
sustainability

Article

Spatial Layout of Multi-Environment Test Sites:
A Case Study of Maize in Jilin Province

Zuliang Zhao 1,2,† ID , Liu Zhe 1,2, Xiaodong Zhang 1,2,*, Xuli Zan 1,2, Xiaochuang Yao 3 ID ,
Sijia Wang 1,2, Sijing Ye 4, Shaoming Li 1 and Dehai Zhu 1,2

1 College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China;
zlzhao@cau.edu.cn (Z.Z.); liuz@cau.edu.cn (L.Z.); zanxuli95@163.com (Xl.Z.); wangsj@cau.edu.cn (S.W.);
lshaoming@sina.com (S.L.); zhudehai@263.net (D.Z.)

2 Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture,
Beijing 100083, China

3 Satellite Data Technology Division Institute of Remote Sensing and Digital Earth, CAS,
Beijing 100093, China; yaoxc@radi.ac.cn

4 State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University,
Beijing 100875, China; yesj@bnu.edu.cn

* Correspondence: zhangxd@cau.edu.cn; Tel.: +86-1390-113-3526
† Current address: Department of Computer Science, The City College of New York, New York, NY, USA.

Received: 9 April 2018; Accepted: 26 April 2018; Published: 4 May 2018
����������
�������

Abstract: Variety regional tests based on multiple environments play a critical role in understanding
the high yield and adaptability of new crop varieties. However, the current approach mainly depends
on experience from breeding experts and is difficulty to promote because of inconsistency between
testing and actual situation. We propose a spatial layout method based on the existing systematic
regional test network. First, the method of spatial clustering was used to cluster the planting
environment. Then, we used spatial stratified sampling to determine the minimum number of test
sites in each type of environment. Finally, combined with the factors such as the convenience of
transportation and the planting area, we used spatial balance sampling to generate the layout of
multi-environment test sites. We present a case study for maize in Jilin Province and show the
utility of the method with an accuracy of about 94.5%. The experimental results showed that 66.7%
of sites are located in the same county and the unbalanced layout of original sites is improved.
Furthermore, we conclude that the set of operational technical ideas for carrying out the layout of
multi-environment test sites based on crop varieties in this paper can be applied to future research.

Keywords: spatial clustering; spatial stratified sampling; Multi-environment; maize

1. Introduction

Variety regional test, as a key to new crop variety performance and market prospects, has an
irreplaceable role in breeding [1]. Since 2000, United States constructed a regional test network based
on hundreds of test sites to represent almost all types of planting environments [2]. China has also
built a systematic regional test network [3–5]. To accurately assess each variety within 2–3 years, every
test site must be highly representative of planting environments, which cover several elements such as
weather, soil, terrain, biological factors, etc., called multi-environments. However, regional test results
are still inconsistent with actual crop results. An important reason for this result is that neither the
number nor the locations of test sites could adequately represent the multi-environments.

Clustering, a fundamental method in regionalization based on multi-environments, has been used
in maize planting environments for different applications. To deal with the sparse data from observed
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stations such as meteorological data, previous studies can be divided into two major categories: (1)
studies that focus on environments clustering of the site itself, for instance, ecological and climatic
factors limiting maize production including drought [6–8], sunshine [9], insufficient accumulated
temperature [10], high temperature heat damage [11], and terrain conditions [12]; and (2) studies that
build index system for clustering based on transferring the observed station data mainly on calendar
time into the regular grid data by spatial interpolation method [13–18]. In fact, the environmental
conditions of phenophase have a greater impact on crop varieties.

The accurate prediction of new varieties would be increased by the accumulated data from
the same test sites for years. Therefore, selecting suitable test sites is a prerequisite for successful
testing. The factors affecting the selection of test sites are not only limit to multi-environments [19,20],
but also include flat terrain, uniform fertility, good irrigation, drainage conditions, and convenient
transportation [21]. Currently, the existing system mainly concerns representativeness, stability, and
yield of every site. The study results from researchers whom mainly focus on the representativeness,
stability, and area discrimination of every site and rarely consider the planting area [22] are difficult
to apply.

Planting environmental factors, as the geographical objects, usually have a certain spatial
correlation. The traditional sampling methods could not apply to planting environment. Spatial
sampling algorithms that are very popular [23–25] are seldom used in test site layout. In some
previous practical applications [26–29], sites were selected based on expert knowledge. However,
as the theoretical research continues to deepen in the fields of spatial sampling algorithms and spatial
autocorrelation algorithms, researchers began to use spatial sampling models to optimize the sampling
results to ensure the accuracy and avoid the bias caused by the subjective judgment.

In this paper, we propose a three-stage spatial layout method: (1) based on meteorological data,
soil nutrient data, and topographical data during the phenophase period, we clustered the planting
environment by spatial clustering method; (2) we used spatial stratified sampling to determine the
minimum number of test sites in each type of environment; and (3) combined with factors such as the
convenience of transportation and the planting area, the layout of multi-environment test sites was
constructed according to spatially balanced sampling method. We take maize in Jilin Province, one of
the main maize producing areas, as a case study.The experimental results were compared with existing
sites to verify the availability of our method.

2. Materials and Methods

2.1. Index System Construction

The selection of indicators is the fundamental step for environmental recognition. In this paper,
we use indicators as a theoretical basis for the layout of maize variety regional test sites which are
used to select new varieties that are not only suitable for planting in different environments but also
stable and high yield. The first principle of selecting indicators is the ecological factors that have a
great impact on maize production but are independent from each other. The limiting factors of maize
production mainly include cultivation and planting techniques, ecological and climatic factors, seed
variety, soil, and biological stress [30]. Here, we use the following four ecological and climatic factors
to build the indicator system: let {n,i} denote the days and index in grown period.

1. Accumulated temperature (AT) which refers to the accumulation daily average temperature (t)
from sowing to maturity is formulated as:

AT =
n

∑
i=1

ti subject to : ti ≥ 10 ◦C (1)
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2. Accumulated Precipitation (AP) which refers to accumulation of precipitation during whole
grown period is formulated as:

AP =
n

∑
i

Pi (2)

Pi refers to daily i precipitation (units:mm)
3. Cumulative Sunshine Hours (CSH) which refers to accumulation of sunshine hours during whole

grown period is formulated as:

CSH =
n

∑
i

Si (3)

4. Elevation and Slope

2.2. Data Pre-Processing

In this study, meteorological data were provided by National Meteorological Center of China.
The phenological data of spring maize and summer maize were obtained from China crop growthand
farmland soil moisture data were provided by the National Meteorological Information Center of China
and the China Ministry of Agriculture. Meanwhile, we collected some survey data from Agro-Seed
Industry Companies. The national geography data used in this study were 1:4 million scale provincial
and county administrative division vector data. The slope data came from the DRM (Shuttle Radar
Topography Mission) 90 m resolution DEM data [31]. The distribution of test sites and weather stations
in Jilin Province [32] is shown in Figure 1.

Figure 1. Test sites and weather stations in Jilin Province.
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We used the Global Moaran’s I index and Z points to measure the spatial autocorrelation of each
indicators. Positive and negative Maran’s I index values represent the corresponding positive and
negative correlations of indicators. If Z points > 1.96, the spatial object is aggregated. If Z points
< −1.96, the spatial object is decentralized [33]. We used the normal QQ plot to see if the data are
normally distributed, and normalized the data using Equation (4).

Z =
x−min(X)

max(X)−min(X)
(4)

where Z denotes the normalized value of each pixel (x), and min(X) and max(X) denote the minimum
and maximum values of all pixels (X) before normalization, respectively.

2.3. Spatial Clustering

We proposed an integrated clustering algorithm for spatial attributes based on ISOData
method [34,35], where the implementation is in three phases. (1) Cluster pedigree maps: R2 and
semi-R2, are used to evaluate the clustering results and determine the number of clusters. (2) ISOData
clustering algorithm is used for the planting environment. (3) Spatial continuity adjustments are made
according to spatial adjustment rules. Partitions obtained have as many differences between classes as
possible, small intraclass differences, and spatial continuity.

Four criteria for determining the number of clusters based on pedigree maps are as follows: (1)
The distance between the centres of gravity are as far as possible. (2) The number of classes must meet
practical purposes. (3) Practical purposes lead to the number of clusters. (4) The results obtained by
different clustering methods should have the same class. Assume that sample size of n is divided into
k categories, as C1, C2, . . . , Ck. nt denotes the number of samples in Class Ct. Let {Ẋt, Xt

i } denote the
center of gravity and the i-th (i = 1, . . . , nt) sample of Ct. R2

k is defined as follows:

R2
k = 1− ∑k

t=1 Wt

T
(5)

where Wt = ∑nt
t=1(Xt

i − Ẋt)2 and T = ∑k
t=1 ∑nt

i=1(Xt
i − Ẋt)2. We use R2

k to evaluate the performance of
the clustering with k clusters.The larger R2

k , the better performance based on k clusters. We also choose
the semi-R2 in this paper:

semi-R2
k = R2

k+1 − R2
k (6)

A larger semi-R2
k means a better performance of K+1 clusters.

Two spatial data adjustment rules for the raster data are defined as follows. Scenario 1: Other
clusters distribute sporadic in a certain cluster. We use area threshold to determine whether the
sporadic areas are retained. Scenario 2: the areas neighbor multiple clusters. Here, we calculate
the difference between this area and all neighboring clusters and merge with the nearest one. The
difference value D is defined as:

D =

√
∑n

i=1(Ẋi − Ẏi)2

n
(7)

where Ẋi denotes the mean of the i-th attribute of class of this area and Ẏi denotes one of the near
cluster. n is number of attributes of one class.

2.4. Sample Strategy

We used a spatial sampling model proposed by Zhao et al. [32]; in this study, the relationship
between the number of test sites x and sampling accuracy is defined as:

x =
(∑ WhSh

√
Ck)∑(WhSh√

ch
)

y + 1
n ∑ WhS2

h

(8)
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The number of samples in each layer is calculated as the following formula:

nh =
WhSh/

√
Ch

∑ WhSh/
√

Ch
× n (9)

where N is the total number of grid samples, n is the number of test sites, h is the planting environment
class, Nh is the number of samples in the h type of planting environments, Wh = Nh

N is the weight of h
type of planting environments, Sh is true standard deviation of the h type of planting environments,
and Ch is the cost of investigating a single sample of a planting environment.

3. Results

3.1. Data Processing

Moran’s I index of all three indicators is positive, which means all of them have spatial
autocorrelation. The Z points are all greater than 1.96, indicating that the spatial distributions of the
factors are clustered and the reliability is high (Table 1). Hence, we use statistical spatial interpolation
for all three indicators.

Table 1. The Moran’s I index, Variance, and Z points of the three indicators.

Indicators Moran I Variance Z points

AT 0.531548 0.006411 6.951109
AP 0.656345 0.006324 8.567889

CSH 0.685310 0.006488 8.818582

(a) (b)

(c)

Figure 2. The normal plots for AT, AP and CSU of the whole growing period: (a) AT; (b) AP;
and (c) CSH.

It can be seen in Figure 2 that all three factors are close to the normal distribution and the
mathematical exceptions are unknown. Thus, we used the Ordinary Kriging method to interpolate AP
and CSH. As the temperature is reduced by 0.6 ◦C for each 1000 m increased in elevation, we used
Cokriging method to consider elevation for AT. The normal transformation parameters were not set
and the grid resolution is 5000 m (Figure 3).
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(a) (b)

(c) (d)

Figure 3. Spatial Distribution of indicators: (a) AT raster by Cokriging interpolation method
Considering Elevation; (b) AP raster by Ordinary Kriging method interpolation; (c) CSH raster by
Ordinary Kriging method interpolation; and (d) slope of Jilin Province at 90m resolution.

3.2. Multi-Environments Clustering

We divided the planting environments into 2–9 categories, and calculated the R2 to evaluate the
effect of clustering. The R2 and semi-R2 for different numbers of classes are shown in Table 2.

Table 2. R2 and semi-R2 for different numbers of clusters.

Number of Clusters R2 semi-R2

9 0.926
8 0.911 0.015
7 0.904 0.007
6 0.891 0.013
5 0.880 0.009
4 0.826 0.054
3 0.787 0.039
2 0.663 0.124

We found R2 are all around 0.9 with no significant difference using more than five clusters.
Furthermore, it is largest at four clusters, thus we selected five as the number of clusters to divide the
planting environments (Figure 4).
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Figure 4. Preliminary classification results.

We used spatial continuity adjustment rules in the planting environment of Jilin Province as a
case study. Two methods are used to adjust planting environment (Figure 5).

(a)

(b)

Figure 5. Spatial continuity adjustment: (a) Sporadic distribution of other class (red middle) in a
certain class (green background). They would be adjusted directly into the adjacent major categories.
(b) A region (red upper) is adjacent to more than one class (purple upper and green background) at the
same time. Thus, the two types of minimum values are classified into one. The colors filled in the grids
represent the same clusters as in Figure 4.



Sustainability 2018, 10, 1424 8 of 13

Maize planting environmental divisions is shown in Figure 6.

Figure 6. Maize planting environmental divisions.

As a result, combining geography and actual conditions, the planting environment in Jilin Province
is divided into five districts: High Altitude Forest area of the Changbai Mountain (HAFCM), Low
Altitude Forest area of the Changbai Mountain (LAFCM), Eastern part of the mountain Agriculture and
Forestry Area (EAF), Central Plains Agricultural (CPA), and Western plain Agricultural and Pastoral
Area (WAP).

3.3. Test Sites Layout

The layout of test sites based on multi-environments in Jilin Province mainly considers the
following three issues: (1) the minimum number of test sites; (2) the number of sites for each type of
planting environment; and (3) the site locations. Test sites layout consists of four steps:

Step 1. In Jilin Province, in addition to the site’s ability to fully represent the different regional
planting environment, the following factors should be considered: the distance to roads, and the total
planted area. We use the national and provincial road data to calculate the degree of convenience
for traffic.

Step 2. Using Equation (8), we can conclude that at least 25 sites should be deployed to meet
the sampling accuracy requirements (error = 0.05). In this study, we also considered that the cost of
single-sample surveys of all types is equal. According to Equation (9), we obtained the number of each
type: N(HAFCM) = 5, N(CPA) = 5, N(LAFCM) = 4, N(WAP) = 5, andN(EAF) = 6.

Step 3. A probability grid, which was used for site location, was constructed (Figure 7) based
on following three factors: (1) representation of the planting environment (pdist): the distance from
the sample to the cluster center; (2) planting area (area); and (3) road distance (roaddist). Based
on the expert knowledge, the weights of pdist, area, and roaddist in Jilin Province were set to:
asw(pdist) = 0.1, w(area) = 0.8, and w(roaddist) = 0.1. The calculation formula for the probability raster
(prb) is:

prb = (
pdist

max(pdis)
× w(pdist) +

area
max(area)

× w(area) + [1− roaddist
max(roaddist)

]× w(roaddist))× slope (10)
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Figure 7. Probability grid. The colors represent probability calculated by Equation (10).

Step 4. We used spatially balanced sampling to set up a testing site for each type of planting environment.
(Figure 8)

Figure 8. Layout of test sites.

The sample relative accuracy calculated using Equation (8) is 94.5% when the number of test sites
x = 25.
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4. Discussion

4.1. Clustering Attribute Statistics

The statistics of five types of planting environment are shown in Table 3.

Table 3. Statistics of five types of planting environment.

Type Range AT Mean Range AP Mean Range CSH Mean Range Elevation Mean

LAFCM 1950–2500 2300 180–300 240 900–970 926 2–1481 600
HAFCM 2040–2500 2250 250–360 300 900–1000 953 330–2670 860

EAF 2330–2770 2570 280–430 340 920–1050 980 90–1500 500
CPA 2600–2900 2740 240–330 280 1030–1180 1110 130–850 240
WAP 2630–2920 2830 160–260 200 1170–1280 1217 100–640 160

In HAFCM, the terrain fluctuated greatly, area of maize is less, and it is prone to frost damage
because of the earlier frost period. In contract, AP and CSH of LAFCM are relatively small. EAF, a
semi-mountainous valley, is generally basin and plain, where the arable land is relatively large and
suitable for agricultural development. The climate of this area is mild, e.g. AT is between 2330 ◦C and
2770 ◦C with abundant AP. CPA is the main maize belt in Jilin Province. Most of the cultivated land is
concentrated and contiguous, which is suitable for mechanized farming. It has abundant photothermal
resources, for instance, AT is between 2600 ◦C and 2900 ◦C and AP is between 240 m and 330 mm.

4.2. Planting Environmental Representation

We clustered each type of planting environment using the same clustering method, and compared
them with the test site layout results.

Test sites proposed in this paper cover 19 of 25 sub-clusters (Figure 9). However, the number of test
sites is still unbalanced.Two reasons may cause this situation: (1) the randomness of spatially-balanced
sampling; and (2) the planting areas in sub-clusters are too small.

Figure 9. Map of sub-clusters. Different color levels of each cluster represent the sub-clusters in
each cluster.
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4.3. Comparison Number of Test Sites

The number of original test sites in Jilin province is 26 (Table 4). The spatial distribution of the
existing test sites is not well-balanced. For example, in CPA, the number of test sites is 13 which is
about half of the total sites. The total established test sites number of HAFCM and LAFCM cannot
reflect actual complexity, comparing with nine test sites from our method. In addition, EAF and WAP
also need to add two sites according to our method.

Table 4. Number of test sites.

Type Established Sites Our Method

HAFCM 2 5
LAFCM 1 4

EAF 4 6
CPA 13 5
WAP 3 5

5. Conclusions

To tackle with the problems of spare data from multi-environments and inconsistence between
regional tests and actual promotion, we propose a spatial layout method that includes the following
two novel features: (1) It constructs a clustering index system of planting environment with test site
layout as the application purpose. (2) It deduces the appropriate spatial distribution of test points in
different cluster by integrating the complexity of each planting environment type. The experiment
was run in Jilin Province to simulate the layout of maize variety testing sites. The results show the
proposed methods can not only meet requirements for quantity measurement and spatial distribution
of test sites, but also provides a set of operational technical ideas for the layout of multi-environment
test sites for crop varieties.
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AT Accumulated temperature
AP Accumulated Precipitation
CSH Cumulative Sunshine Hours
LD linear dichroism
HAFCM High Altitude Forest area of the Changbai Mountain
LAFCM Low Altitude Forest area of the Changbai Mountain
EAF Eastern part of the mountain Agriculture and Forestry Area
CPA Central Plains Agricultural
WAP Western plain Agriculture and Pastoral Area
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