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• The direction and strength of the link
between PM2.5 level and their drivers
are analyzed.

• Spatial regression and geographical de-
tector techniques are used.

• A spatial agglomeration effect was iden-
tified in city-level PM2.5 level.

• Population density, industrial structure,
industrial dust, and road density in-
crease PM2.5 level.

• Trade openness and electricity con-
sumption have no significant effect on
PM2.5 level.
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The frequent occurrence of extreme smog episodes in recent years has begun to present a serious threat to
human health. In addition to pollutant emissions and meteorological conditions, fine particulate matter
(PM2.5) is also influenced by socioeconomic development. Thus, identifying the potential effects of socioeconom-
ic development on PM2.5 variations can provide insights into particulate pollution control. This study applied spa-
tial regression and the geographical detector technique for assessing the directions and strength of association
between socioeconomic factors and PM2.5 concentrations, using data collected from 945 monitoring stations in
190 Chinese cities in 2014. The results indicated that the annual average PM2.5 concentrations is 61 ± 20 μg/m3,
and cites withmore than 75 μg/m3were mainly located in North China, especially in Tianjin and Hebei province.
We also identified a marked seasonal variation in concentrations levels, with the highest level in winter due to
coal consumption, lower temperatures, and less rainfall than in summer. Monthly variations followed a “U-
shaped” pattern, with a down trend from January and an inflection point in September and then an increasing
trend from October. The results of spatial regression indicated that population density, industrial structure, in-
dustrial soot (dust) emissions, and road density have a significantly positive effect on PM2.5 concentrations,
with a significantly negative influence exerted only by economic growth. In addition, trade openness and elec-
tricity consumption were found to have no significant impact on PM2.5 concentrations. Using the geographical
detector technique, the strength of association between the five significant drivers and PM2.5 concentrations
was further analyzed. We found notable differences among the variables, with industrial soot (dust) emissions
playing a greater role in the PM2.5 concentrations than the other variables. These results will be helpful in
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understanding the dynamics and the underlyingmechanisms atwork in PM2.5 concentrations in China at the city
level, and thereby assisting the Chinese government in employing effective strategies to tackle pollution.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Air pollution, especially in the formoffine particulatematter (PM2.5),
has become a serious issue not only for developed countries but also for
the developing world (Cheng et al., 2016; Peng et al., 2016). China, the
world's largest developing country, has suffered frequent extreme
smog episodes in recent years. In addition, international headlines
from 2013 onwards report that haze weather has become a common
phenomenon in China (Guan et al., 2014; Rohde and Muller, 2015;
Zhang et al., 2015; S.J. Wang et al., 2017a; Yang et al., 2017; Zhou et al.,
2017). The urbanization rate in China increased from 17.9% in 1978 to
54.8% in 2015 and continues to grow (Wang et al., 2014, 2015, 2016a,
b; Li et al., 2017; Liu et al., 2017). The country's continued urbanization
means thatmore peoplewill live in urban areas, resulting in greater pol-
lutant emissions (NBSC, 2015). The core problems linked to the intense
concentrations of PM2.5 include increasing death rates due to cancer,
reduced atmospheric visibility, and changes to ecosystems and to the
global climate (Brauer et al., 2012; Kan et al., 2012; Madrigano et al.,
2013). Due to its negative impacts on human health, a growing body
of literature has explored the potential drivers of PM2.5 concentrations,
finding that meteorological conditions play an important role in PM2.5

variations. However, in addition to such conditions, PM2.5 concentra-
tions are also influenced by human activities. Therefore, understanding
the characteristics and potential socioeconomic drivers of PM2.5 concen-
trations will be of benefit in the task of improving air quality.

The determinants of PM2.5 concentrations are garneringmuch atten-
tion from scholars globally. A growing number of studies have dedicated
enormous efforts to analyzing the causes of PM2.5. These studies have
found that natural conditions such as temperature, humidity, slope,
ozone concentrations, and wind velocity have varying effects on PM2.5

concentrations. For example, Pateraki et al. (2012) undertook research
on the generation of fine particles, finding that humidity fluctuations
and temperature values ranging from 1.9 °C to 21.7 °Cmaintain a strong
correlation with urban PM2.5 concentrations. He and Lin (2017)
employed the generalized additive model (GAM) to examine the
influencing factors of PM2.5 concentrations variation in the Chinese city
of Nanjing. PM2.5 concentrations variationwas found to be strongly asso-
ciatedwith temperature, pressure, andwater vapor pressure. Although a
linear relationship was identified between wind and PM2.5 concentra-
tions variation, increased wind speeds were not found to cause changes
in PM2.5 concentrations levels. Some scholars have conversely argued
that wind speeds above 2 m/s can decrease PM2.5 exposures (Onat and
Stakeeva, 2013). In addition to natural conditions, recent socioeconomic
impact assessments have established an association between the
concentrations of PM2.5 and socioeconomic determinants including
urban population, urban secondary industry fraction, per capita GDP,
and energy consumption (Paatero et al., 2003; Wang and Fang, 2016;
Lou et al., 2016). For instance, through their analysis of the concentra-
tions of PM2.5 from 2001 to 2010 in China, Lin et al. (2014) found that
population, local economic growth, and urban area are themain driving
factors influencing PM2.5 concentrations. Han et al. (2014) used satellite
data to examine the impact of urbanization on urban PM2.5 concentra-
tions. Their results suggested that urban population and the urban
secondary industry fraction have a strong correlation with urban PM2.5

concentrations. Hao and Liu (2016) used spatial regression to explore
the relationship between PM2.5 concentrations and urban development
in China, showing that vehicles and industry strongly influenced PM2.5

concentrations levels. Hua et al. (2015) suggested that industrial
activities and vehicles were the main contributors to PM2.5 in the

Yangtze River Delta (YRD). Most previous large-scale estimations of
PM2.5 levels have depended on satellite data and satellite aerosol optical
depth (AOD) combing with meteorological parameters (J. Wang et al.,
2010; Kloog et al., 2012). For example, using remote sensing technique,
scholars found that the annual PM2.5 concentrations of most cities
were much higher than 10 μg/m3

, the air quality guideline offered by
the World Health Organization (WHO) (Han et al., 2014; Van et al.,
2015). In addition, Cheng et al. (2016) found that Delhi, Cairo, Xi'an,
Tianjin and Chengduwere the fivemost pollutedmegacities, with annu-
al average PM2.5 concentrations higher than 89 μg/m3. The same study
found that east-central China and the Indo-Gangetic Plain constitute
highly-polluted nesting zones. However, the lack of sustained accuracy
in such satellite data, which uses remotely-sensed AOD as a proxy for
PM2.5 concentrations, frequently misses values because of cloudy or
hazy conditions, making it difficult to estimate the temporal characteris-
tics and spatial distributions of near-ground PM2.5. For this reason, it has
been difficult to identify the characteristics of PM2.5 concentrations in
different time scales for a given region (Liu et al., 2005; Gupta et al.,
2006; Paciorek and Liu, 2009; Hoff and Christopher, 2009). Compared
to satellite data, monitoring data collected from China's National Envi-
ronmental Monitoring Centre (CNEC) shows 24 h PM2.5 concentrations
for 190 cities utilizing 945 monitoring stations. Such data, which has
been collected since 2014 in China, has the potential to reflect the spatial
and temporal (annual average, seasonal, andmonthly) characteristics of
PM2.5 level at both the national scale and for a target region.

Nowadays, a variety ofmodels are available that can be used to iden-
tify the socioeconomic determinants of PM2.5, including econometric
analysis (S.J. Wang et al., 2017b), input-output models (Guan et al.,
2014; Fang et al., 2013), the classical ordinary least squaremodel, spatial
regression (Hao and Liu, 2016), Geographically Weighted Regression
(GWR) (Hu et al., 2013), and land-use regression (Mao et al., 2012).
The merit of spatial model is that it can depict the PM2.5 concentrations
of different cities of spillover effects. So here employ the spatial to ex-
plore the direction of the PM2.5 concentrations determinants. Besides,
mechanism studies have not yet been conducted using the geographical
detector technique for air pollutants. This technique is widely applied in
evaluating the influence of factors which do not need a linear hypothe-
sis to reveal the driving factors behind spatial stratified heterogeneity
(J.F. Wang et al., 2010; Y. Wang et al., 2017). Given this, this present
study used geographical detector technique in order to avoid factors
that should be removed due to collinearity in themodels, and to explore
the spatial correlations between PM2.5 concentrations (usingmonitoring
data) and socioeconomic variables.

Mechanism research on PM2.5 concentrations usingmonitoring data
and the geographical detector technique is rare. Here, we employed data
collected from continuous, year-long monitoring in 190 cities to de-
scribe the spatial and temporal (annual average, seasonal, andmonthly)
distribution of PM2.5 concentrations.We also undertook a spatial regres-
sion and used the geographical detector technique to reveal the direc-
tions and strength of the impact of socioeconomic factors on PM2.5

concentrations. The results of this analysis are beneficial for policy
makers in formulating appropriate measures to enhance air quality.

2. Material and methodology

2.1. Conceptual framework

The main goal of this study was to highlight the influencing mecha-
nisms of PM2.5 levels from a socioeconomic perspective. As such, we
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began by selecting a series of drivers capable of explaining PM2.5 levels.
We then described the spatial-temporal (annual average, seasonal, and
monthly) characteristics of PM2.5 concentrations at the national cities
level, subsequently employing spatial regression to determine the
significances and directions of the drivers. The geographical detector
technique was then utilized in order to explore the magnitude of the
significant drivers in detail. Finally, the mode of action through which
the drivers impact on PM2.5 levels was investigated.

2.2. Data and data sources

The identification of the sources of PM2.5 is a task that has aroused
considerably attention among scholars internationally (Liang et al.,
2016). Previous studies have argued that particulate sources generally
originate from industrial activities, traffic density, electric power plants,
fossil fuels, biomass burning, agriculture activities, and soil dust, as well
as marine aerosols (Squizzato et al., 2012; Barker, 2013; Tiwari et al.,
2013; Wu et al., 2016). In addition, existing studies have also suggested
that human activities lead to energy consumption and emissions, there-
by influencing concentrations levels. Based on the results of these previ-
ous studies, we selected influencing variables referring to economic
growth, population density, industrial structure, industrial soot (dust)
emissions, road density, trade openness, and energy consumption. Per
capita GDP here represented the economic development level, the
secondary industry share represented the industrial structure, foreign
direct investment as a proportion of GDP represented trade openness,
and energy consumption was measured using electricity consumption.

Table 1 shows statistical information for each of the variables, aswell
as the excepted directions of the variables for PM2.5 levels, in accordance
with the findings of previous studies.

2.2.1. Economic growth (GDP)
The impact of per capita GDP (GDP) on PM2.5 concentrations has

been widely discussed in a range of previous studies (Shao et al.,
2016; S.J. Wang et al., 2017b). A number of scholars have found that
PM2.5 concentrations in cities—for instance, in the case of cities in the
Bohai Rim Urban Agglomeration (BRUA)—are negatively correlated
with per capita GDP; scholars have thus argued that this correlation re-
flects the enhanced environmental awareness that comeswith econom-
ic prosperity (Wang and Fang, 2016). Following this previous work, the
hypothesized direction of the relation between GDP and PM2.5 was
negative.

2.2.2. Population density (PD)
Previous studies have found that PM2.5 pollution is greater in more

populated cities as a result of living and production activities and their
link to polluting gas emissions; higher population levels are thus under-
stood to result in greater energy consumption and increased emissions
(Lou et al., 2016). Following the findings of Tong andWang (2014) and
Hua et al. (2015), and in order to avoid obscuring differences in the pop-
ulation size of different administrative districts, we used population
density as a proxy for population scale. The expected direction of the
relation was positive.

2.2.3. Industry structure (IS)
We took the share of secondary industry as a proxy for industrial

structure. Because industrial sectors depend on energy consumption
for profits, industrial activity can generally be expected to increase
PM2.5 concentrations (Wang and Fang, 2016). Previous studies have
also indicated that secondary industries play an important role in
PM2.5 levels (S.J. Wang et al., 2017b). As such, the expected direction
of the relation between IS and PM2.5 levels was positive.

2.2.4. Industrial soot (dust) emission (ISE)
Usually, the large-scale industrywill produce a lot of dust by produc-

tion, transportation and consumption, resulting in dust emissions will
cause serious increases in PM2.5 concentrations. One example of such a
process is cement production, the raw materials for which can enhance
PM2.5 concentrations during both the production and transportation of
cement (Remoundaki et al., 2013). Following Wang and Fang (2016)
and Shao et al. (2016), we used industrial soot (dust) emissions as a
proxy for industrial dust, expecting it to act as a positive indicator.

2.2.5. Road density (RD)
Transportation is one of the most important sources of PM2.5 forma-

tion. Because CO, NO, and SO2 from motor vehicle exhaust contribute to
PM2.5, and referring to previous research by Hua et al. (2015) and Shao
et al. (2016), we used road density as a proxy for traffic intensity. Taking
account of roaddensitywas also beneficial in obtaining possible provincial
variations over time. The expecteddirection of this relationship is positive.

2.2.6. Trade openness (FDI)
Here,we used foreign direct investment (FDI) as a proportion of GDP

as a proxy for trade openness. On the one hand, increased FDI may
improve the technical level of a given city, region, or country, thereby
reducing energy consumption per unit GDP and lowering PM2.5 concen-
trations. Previous studies have, in support of this theory, found that
efficiency gains associated with FDI fully offset emissions growth trig-
gered by economic growth and other drivers (Guan et al., 2014). List
and Co (2000), however, found that FDI maintains the inverse relation
with respect to the environment of the receiving state, meaning that
the investing country may simply transfer high-pollution industries to
the receiving state, thus raising PM2.5 concentrations. Given these diver-
gent positions, the effect of this factor may therefore be either positive
or negative. In the present study,we assume that itmaintains a negative
correlation with respect to PM2.5 concentrations levels.

2.2.7. Energy consumption (EC)
We measured energy consumption using electricity consumption.

Quite simply, the greater the level of electricity consumption, the great-
er the power supply. Previous studies have suggested that coal-fired
power plants produce large amounts of PM2.5 in producing power (Ma
et al., 2014; GBDMAPSWorking Group, 2016). However, the emissions
of PM2.5 will be controlled by reforming the gas treatment facilities in
coal-fired power plants (Sun et al., 2015). As such, theoretically, elec-
tricity consumption might be either positive or negative, and is treated
as such here.

Table 1
Statistical summary of the variables.

Variables definition Symbol Expected direction Min Max Mean Std. dev

Per capita GDP (10000Yuan) GDP − 2.05 20.02 6.780 3.60
Population density (peoples/km2) PD + 17.86 2648.11 528.81 354.12
Urban secondary industry share (%) IS + 9.09 78.93 50.34 9.09
Industrial soot (dust) emission (ton) ISE + 458 536,092 46,723.70 56,571.33
Road density (km/km2) RD + 3.42 41.14 14.97 5.34
FDI as a share of GDP (%) FDI − 0.05 25.83 2.613 3.132
Electricity consumption (10,000 kWh) EC + 4626 13,465,607 1,353,036.12 1,778,135.94

Notes: Data on the seven socioeconomic factors referring to 190 cities of China in the Tablewere derived from the China City Statistical Yearbook, the China Urban Construction Statistical
Yearbook, and the City Statistical Yearbook.
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The PM2.5 concentrations data used in this study was derived from
the urban air quality monitoring sites of the CNEC. This sample covers
190 cities throughout the southeast coastal, central, and northeastern
regions of China, recording 24-hour average PM2.5 concentrations levels
in 2014. In accordance with the definitions set out in GB3095-2012,
herein “monthly average” means the arithmetic average of the mean
concentrations levels of each day in a calendar month; “seasonal aver-
age” means the arithmetic average of the mean concentrations levels
of each day in a calendar quarter; “annual (yearly) average” means
the arithmetic average of the mean concentrations levels of each day
in a calendar year; “spring” refers to the period March to May; “sum-
mer” covers June to August; “autumn” refers to the period September
to November; and “winter” covers December, January, and February.

Data on the seven socioeconomic drivers mentioned above (GDP,
PD, IS, ISE, RD, FDI, and EC) were derived from the China City Statistical
Yearbook, the China Urban Construction Statistical Yearbook, and the
City Statistical Yearbook. All data was collected for the year 2014.

2.3. Methods

2.3.1. Regression analysis
The classical ordinary least square (OLS) model has been widely

used to explore the underlying mechanisms of PM2.5 concentrations.
However, the OLS model does not take into account spatial effects. The
First Law of Geography suggests that all objects on a geographic surface
are related to one another, and that geographic units are more strongly
related to closer units than to more distant units (Tobler, 1970). Such
spatial effects, if ignored, can lead to biased results in relation to poten-
tial factors. As a result, here we used a non-spatial regression model
(OLS) and a spatial regression model in order to estimate the effects of
socioeconomic drivers on PM2.5 concentrations.

OLS is a linear regression model, which can be used to estimate the
linear relationship between dependent and independent variables. In
the model setting, all variables are independent and the spatial proper-
ties of variable data are ignored. The ordinary least squares method is
usually employed in order to estimate coefficients,which can bewritten
as follows:

ys ¼ xsi þ s ð1Þ

where s = 1, …,190, representing the cities in this study; ys is the de-
pendent variable (PM2.5 concentrations); xsi (i = 1, …,7) is the explan-
atory variables, including GDP, PD, IS, ISE, RD, FDI, and EC; β is the
coefficient of the regression model; and εs denotes the random error.

In the spatial model, there are various kinds of spatial models to de-
pict different sources of spillover effects such as spatial error model
(SEM), spatial lag model (SLM), and spatial Durbin model (SDM). Due
to spatial autocorrelationmay exist among variables because of the spa-
tial spillover effects between adjacent regions. This indicates that spatial
autocorrelation with no independent error term may lead to biased or
even misleading conclusions. So a spatial error model (SEM) was used
to report the impact of spatial units on other near units. And the prob-
lem of error term can be solved using a spatial error model. The spatial
error model is generally based on autoregressive model which can be
written as follows:

ys ¼ βxsi þ εs ð2Þ

s ¼
Xn

j¼1

wss þ s ; s % i:i:d 0; 2
! "# $

ð3Þ

where ρ is the spatial autocorrelation coefficient of the error term, and εs
is the error term of the spatial autocorrelation; ws is a diagonal
weighting matrix; μs is the white noise (Table 2 provides the results of
the regression). And get the regression results from the software of
Geoda.

2.3.2. Geographical detector technique
Geographical detector technique, proposed by J.F. Wang et al.

(2010), does not need a linear hypothesis to reveal the driving factors
behind spatial stratified heterogeneity. This means that if a factor con-
tributes to PM2.5, PM2.5 concentrations take on a spatial distribution
similar to that of the given factor. The principle is that if the sum of
the variances of subareas which are classified by the factor is less than
the variance of the whole area, spatially stratified heterogeneity exists,
and the q-statistic can be used to detect influencing factors (Wang and
Xu, 2017). The power of influencing factors I={Ij} to the PM2.5 concen-
trations can be written as:

q ¼ 1−
1

n2PM

Xm

j¼1

nI; j
2
PMI; j

ð4Þ

where q is the power of the influencing factor Ij; Ij (j=1, 2, 3…) are the
influence factors of PM2.5 concentrations, denoted as I = {Ij}. Usually,
the value of q iswithin the range [0,1]. If the value of the q tends towards
1, the stronger the influence of factor Ij is in explaining the distribution
of the PM2.5 concentrations. We therefore first classified the whole
PM2.5 area into three parts (so, here them is 3): a high-level part, a mid-
dle-level part, and a low-level part, based on the influential factors I =
{Ij}. Table 3 provides the threshold of the sub-regions, where n is the
number of the whole study area, nI,j is the number of samples in the
sub-region j of the influencing factor Ij, m is the number of sub-region,
σPM
2 is the variance of the whole area of determinants, σPMI,j

2 is the var-
iance of the sub-region of determinants and (I,j) denotes a sub-regions.
The model was based on the hypothesis σPMI,j

2 ≠ 0, with q ∈ [0,1].

Table 2
Estimation results of regressions.

Coefficient Standard error t/z-Value Pr(N|t |)

Non-spatial model
Intercept 30.9413⁎⁎⁎ 8.79286 3.51891 0.00055
GDP −1.28969⁎⁎⁎ 0.435073 −2.96431 0.00344
PD 0.00841898⁎⁎ 0.00420341 2.00289 0.04669
IS 0.367536⁎⁎ 0.156077 2.35483 0.01961
ISE 0.000112743⁎⁎⁎ 2.57823e−005 4.3729 0.00002
RD 0.643343⁎⁎ 0.255568 2.5173 0.01270
FDI −0.131655 0.428757 −0.307061 0.75915
EC 2.10675e−007 1.02649e−006 0.205239 0.83762
R-squared: 0.425846; adjusted R-squared: 0.195740; F-statistic: 7.50169; P-value:
0.00000

Spatial model
Intercept 29.5198⁎⁎⁎ 7.34947 4.01659 0.00006
GDP −0.667509⁎⁎ 0.399128 −1.67242 0.04444
PD 0.0102116⁎⁎⁎ 0.00364666 2.80027 0.00511
IS 0.311775⁎⁎ 0.127681 2.44184 0.01461
ISE 7.05664e−005⁎⁎⁎ 2.11726e−005 3.33291 0.00086
RD 0.480104⁎⁎ 0.217422 2.20817 0.02723
FDI −0.374594 0.376278 −0.995525 0.31948
EC 5.37641e−007 8.76951e−007 0.613079 0.53982
R-squared: 0.634294; log likelihood: −781.779621; (AIC): 1579.56; lambda:
0.00000; Breusch-Pagan test: 0.17217; P-value: 0.00000

⁎⁎⁎ The 1% level of significance.
⁎⁎ The 5% level of significance.
⁎ The 10% level of significance.

Table 3
The geographic influencing factors for PM2.5 concentrations (μg/m3).

Threshold I1 (104Yuan) I2 (persons/km2) I3 (%) I4 (104 tons) I5 (km/km2)

Low level ≦5 ≦500 ≦45 ≦5 ≦10
Middle level 5–10 500–1000 45–55 5–10 10–20
High level ≧10 ≧1000 ≧55 ≧10 ≧20

I1: per capita GDP; I2: population density; I3: urban secondary industry share; I4: industrial
soot (dust) emission; I5: road density.
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3. Results

3.1. The spatial-temporal pattern of PM2.5 concentrations

Fig. 1a shows that the annual mean PM2.5 concentrations of the 190
Chinese cities that made up the study area in 2014 is 61 ± 20 μg/m3.
We found that 88 cities maintained levels beyond this mean level, and
only 14 cities conformedwith the National Ambient Air Quality Standard
(NAAQS, 2012), which proscribes an annual mean PM2.5 concentrations
of 15 μg/m3 and 35 μg/m3 for level 1 and level 2, and an annual mean of
under 35 μg/m3 for level 2. Results show that 36 cities maintained PM2.5

levels beyond the 75 μg/m3mark,which is 2.6 times the level that denotes
“good health” in cities (i.e., 35 μg/m3). The cities with annual mean PM2.5

levels above 75 μg/m3 were mainly situated within the Beijing-Tianjin-
Hebei urban agglomeration. Shijiazhuang and Xingtai of Hebei province
were found to have an annual mean PM2.5 level even greater than 130
μg/m3. The “good health” category took in cities such as Sanya, Lasa, and
Zhoushan, which are principally located in south-east coastal areas and
the provinces of Yunnan, Xizang, and Inner Mongolia.

In addition, we utilized the Moran's I index in order to examine the
spatial autocorrelation of the dataset. The Global Moran's I value was
0.2762, which suggested a positive autocorrelation of annual mean
PM2.5 concentrations. In addition, we also calculated Local Moran's I,
the results of which showed a detailed local pattern of spatial clustering

in relation to changes in PM2.5 concentrations (Fig. 1b). High-high clus-
ters weremainly distributed in the northern provinces of China, includ-
ing Beijing, Tianjin, Hebei, Shaanxi, Shanxi, Henan, Hubei, Anhui, and
Shandong. In contrast, low-low clusters were mainly located in the
southeast provinces of China, including Xizang, Sichuan, Yunan,
Guangxi, Hainan, Guangdong, and Fujian. The 17 (of the 190 total) cities
located in the province of Guangdong accounted for 59% of the total
number of low-low cluster cities.

Obvious seasonal features are present in the data (Fig. 2), with the
highest mean PM2.5 level in 2014 occurring in the winter, and the lowest
level appearing in the summer. Results show that 23 cities had mean
PM2.5 levels in excess of 130 μg/m3 during the winter, while 60 cities
had mean PM2.5 levels under 35 μg/m3 in the summer. The four seasons
can thus be ranked in terms of average PM2.5 values in the following
order: winter (89 μg/m3), autumn (54 μg/m3), spring (53 μg/m3), and
summer (43 μg/m3). However, for cities located in desert-like region in
Northwest andWest-Central China, the most polluted season was spring
and not winter due to sand dust storms (Zhao et al., 2016). For example,
Korla city in Xinjiang province recorded 168 μg/m3 in spring and only 77
μg/m3 in winter. In contrast, there were only 3 cities—Sanya, Lasa, and
Zhoushan—with mean PM2.5 level under 35 μg/m3 for all four of the sea-
sons. There were 6 cities—Xingtai, Shijiazhuang, Baoding, Handan,
Hengshui, and Tangshan, which all belong to Hebei province—with
mean PM2.5 levels in excess of 75 μg/m3 from spring to winter.

Fig. 1. Spatial distribution of (a) annual average PM2.5 concentrations (μg/m3), and (b) Local Moran's I.

Fig. 2. Spatial distribution of PM2.5 concentrations (μg/m3) in (a) spring, (b) summer, (c) autumn, and (d) winter in China's major cities in 2014.
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Monthly variations in average PM2.5 concentrations presented a U-
shaped pattern, with a down trend from January to May and a stable
period from June to September, followed by an increasing trend from
October to December (Fig. 3). Average PM2.5 concentrations for the
190 Chinese cities that make up the study area remained, in 2014, be-
tween 35 μg/m3 and 75 μg/m3 for 9 months of the year, in September
sinking below 35 μg/m3 and in January and February rising to above
75 μg/m3. In addition, 29 citiesmaintained average PM2.5 concentrations

exceeding 75 μg/m3 for more than 6 months of the year; these cities
were predominantly located in Hebei and Shandong provinces. The 25
cities that maintained average PM2.5 concentrations under 35 μg/m3

for more than 6 months of the year were mainly located in the south-
eastern coastal areas and the provinces of Yunnan, Xizang, and Inner
Mongolia (Fig. 4).

3.2. Factors influencing PM2.5 concentrations

In order to understand the effect of socioeconomic indicators on
PM2.5 concentrations, this paper employed both non-spatial and spatial
model. Besides, both spatial error model (SEM) (P= 0.00000) and spa-
tial lag model (SLM) (0.00000) pass the Lagrange multiplier. However,
the robust Lagrange multiplier of SEM (P = 0.00000) is better than
the value of robust Lagrange multiplier with SLM (P = 0.00015), so
here choose SEM as the spatialmodel. The results of the regression anal-
ysis are showed in Table 2.

The results of the non-spatial model indicated that PD, IS, RD, ISE,
and GDP significantly influenced PM2.5 concentrations at the national
scale in China. In addition, with the exception of GDP, which showed a
negative direction, the relationship between remainder of the signifi-
cant factors and PM2.5 concentrations were all positive. FDI and EC
were found to have no significant effect on PM2.5 concentrations. A spa-
tialmodel was also used to ensure that potential spatial effects were not
ignored, and the results of the spatial model (R2 = 0.634) were more
significant than those of the non-spatialmodel (R2=0.426). The results
of the spatial regressionmodel showed that PD, IS, RD, ISE, GDP correlated
significantly with PM2.5 concentrations, and that FDI and EC were not

Fig. 3. Statistical variations in monthly PM2.5 concentrations (μg/m3).

Fig. 4. The spatial distribution of monthly PM2.5 concentrations (μg/m3) in China's major cities in 2014.
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significant. After identifying the significances and directions of influence
of the potential indicators on PM2.5 levels, the next step was to explore
the magnitude of the significant indicators.

We employed the geographical detector technique in order to eval-
uate the effect of determinants on PM2.5 levels. First, cities were divided
into three sub-regions according to each factor's original value. The
thresholds of the sub-regions for these detectors are shown in Table 3.
In order to examine the relationship between per capita GDP and
PM2.5 concentrations, the 190 cities that made up the study area were
placed in categories of “less than 50 thousand Yuan,” “between 50 and
100 thousand Yuan,” and “larger than 100 thousand Yuan.” We also
classified the 190 cities into those with “0–500 persons/km2,” those
with “500–1000 persons/km2,” and those that were “larger than 1000
persons/km2,” in order to better understand the relationship between
urban population size and PM2.5 concentrations. In order to understand
the relationship between the share of secondary industry and PM2.5

levels, the cities were again divided into three groups, this time based
on their respective shares of secondary industry—i.e., “less than 45%,”
“45–55%,” and “more than 55%.” In addition, cities were also classified
into three groups in terms of industrial soot (dust) emissions—namely,
“less than 50 thousand tons,” “between 50 and 100 thousand tons,” and
“larger than 100 thousand tons.” Finally, we divided cities into three cat-
egories based on their road density—“less than 10 km/km2,” “between
10 and 50 km/km2,” and “larger than 50 km/km2”—in order to reveal
the nature and extent of the correlation between transportation and
PM2.5 level. Their distributions are displayed in Fig. 5.

Using the geographical detector technique, we then calculated the
power of determinant (q) values, in order to determine the strength of
the significant indicators influencing PM2.5 levels (Fig. 6). As showed
in Fig. 6, the q value of the factors was between 0.0213 and 0.1112,
showing a marked difference that can be ranked as follow: ISE

(0.1112) N IS (0.0499) N PD (0.0465) N RD (0.0221) N GDP (0.0213).
The results indicate that industrial soot (dust) emissions, which had
the highest q value, can predominantly explain the spatial heterogene-
ity of PM2.5 concentrations, followed by the share of secondary industry
and the population density. Road density and per capita GDP proved to
have a weak explanatory influence.

The results of the spatial regression model and the geographical de-
tector technique paint a clear picture of themechanisms underlying the
uneven distributions of PM2.5 concentrations at a national scale in China.
First, the industrial soot (dust) emission was found to have a marked,
strong influence on PM2.5 concentrations in China, implying that indus-
trial soot (dust) emissions are the most important driver in increasing
PM2.5 concentrations.Wang and Fang (2016) have previously suggested
that PM2.5 concentrations maintain a positive relationship with the
building industry. Building and related industries such as cement, iron,

Fig. 5. Maps of six factors in relation to PM2.5 concentrations (μg/m3) in the major cities of China in 2014.

Fig. 6. The power of determinant (q) for the 5 factors guiding the PM2.5 concentrations
effect.
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and steel both directly generate smoke and dust andwere also high-en-
ergy-consuming sectors.

Second, the spatial regression results suggest that the share of sec-
ondary industry correlated significantlywith PM2.5 levels, a relationship
reflected in a higher q value for this variable (0.0499). Similar findings
have been generated by previous studies, which have found the propor-
tion of secondary industry to positively influence average PM2.5 levels
(Hao and Liu, 2016), and exert a stronger influence than transportation
or agricultural factors in the accumulation phase of PM2.5 during pollu-
tion episodes (Lou et al., 2016). The results from an analysis of input-
output framework indicated that as the “world's manufacturing hub”,
China's construction, metal, and machinery production sectors were
the industrial sectors driving the greatest changes in PM2.5 emissions
(Guan et al., 2014; Guan and Reiner, 2009).

Third, the level of population density contributed a rather promi-
nent, positive influence in relation to PM2.5 concentrations levels in
China, generating a q value of 0.0465. Previous studies have argued
that anthropogenic emissions are the main contributors to haze pollu-
tion. A 1% increase in population density could, scholars have argued,
cause a 0.214% rise in the daily increase rate of PM2.5 (Zhao et al.,
2009; Han et al., 2014; Lou et al., 2016). The results of this study indicate
that population density played a significant role in PM2.5 concentrations
in the long term and at the national scale in China in 2014.

Fourth, road densitywas found to exert a positive influence on PM2.5

concentrations in China, with results showing a q value of 0.0221. Road
density plays an important role in transportation, and is an important
reflection of an area's economic level. Lou et al. (2016) found that the
impact of vehicle use cannot be ignored in relation to the accumulation
phase of PM2.5 during pollution episodes in China. Li et al. (2014) also
explored the relationship between transportation and PM2.5 concentra-
tions, suggesting that automobile exhaust emission contributed to 22%,
25%, and 16% of PM2.5 emissions in Beijing, Shanghai, and Tianjin, re-
spectively. The larger the roaddensity, the greater vehicle traffic is likely
to be; as a result, increasing roaddensity risks increasing automobile ex-
haust emissions, an issue that must be raised in relation to increasing
PM2.5 concentrations in China.

Finally, per capita GDP was found to contribute a small negative in-
fluence in relation to PM2.5 levels in China, with a q value of only
0.0213. It is therefore difficult to describe GDP as a driver of PM2.5 con-
centrations at the national level. Previous studies have argued that in 43
out of 53 cities in the BRUA, PM2.5 concentrationsmaintained a negative
relationship with per capita GDP (Wang and Fang, 2016). Supporting
the findings listed above, the results of this paper also demonstrated
the existence of a negative correlation between per capita GDP and
PM2.5 level across sub-regions. This may be because the higher per
capita GDP is, the greater environmental awareness, a factor which in
turn might reduce PM2.5 concentrations.

4. Discussion

A better understanding of potential socioeconomic drivers of PM2.5

concentrations is beneficial to policy makers in the task of formulating
pollution control strategies and improving air quality. Using spatial re-
gression model and the geographical detector technique, the results of
this study highlight the important role that socioeconomic factors play
in determining PM2.5 concentrations levels. The results revealed the dif-
ferent strength of a range of socioeconomic factors that influence the
distribution of PM2.5 concentrations, providing a more detailed analysis
through the use of monitoring data at a national scale.

Previous studies suggested that there was a U-shaped relationship
between per capita GDP (GDP) and PM2.5 concentrations, while the
other found an inverted U-shaped one (Shao et al., 2016; S.J. Wang et
al., 2017b). However, our results indicate a negative influence of per
capita GDP (GDP) on PM2.5 concentrations. Similar study is also taken
by Wang and Fang (2016). Therefore, China should continue to main-
tain sustained and stable economic growth to improve the public

environmental awareness to reduce pollution behaviors. Even previous
studies have argued that large cities pose advantages in terms of pollu-
tion disposal, and that a higher population density can therefore be
helpful in improving the urban environmental (Stone, 2008), our find-
ings contribute to the research which argued a significant positive rela-
tion between population density and PM2.5 concentrations (Zhao et al.,
2009; Han et al., 2014); as a result, government in China should contin-
ue to promote sustained population urbanization (Wang and Liu, 2017).
Previous researches argued that secondary industry and associated en-
ergy consumption can be linked to the production and emission of a
range of pollutants (Han et al., 2014; Zhao et al., 2014; Ma and Zhang,
2014; Cheng et al., 2016; S.J. Wang et al., 2017b), at present, the share
of secondary industry shows a similar result which has a positive rela-
tion with PM2.5 concentrations. Thus, China should enhance technology
progress, reduce the share of high-energy-consuming industries and
greatly develop the third industry. The industrial soot (dust) emission
is here shown to positively affect PM2.5 concentrations which contrib-
utes to the research which show a positively relationship between
building industry and PM2.5 concentrations (Wang and Fang, 2016).
Similar to previous research suggested that the development of the traf-
fic network brought about significant additive effects in relation to re-
gional smog pollution (Shao et al., 2016), in this study, result of
regression on road density also showed a positive impact on PM2.5 con-
centrations. In order to reduce emissions, the government should intro-
duce policy of restrictions widely, while increasing the production of
new energy vehicles and encouraging residents shift from private
motor vehicles to public transport (Redman et al., 2013). There are pos-
itive (Guan et al., 2014) and negative (List and Co, 2000) statements
about the impact of FDI on PM2.5 concentrations. However, our results
show that FDI does not have influence on PM2.5 concentrations. In
China, electricity is generated from fossil and non-fossil fuels. Electricity
generated from non-fossil energy which including Hydro, Nuclear, and
Wind firstly reached over 25% in 2014 based on the data from China
Electricity Council (CEC, 2015). In addition, Sun et al. (2015) discussed
that by using the wet electrostatic precipitator (ESP) technology
power plant can control the emissions of PM2.5 efficiency. Hao et al.
(2007) identified the effect of power plant emissions on air quality in
Beijing, the results indicated that emitted by power plants is 11% of
the total PM10 emissions in Beijing but the average contributions to am-
bient concentrations were 0.9%. Moreover, the average concentration
increments of PM10 reduce by 86% from 2000 to 2008, by the controlled
measures such as fuel substitution, flue gas desulphurization (FGD),
dust control improvement and flue gas denitration. Hence, power plants
emissions have no great influence on air quality especially for the effect
on PM. Similar study is also taken by Chen et al. (2003). Thus, there was
no significant relationship between electricity consumption and PM2.5

concentrations in the present study.
It is important to discuss, however, the results from the geographical

detector technique may be affected by some factors. For example, the
thresholds of socioeconomic factors are subjective to some degree
which will influence the impact on PM2.5 concentrations. Despite
these limitations, our findings are helpful in the task of formulating pol-
icies in order to improve air quality.

Overall, environmental protection is led by governments and pro-
moted by academia and corporations (Liang et al., 2016). As such, with-
out scientific city planning, profound academic research, organizational
support, and air pollution will be difficult to solve. Does an academic
worker, future study of this issue is therefore vitally important, scholars
should pay attention to the influence of the interaction between deter-
minationswhichwill benefit to understand the determinations of PM2.5

concentrations in a more comprehensive perspective.

5. Conclusions

The results of the study indicate annual average PM2.5 concentra-
tions of 61±20 μg/m3 in cities in China. Citeswith PM2.5 concentrations
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of more than 75 μg/m3 were mainly located in northern and northeast-
ern China. In addition, PM2.5 concentrations showed notable seasonal
variability, with the highest PM2.5 level occurring during the winter
and the lowest during the summer. Monthly variations were found to
conform to a U-shaped curve, and the annual distribution of average
PM2.5 concentrations levels in China showed positive spatial depen-
dence characteristics. High-high clusters weremainly found to be locat-
ed in the Beijing-Tianjin-Hebei-Shandong region, and low-low clusters
were situated in Fujian-Guangdong-Hainan-Guangxi-Xizang.

The factors underlying the uneven distribution of PM2.5 concentra-
tions in the 190 cities addressed in this studywere investigated. Our re-
sults suggest that population densities, the share of secondary industry,
industrial soot (dust) emissions, and road density all significantly posi-
tively influenced PM2.5 concentrations, while per capita GDP exerted a
significant negative influence. In contrast, FDI and electricity consump-
tion did not demonstrate a significant relation to PM2.5 concentrations
at the national scale. Besides, the findings also indicated that industrial
soot (dust) emissions play the most important role in stimulating
PM2.5 concentrations levels. Therefore, industrial soot (dust) emissions
were thus the dominant influencing factor underlying China's PM2.5

concentrations, followed by the share of secondary industry, and popu-
lation density. While road density and per capita GDP showed smaller
influence of PM2.5 concentrations than those of other factors.
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