation ability. The soil 

147 thickness and CEC were connected to quantify the protective cover’s effectiveness 

148 using a rating matrix (Table 1). 

149 L incorporates the impacts of human activities on covered karst areas into a 

150 vulnerability assessment. More human activity leads to higher vulnerability. Land use 

151 was divided into six classes and scored (Table 1).

152 E is located under any consolidated soil (Doerfliger et al., 1999) and has 

153 important pondage action for karst water systems. A number of factors—including the 

154 lithology, rock structure, and hydrodynamic conditions—can affect its development. 

155 More highly developed epikarst contributes to a higher vulnerability rating. Epikarst 

156 development can be measured and scored based on its specific type of carbonate rocks 

157 (Table 1).

158 I concerns the recharge type and recharge intensity (RI) of the karst aquifer. The 

159 more concentrated the recharge and the larger the intensity, the higher the 

160 vulnerability. The recharge type depends on the slope and its vegetation, which we 

161 classified into four categories (Table 1). Like the soil thickness and CEC, we also 

162 quantified the infiltration conditions using a rating matrix based on the recharge type 

163 and intensity (Table 1).

164 K is a network of solution openings greater than 10 mm in diameter. This size is 

165 the effective minimum aperture for turbulent flow (Doerfliger et al., 1999). 

166 Groundwater runoff moduli can be used to reflect the karst development of an aquifer. 

167 The smaller the modulus, the stronger the karst network development, which results in 

168 a higher vulnerability (Table 1).
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169 Table 1 Classifications and scores of P, L, E, I, K and VI
Protective cover thicknesses Score matrix (CEC(meq/100 g))Class
A B <10 10~100 100~200 >200

P1 0~20 cm 0~20 cm 1 3 5 7
P2 20~100 cm 20~100 cm 2 4 6 8
P3 100~150 cm 100 cm 3 5 7 9

P

P4 >150 cm >100 cm or non-karst strata 4 6 8 10
Class Land use Score 
L1 Forest 10
L2 Grass land 8
L3 Garden land 6
L4 Farmland 4
L5 Bare land 2

L

L6 Urban and industrial land 1
Class Epikarst development Score
E1 Limestone continuum 1
E2 Limestone with dolomite 3
E3 Limestone dolomite interaction 5
E4 Impure carbonate 7
E5 Impure and non-carbonate interaction 9

E

E6 Non-carbonate 10
Infiltration conditions Score matrix (RI(mm/d))Class
C (m)         D (m) E F <9.9 10~24.9 >25

I1 2000        2000 - - 4 2 1
>10% Farmland

I2
2000~4000 2000~4000

>25% Grassland
6 4 3

<10% Farmland
I3

2000~4000 -
<25% Grassland

8 6 5

I

I4 The rest of the catchment 10 8 7
Class Moduli ( )𝐋 ∙ 𝒔 ‒ 𝟏 ∙ 𝒌𝒎 ‒ 𝟐 Score
K1 <1 1-3
K2 1~7 4-5
K3 7~15 6-8

K

K4 >15 9-10
Class Vulnerability Degree Score
VI1 Higher 1-2
VI2 High 2-4
VI3 Medium 4-6
VI4 Low 6-8

VI

VI5 Lower 8-10
Notes: A= Soil covered on the limestone; B= Soil covered on low permeability bottom; 
       C= Sinkhole; D= Subterranean stream; E= Slope; F= Vegetation

170
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171 The vulnerability index (VI) was generated using the weighted sum of five 

172 factors (Eq. (1)).

173            (1)VI = 𝑤1 ∗ 𝑃 + 𝑤2 ∗ 𝐿 + 𝑤3 ∗ 𝐸 + 𝑤4 ∗ 𝐼 + 𝑤5 ∗ 𝐾

174  serve as the factors’ scores. Lower scores indicate higher P, L, E, I,and K

175 vulnerability.  are the respective weights for each factor, and the 𝑤1,𝑤2,𝑤3,𝑤4,𝑎𝑛𝑑 𝑤5

176 fuzzy comprehensive evaluation method determines each weight (Zou et al., 2014). 

177 Equation 2 illustrates the final weighted vector.

178                    (2)w = (0.29,0.24,0.20,0.16,0.11)

179 Each factor’s score—and, essentially, the range of VI—fell in the range of 1 to 

180 10. The vulnerability was then divided into five classes (Table 1). Lower values 

181 correspond to higher vulnerability.

182

183 2.3.2 CCME WQI

184 To evaluate the groundwater, we used the CCME WQI method to integrate the 

185 parameters into a single index (Eq. (3)). The index ranges from 0 (worst water 

186 quality) to 100 (best water quality) (Wang et al., 2018).

187                    (3)CCME WQI = 100 ‒
𝐹2

1 + 𝐹2
2 + 𝐹2

3

1.732

188 Here,  is the percentage of indicators that do not meet the standard limits at least F1

189 once,  represents the percentage of field samples that do not meet the standard F2

190 limits, and  represents the average excess multiple for each sample (Terrado et al., F3

191 2010; Wang et al., 2018). In this study, the CCME WQI was used to calculate the 

192 integrated pollution concentration of the field samples. The pollution samples were 

193 defined as those whose monitoring indicators exceeded the national standard of class 

194 III for groundwater quality. The standard limits used in the formula were the national 

195 standard for groundwater quality of class III (GBT 14848-2017). For the 

196 classification, the range of categories can be modified for each case study (Terrado et 

197 al., 2010). In this study, the CCME WQI values have been divided into five 

198 categories: poor (0-44), marginal (44.1-64), fair (64.1-79), good (79.1-99.9) and no 
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199 pollution (100)

200

201 2.3.3 Geographical detector

202 The geographical detector method proposed by Wang et al. (2010; 2016; 2017) 

203 was used to compare the spatial consistency of the vulnerability, hazard, and risk 

204 maps versus the pollution concentrations in field samples. Higher similarity in the 

205 spatial distribution increases the reliability of the assessment map. The factor detector 

206 can be used to evaluate these similarities (Eq. (4)). If the assessment map can reflect 

207 the actual vulnerability and risk, the variance in the samples’ pollution within strata is 

208 less than that between the strata.

209                           (4)𝑞 = 1 ‒
∑𝐿

ℎ = 1𝑁ℎ𝜎2
ℎ

𝑁𝜎2

210 L represents the number of strata.  represents the total number of field samples 𝑁ℎ

211 in stratum h, and  is the total number of field samples in the population.  and  𝑁 𝜎2
ℎ 𝜎2

212 represent the variances. The value of q is within [0,1]. The larger the value, the 

213 stronger the explanatory power of the assessment map.

214 The natural environment’s inherent vulnerability and the hazardous pollution 

215 from human activities directly and interactively influence groundwater pollution. The 

216 interactive detector can help evaluate the interaction (Table 2).  represents q(X1 ∩ X2)

217 the interactive explanatory power of the vulnerability and hazard assessment maps on 

218 groundwater pollution. 

219

220 Table 2 Interaction relationships for two factors
Description Interaction
𝐪(𝐗𝟏 ∩ 𝐗𝟐) < 𝐌𝐢𝐧(𝐪(𝑿𝟏),𝐪(𝐗𝟐)) Weaken, nonlinear

𝐌𝐢𝐧(𝐪(𝑿𝟏),𝐪(𝐗𝟐)) < 𝐪(𝐗𝟏 ∩ 𝐗𝟐) < 𝐌𝐚𝐱(𝐪(𝑿𝟏),𝐪(𝐗𝟐)) Weaken, uni-

𝐪(𝐗𝟏 ∩ 𝐗𝟐) > 𝐌𝐚𝐱(𝐪(𝑿𝟏),𝐪(𝐗𝟐)) Enhance, bi-

𝐪(𝐗𝟏 ∩ 𝐗𝟐) = 𝐪(𝑿𝟏) + 𝐪(𝐗𝟐) Independent

𝐪(𝐗𝟏 ∩ 𝐗𝟐) > 𝐪(𝑿𝟏) + 𝐪(𝐗𝟐) Enhance, nonlinear

221
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222 3 Results and Discussion

223 3.1 Vulnerability assessment

224 Factor P considered the protective cover’s permeability, soil thickness, and CEC. 

225 In the study area, most soil covered the limestone directly, and so the P class was 

226 determined by the soil thickness according to Table 1. For coastal areas in southern 

227 Guangxi, the soil type was latosol with a thickness of more than 1.5 metres, which 

228 falls in category P4. Latosol is also a heavy clay soil with strong adsorption, meaning 

229 that the CEC is low—less than 5 meq/100 g. According to Table 1, the P score for 

230 these areas is 4. For the southern subtropics in central Guangxi, the soil type was 

231 latored soil with a thickness of less than 1.5 metres, which falls in category P3. The 

232 CEC here lies between 5 and 10 meq/100 g, which grants these areas a P score of 3. 

233 Red soil with a thickness of less than 1 metre comprises the main soil type in the low 

234 hills of central and northern Guangxi and in the southern high altitude areas reaching 

235 350 to 800 metres. In mid-mountain zones with an altitude of 800 to 1300 metres, the 

236 soil type is mountainous yellow soil—also with a thickness of less than 1 metre. The 

237 Nanling mountainous region (at an altitude of 1400 to 1800 metres) has a mountain 

238 yellow brown soil type with a thickness of less than 1 metre. For the karst area in 

239 Guangxi, the soil type is limestone soil, which has a thickness between 0.3 and 0.4 

240 metre. Those areas all belong to category P2. The CEC is more than 10 meq/100 g. 

241 Therefore, the P score for those areas is 4. There are small areas in the northeast of 

242 Guangxi whose soil type is meadow soil, which has a thickness of less than 0.1 metre. 

243 They belong to category P1. The CEC is more than 10 meq/100 g. Therefore, the P 

244 score for the areas is 3. Figure 2(A) shows the final classification for factor P in the 

245 study area.

246  Factor L signifies the land use type. Forested regions—which are mainly 

247 distributed in the north, east and southwest—cover 116,147 square kilometres, or 

248 48.89%, of the total study area. Farmland takes second place with 42,471 square 

249 kilometres, which occupies 17.88% of the total area. Grassland areas cover 28,944 

250 square kilometres, which comprises 12.18% of the study area. Most study areas have 
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251 grass lands. Bare land covers 23,518 square kilometres and comprises 9.90% of the 

252 total area, and it is most common in the central western areas. Urban and industrial 

253 land covers 9097 square kilometres and comprises 3.8% of the total area. Finally, 

254 garden land covers 5088 square kilometres and comprises 2.14% of the total area. 

255 Figure 2(B) shows the final classification for factor L in the study area.

256 Factor E considered the type of carbonate rocks. Limestone continuum, limestone 

257 with dolomite, and limestone dolomite interaction are classified as pure carbonate 

258 rocks, and the impure carbonate interlayer is less than 10% of the total. The E scores 

259 were 1, 3 and 5. Impure carbonate and non-carbonate interaction occur in epibolite. 

260 The former has an impure carbonate interlayer that is more than 50% of its total and a 

261 non-carbonate interlayer that is less than 15% of its total, such as the carbonate rocks 

262 with clasolite. The latter has an impure carbonate interlayer that is more than 50% of 

263 its total and a non-carbonate interlayer that is more than 30% of its total, such as 

264 sandstone, conglomerate and igneous rock. The E scores were 7 and 9. Non-carbonate 

265 includes shale and mudstone with scores of 10. Figure 2(C) shows the final 

266 classification for factor E in the study area.

267 Factor I considered the recharge type and intensity. The I classes in the study 

268 area were divided based on the results in Table 1. The recharge intensity refers to the 

269 average rainfall per day. In the study area, precipitation occurs more frequently in the 

270 eastern hills towards the windward slopes than in the western basin area on the 

271 leeward slopes. According to local weather stations, the average daily rainfall was less 

272 than 9.9 mm. In Table 1, the scores of classes I1, I2, I3, and I4 were 4, 6, 8, and 10, 

273 respectively. Figure 2(D) shows the final classification for factor I in the study area.

274 Factor K considered the groundwater runoff modulus. The modulus in most areas 

275 measured between 7~15 , which was less than 1 in the limestone areas. L ∙ 𝑠 ‒ 1 ∙ 𝑘𝑚 ‒ 2

276 The classes of factor K were divided into K1, K2, K3, and K4 and the scores were 3, 5, 

277 8 and 10, respectively. Figure 2(E) illustrates the final classification for factor K in the 

278 study area.

279 The VI was generated using a weighted sum of these five factors. The scores 

280 ranged between 2 and 10. The vulnerabilities were then divided into four classes 
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281 according to Table 1. Figure 2(F) shows the final vulnerability assessment map. As 

282 expected, the vulnerabilities in most areas of Guangxi can be classified as low. The 

283 karst area, however, has high vulnerability, as shown in Figure 2(F). 

284

285 Fig. 2. Classifications for the P, L, E, I, and K factors and the vulnerability assessment results.

286 3.2 Hazard assessment of groundwater pollution

287 In this study, the pollution sources were collected from 2011 to 2014. The 

288 categories of analysis included industrial, mineral, agricultural, and domestic 

289 pollution sources. There were a total of 249 pollution sources, including 99 industrial 

290 and mineral pollution sources, 46 domestic pollution sources, and 104 agricultural 

291 pollution sources. The sources spanned 28 countries but were mostly concentrated in 



ACCEPTED MANUSCRIPT

292 the northeastern portion of the study area. The pollution sources in other countries 

293 were not available. Luzhai County contained 28 pollution sources in total and was 

294 selected to assess the hazard (Figure 3). 

295
296 Fig. 3. Pollution source distribution in Luzhai County

297

298 Buffer analysis in geographical information system was used to evaluate the 

299 influence degrees of pollution sources. The influence scopes and intensities were 

300 scored according to the types of pollution sources (Table 3). Longer distances from 

301 pollution sources lessened the influence degree of the pollution. The scores were 

302 added up when more than one pollution source overlapped (Li et al., 2018). 

303

304 Table 3 Influence scopes and scores of pollution sources
Category Influence scopes Scores
Industrial and mineral pollution source 0-2000 m

2000-4000 m 
4000-6000 m

3
2
1

Agricultural pollution source 0-2000 m
2000-4000 m 
4000-6000 m

5
3
1

Domestic pollution source 0-2000 m
2000-4000 m 
4000-6000 m

8
5
2

305

306 The hazard in Luzhai County was assessed using a buffer analysis method. The 

307 pollution sources’ influence in adjacent countries was also considered. As shown in 

308 Figure 4, the hazard was divided into five classes: very low, low, moderate, high, and 
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309 very high. Areas out of the buffer zone were defined as no hazard areas. Statistically, 

310 50.23% of areas had no hazard and 42.08% had very low hazard. Other pollution 

311 classes made up less than 10% of the sample. They were 4.64%, 2.18%, 0.54% and 

312 0.33% for the classes of low, moderate, high and very high, respectively. The 

313 pollution degree for Luzhai County was optimistic.

314

315
316 Fig. 4. Hazard assessment map for study area

317

318 3.3 Integrated groundwater pollution

319 Using the CCME WQI method, we combined the different indicators into one 

320 index. A total of 30 indicators were integrated, including 8 inorganic regular indexes, 

321 2 organic regular indexes, 16 volatile organic compound non-regular indexes and 4 

322 semi-volatile organic compound non-regular indexes. The groundwater standard of 

323 class III was used as the standard limit to evaluate the excess multiple and the 

324 pollution degree while considering the pollution type and load simultaneously. Table 

325 4 lists the name of each indicator and their standard limit. 

326

327 Table 4 Indicators and standard limits
Category Name Standard limit
Inorganic
(mg/L)

NH4+
As
Cd
Cr6+
Pb

0.05
0.01
0.005
0.05
0.01
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Hg
NO2-
NO3-

0.001
1
20

Organic 
(µg/L)

Trichloromethane 
Tetrachloromethane

60
2

Volatile 
(µg/L)

1,1,1-Trichloroethane
Trichloroethylene 
Tetrachloroethylene
1,2-Dichloroethane 
1,1,2-Trichloroethane
1,2-Dichloropropane 
Tribromomethane
Chloroethylene 
1,1-Dichloroethylene
Chlorobenzene 
o-Dichlorobenzene 
pDichlorobenzene
Methylbenzene
Ethylbenzene
Xylene
Styrene

2000
70
40
30
5
5
100
5
30
300
1000
300
700
300
500
20

Semi-volatile
(µg/L) 

BHC
γ-BHC
DDT
HCB

5
2
1
1

328

329 From a total of 1029 field samples, 374 exceeded the class III groundwater 

330 standards. The main pollutant indicators included NH4+, As, Cd, Pb, Hg, NO2-, 

331 NO3- and HCB. A total of 306 samples were polluted only by one excessive item, 63 

332 samples were polluted by two items, and there were 5 samples polluted by three items 

333 simultaneously. HCB was the highest indicated pollutant and was found in 213 

334 samples. Heavy metal pollution (Hg, Cd, Pb and As) was less, and its components 

335 polluted just 2, 2, 12 and 17 samples, respectively.

336 Figure 5 displays the samples’ pollutant classes, which were calculated using the 

337 CCME WQI method. A total of 655 samples were not contaminated and comprised 

338 63.65% of the total samples. A total of 309 samples belonged to pollution class IV 

339 and were slightly polluted. Fifty-nine samples belonged to pollution class III and were 

340 moderately polluted. Four samples belonged to pollution class II and were heavy 
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341 polluted. Only 2 samples belonged to pollution class I and were severely polluted. In 

342 general, the pollution is less in the study area. The pollutant samples mostly lied in the 

343 karst area where the vulnerability was high.

344
345 Fig. 5. Classification of the field samples

346

347 3.4 Explanatory power evaluation

348 The geodetector method was used to evaluate the explanatory power of the 

349 hazard and vulnerability assessment maps for groundwater pollution in Luzhai 

350 County. For groundwater pollution that is measured using the CCME WQI, the q 

351 values for the hazard and vulnerability assessment maps were 0.378 and 0.144, 

352 respectively. The combined value of hazard and vulnerability was 0.582, which is a 

353 nonlinear enhancement based on Table 2. 

354 Groundwater pollution was determined both by the aquifer’s intrinsic 

355 characteristics—which were relatively static—and the existence of potentially 

356 polluting activities—which were dynamic and easily controlled (Saidi S. et al., 2010; 

357 Saidi S. et al., 2011; Wang et al., 2012). For the polluting activities, various types of 

358 pollution sources were selected in the study, including industrial and mineral pollution 
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359 sources, domestic pollution sources, and agricultural pollution sources. These 

360 pollution sources released different kinds of compounds, which caused the 

361 groundwater pollution. For example, industrial and mineral pollution sources typically 

362 release heavy metals, such as As, Cd, Cr6+, Pb, and Hg. The domestic pollution 

363 sources include NH4+, NO2-, and NO3-. The agricultural pollution sources mainly 

364 released organic compounds and heavy metals. Although there might be other 

365 compounds released by the pollution sources, which were not assessed in the study, 

366 the most important compounds have been included and taken into consideration in the 

367 study area. The explanatory power for the hazard and vulnerability assessment maps 

368 indicated that hazard influenced groundwater pollution 2.6 times more than 

369 vulnerability. Hazard was generated by human activities, while vulnerability reflected 

370 the intrinsic attributes of the hydrogeological characteristics (Andreo et al., 2006). 

371 These results confirm the importance of controlling human impacts on groundwater 

372 protection efforts. 

373 On the other hand, the explanatory power also evaluated the effectiveness of the 

374 hazard and vulnerability assessment maps. The hazard assessment results had a 37.8% 

375 similarity with groundwater pollution, whereas the vulnerability assessment results 

376 had a 14.4% similarity. With respect to their combined effect, the hazard and 

377 vulnerability assessment had a 58.2% similarity with groundwater pollution. The 

378 explanatory power was in high contrast to former research (Shrestha et al., 2016). 

379 Other studies (Torres et al., 2018; Alfy et al., 2017) have also researched the influence 

380 of hydrogeological and anthropogenic factors on groundwater pollution. The main 

381 influential factors in various areas were different, depending on the geology types, the 

382 types of pollutants, the evaluation methods and so on. Han et al. (2016) reviewed the 

383 contamination of water pollution in China and indicated that the major sources of 

384 groundwater pollution included municipal and industrial wastewater discharge and 

385 agricultural fertilizers, which were the crucial pollution sources that were considered 

386 in this article when assessing the hazard. Due to the limited available data, the hazard 

387 assessment only considered the types of pollution sources and the damping effect with 

388 distance. Sudden natural catastrophes, inconsistent operating procedures (Li et al., 
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389 2012), and the pollutant amounts and toxicity (Bai et al., 2012; Zhang et al., 2016) 

390 could also generate hazards. There may be some impact on the explanatory power of 

391 the hazard assessment results. More detailed data could be used to further assess the 

392 explanatory power of hazard on groundwater pollution. 

393

394 4 Conclusions
395 For the vulnerability assessment, the PLEIK method effectively assessed the 

396 vulnerability in covered karst areas, which highlighted the importance of protective 

397 cover and land use. While assessing the hazard of groundwater pollution, 50.23% of 

398 the areas in Luzhai County displayed no hazard. A total of 36.35% of the groundwater 

399 samples were polluted in the study area. The geodetector method evaluated the 

400 vulnerability and hazard assessment maps and assessed their explanatory power for 

401 groundwater pollution quantitatively. The explanatory power for the hazard and 

402 vulnerability assessment maps showed that they have a combined 58.2% similarity 

403 with actual groundwater pollution. Hazard influenced groundwater pollution 2.6 times 

404 more than vulnerability. These results suggest that controlling pollution sources is 

405 more crucial and more effective to prevent groundwater pollution than reducing 

406 vulnerability.
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1. CCME WQI was used to evaluate the integrated groundwater pollutant classes.

2. Geodetector method was used to detect the effect degree of V and H quantitatively

3. Hazard influence on the groundwater pollution was 2.6 times that of vulnerability.
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