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Abstract
To investigate the influences of different factors on spatial heterogeneity of regional carbon emissions, we firstly studied the
spatial-temporal dynamics of regional energy-related carbon emissions using global Moran’s I and Getis-Ord Gi and applied
geographical detector model to explain the spatial heterogeneity of regional carbon emissions. Some conclusions were drawn.
Regional carbon emissions showed significant global and local spatial autocorrelation. The carbon emissions were greater in
eastern and northern regions than in western and southern regions. Fixed assets investment and economic output had been the
main contributing factors over the study period, and economic output had been decreasing its influence. Industrial structure’s
influence showed a decrease trend and became smaller in 2015. The results of the interaction detections in 2015 can be divided
into two types: enhance and nonlinear, and enhance and bivariate. The interactive influences between technological level and
fixed assets investment, economic output and technological level, population size and technological level, and economic output
and economic development were greater than others. Some policy recommendations were proposed.
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Introduction

Due to the repaid economic growth, industrialization, and ur-
banization, China has become the largest carbon emitter (Qiu
2008; Zeng et al. 2008). Under such circumstances, interna-
tional community had paid much attention to the carbon emis-
sions in China (Wang et al. 2014; Wang et al. 2013). Chinese
government promised that the carbon intensity would be

declined by 40–50% by 2020 in comparison with the 2005
level (Qiu 2009). In a joint statement on climate changes is-
sued by China and the USA, China made promises to stabilize
its carbon emissions by 2030 (Malakoff 2014). In the
BThirteenth Five Year Plan^ (2016–2020), the government
supported the relatively developed regions to achieve the car-
bon emissions peak (Mi et al. 2017). It is one of the major
problems to reduce or slow down the carbon emissions with-
out negatively influencing the reasonable economic growth
(Han et al. 2017).

In fact, current studies pay close attention to the calculation
of carbon emissions (Guan et al. 2012; Johnson et al. 2007),
driving factors (Fan et al. 2015; Wang et al. 2017; Zhang et al.
2017a), scenario analysis (Wang andWatson 2010; Zhao et al.
2017), policy simulation (Fragkos et al. 2017; Qi et al. 2014),
etc. Analysis of the driving factors is necessary to make pol-
icies or conduct scenario analysis. According to the previous
studies, the driving factors mainly includes economic growth
and development (Salahuddin et al. 2015; Zhang and Da
2015), energy structure (Wang et al. 2016; Wu et al. 2017),
industrial structure (Chen et al. 2016; Ji et al. 2014), urbani-
zation (Ding and Li 2017; Li et al. 2016), population size
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(Ohlan 2015; Zhang and Tan 2016), technological progress
(Irandoust 2016; Nduagu and Gates 2016), and fixed assets
investment (Xu and Gao 2016).

A possible shortcoming is that the above studies were
based on the temporal analysis. Although some studies were
conducted from the perspectives of regional analysis, the re-
gions were mainly treated as homogeneous individual or in-
dependent, and the significant spatial relationships among re-
gions and interactive effects of driving factors tended to be
ignored. Tobler’s first law of geography indicates that there
exist relationships among things, but the relationships among
the near things are stronger than those of distant things (Tobler
1970). Anselin (1988) also pointed out that neighboring re-
gions would affect a region’s activities to some extent. Some
scholars had also studied the neighboring regions’ influences
on regional carbon emissions. Cheng et al. (2014) used spatial
panel econometric model to explain the factors’ influence on
the changes in spatial dynamics of China’s carbon emissions;
Long et al. (2016) used spatial panel data models to measure
its main determinants of provincial industrial carbon produc-
tivity in China over 2005–2012; Ang et al. (2016) applied the
spatial-temporal decomposition approach to analyze the con-
tributing factors of energy and carbon emissions for eight
economic regions from China. As a consequence, it is neces-
sary to have a deeper understanding on the driving factors
from the prospective of spatial interaction effects.

Overall, most studies have analyzed the influences of
spatial relationships, but studies, further exploring the in-
teractive influences between driving factors, are still
scarce. Geographical detector model was proposed by
Wang et al. (2010). Its principle is that the spatial distribu-
tions of two attribute values tend to be similar, if these two
at t r ibute values are associated with each other.
Geographical detector model can reflect spatial relation-
ships or interactive effects. As a relatively novel spatial
analysis model, there are some significant advantages.
First, no assumption or restriction was required with re-
spect to dependent and independent variables. Second, it
can examine the interactive influence of two independent
variables on dependent variable. Thus, geographical detec-
tor model is excellent to analyze the influences of driving
factors on spatial heterogeneity, and it has been applied the
study in urbanization (Zhu et al. 2015), environment (Luo
et al. 2015), and human health (Huang et al. 2014). Thus,
we firstly studied the spatial-temporal dynamics of region-
al energy-related carbon emissions using global Moran’s I
and Getis-Ord Gi and then used the geographical detector
model to analyze the driving factors’ influences and inter-
active influences on spatial heterogeneity of regional car-
bon emissions. According to the analysis, we could know
that whether two driving factors were independent in
influencing carbon emissions, or whether they enhanced
or weakened one another when taken together. So, the

results made it clear that which two driving factors could
be combined to reduce carbon emissions. In the end, some
targeted policies would be proposed.

Methodology

Global Moran’s I

The spatial relationships among neighboring regions can be
examined by globalMoran’s I (Anselin 1988). The equation is
expressed as follows:

I ¼
n∑n

i¼1∑
n
j¼1wij yi−y

� �
y j−y

� �

∑n
i¼1∑

n
j¼1wij∑n

i¼1 yi−y
� � ð1Þ

where yi and yj are the energy-related carbon emissions of
region i and j, respectively; y is the average carbon emissions
of all regions; wij represents the weights matrix; and n repre-
sents the number of regions. Moran’s I ∈(− 1,1). When − 1 <
Moran’s I < 0, provinces with different carbon emissions are
grouped together; when Moran’s I = 0, no spatial correlation
exists; when 0 <Moran’s I < 1, provinces with the similar car-
bon emissions are grouped together (Xu and Lin 2017).
GeoDa software has the function of spatial data analysis,
which can be used to calculate the global Moran’s I.

The results of Moran’s I were statistically tested using the
standardized statistic Z. The equation is shown as follows:

z ¼ I−E Ið Þffiffiffiffiffiffiffiffiffiffiffi
VAR Ið Þ

p (2)

When the z value is greater than 0 and statistically signifi-
cant, it means that the significant agglomeration exists. When
z value is smaller than 0 and statistically significant, it means
that the significant spatial difference exists; when z value is
equal to zero, there is no spatial correlation.

Getis-Ord Gi

In order to identify the local spatial autocorrelation, Getis-Ord
Gi is introduced. The spatial agglomeration of high or low
carbon emissions can be identified within the context of
neighboring features (Getis and Ord 1992). It can be
expressed as follows:

G dð Þ ¼ ∑n
j¼1wijy j−y∑
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whereG(d) is the value of Getis-OrdGi. When the value of the
G(d) is positive and Z(G) is statistically significant, the hot
spot exists. When the value of the G(d) is negative and Z(G)
is statistically significant, the cold spot exists (Xu and Lin
2017; Zhu et al. 2010).

Geographical detector model

On the basis of spatial variance analysis of geographical strata,
Wang et al. (2010) proposed the geographical detector model
to analyze the influences of different factors on spatial hetero-
geneity. The association between these two attribute values
can be examined as follows:

PD ¼ 1−
∑L

h¼1∑
Nh
i¼1 yh1−yh

� �2

∑N
i¼1 yi−y

� �2 ¼ 1−
∑
L

h¼1
Nhσ2

h

Nσ2
ð5Þ

where PD is the power of determinate; based on the spatial
heterogeneity of study object, the study is divided into L strata,
denoted by h = 1,…, L; σ2 and σ2h are the variances of whole
units and h strata, respectively; and N and Nh are the numbers
of the units in the study area and h strata, respectively. As
shown in Fig. 1, the strata of Y was formed by laying Y over
X which consists of strata. PD∈ [0, 1], and the PD can reflect
the influence of X on the spatial heterogeneity of Y. The larger
the PD is, the larger the influence of X is.

The spatial heterogeneity of Y is influenced by many fac-
tors. There may exist interaction between each two factors,
and whether each two factors together enhance or weaken
each other, or they are independent in influence the spatial
heterogeneity of Y. The geographical detector model can ex-
amine the interaction between two factors. As shown in Fig. 2,
powers of determinate of factor X1 and X2 to Y are firstly
calculated; then, X1 and X2 are overlaid, and new strata are
formed; at last, the power of determinate of interaction be-
tween X1 and X2 can be calculated. The interactive influence
between two factors can be judged as Table 1. ArcGis 10.0
and GeoDetector software can help realize them. The
GeoDetector software can be obtained at http://www.
sssampling.org/Excel-GeoDetector/(Wang and Hu 2012).

Data management

Data resources, consisting of gross domestic product (GDP),
added of secondary industrial, the population including urban
population, and fixed assets investment in 2000, 2007, and
2015, were all collected from the China Statistical Yearbook
(2001, 2008, and 2016). Energy data were collected from
China Energy Statistical Yearbook (2001–2016).

Results and discussions

Temporal-spatial characters

As indicated in Fig. 3, China’s energy-related carbon emis-
sions were generally on the rise. In 2000, the total carbon
emissions were only 1270.38 million tons and reached
4282.84 million tons in 2015, which increased by 3.37 times
from 2000 to 2015. It also can be seen that energy-related
carbon emissions declined in 2015, and it is the first time for
China. In 2015, total coal consumption declined in compari-
son with 2014. Meanwhile, China has led the way on renew-
ables such as solar power, wind, and hydropower (Wang and
Wang 2017). Thus, energy-related carbon emissions were
lower in 2015 than in 2014.

The global Moran’s I of energy-related carbon emissions
was calculated by means of the GeoDa software. Meanwhile,
with the aid of random permutation, the normal distribution
was also established to test the significance of annual global
Moran’s I. These results were shown in Fig. 3. During the
period 2000–2015, the annual the Global Moran’s I was pos-
itive, and the normal statistics z was statistically significant at
the 5% level or 1% level (Table 2). Therefore, it illustrated that
the regions with higher or lower energy-related carbon emis-
sions tend to be adjacent, and regional carbon emissions
showed significant spatial autocorrelation over the study peri-
od. The Moran’s I increased with fluctuations from 0.171 in
2000 to 0.294 in 2011, with annual average concomitant prob-
ability of 0.02. Thus, the agglomeration degree of regional
carbon emissions showed an increasing trend. After 2011,
the Moran’s I decrease from 0.294 to 0.243 over 2011–2015,
with annual average concomitant probability of 0.01, which
indicated that the agglomeration degree showed a slight
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Fig. 1 The principle of
geographical detector
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decreasing trend. In general, the spatial agglomeration of
energy-related carbon emissions was obvious over the study
period, and the regions with similar carbon emissions were
agglomerated in spatial distribution.

Getis-Ord Gi was used to analyze the local agglomeration
patterns of regional carbon emissions in 2000, 2007, and
2015, and five types were divided using the Natural Breaks
Classification method. According to Fig. 4, regional carbon
emissions showed significant characteristic of local spatial
autocorrelation. The regions with high z score, that being hot
spots, were located in eastern and northern China in 2000,
2007, and 2015, and the regions with low z score, that being
cold spots, were mainly located in western and southern
China. It illustrated that the carbon emissions were greater in
eastern and northern regions than in western and southern
regions. Shandong, Henan, Hebei, and Shanxi had been the
hot spots over the study period, indicating that their neighbor-
ing regions were mainly high carbon emitters. Xinjiang,
Qinghai, Sichuan, and Guangdong had been the cold spots
over the study period, indicating that their neighboring regions
were low carbon emitters. These regions with similar carbon
emissions were close to each other.

Driving factors’ influences

Based on the analysis in above sections, regional carbon emis-
sions showed obvious spatial autocorrelation. The agglomer-
ation patterns of regional energy-related carbon emissions
were influenced by many factors. Based on the previous stud-
ies (Wang et al. 2017; Zhang et al. 2017c; Zhang et al. 2011),
some factors were selected to analyze their influence on the
spatial heterogeneity of carbon emissions. We used economic
output and economic development to explore the influences of
regional economic differences on the environmental pressure.
We used the proportion of urban population in total population
to reflect the urbanization; thus, the influences of regional
population structure changes on spatial heterogeneity could
be analyzed combining urbanization with population size.
We applied the proportion of the secondary industry to ana-
lyze the influences of regional industrial structure differences
on spatial heterogeneity. Proportion of coal consumption in
total energy consumption was applied to reflect the influence
of regional energy structure differences on spatial heterogene-
ity. Energy consumption per unit GDP was applied to analyze
the influences of regional technological level difference on
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Table 1 Interaction relationships
Description Interaction

PD (X1∩X2) < Min (PD(X1), PD (X2)) Weaken and nonlinear

Min (PD(X1), PD (X2)) < PD (X1∩X2) < Max (PD (X1)), PD (X2)) Weaken and univariate

PD (X1∩X2) >Max (PD(X1), PD (X2)) Enhance and bivariate

PD (X1∩X2) = PD (X1) + PD (X2) Independent

PD (X1X2) > PD (X1) + PD (X2) Enhance and nonlinear
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spatial heterogeneity. Fixed assets investment could influence
the economy, industrial structure, and energy structure, so we
used regional fixed assets investment to analyze the influence
on spatial heterogeneity. These factors and their explanations
were listed in Table 3. ArcGIS 10.0 was applied to express the
agglomeration patterns of these driving factors, and five types
were divided using the Natural Breaks Classification method.
Then, Eq. (5) was used to examining the driving factors’ effect
on the spatial heterogeneity of regional carbon emissions, and
the results were shown in Fig. 5.

In 2000, based on the influencing degree on the spatial
heterogeneity, the driving factors were ranked as follows: in-
dustrial structure > economic output > fixed assets investment
> population size > technological level > urbanization > eco-
nomic development > energy structure. China’s secondary
industry was characterized by high energy consumption, low
energy efficiency, and secondary industry, especially industri-
al sector, consumed much more fossil energy than primary
industry and tertiary industry. Thus, the difference of regional
industrial structure contributed most to the spatial heterogene-
ity of regional carbon emissions in 2000. Many provinces
with larger economic output were also the bigger emitters,
such as Shandong and Jiangsu. Fossil energy was one of the
most important input factors during the process of economic
growth. Economic growth demanded massive energy; mean-
while, the regional economic output existed difference,

making the economic be the second contributing factor.
Power of determinant of fixed assets investment was also re-
markable. It illustrated that they shared the spatial features,
i.e., the fixed assets investment exhibited a spatial distribution
similar to that of the regional carbon emissions. According to
the theory of geographical detector model, the regional carbon
emissions were also significantly influenced by fixed assets
investment. In 2000, energy efficiency was very low, and the
energy consumption per GDP of the relatively developed
provinces, which also emitted more carbon, was much larger
than that of some regions. This made technologic level be the
fourth contributing factor in influencing the spatial heteroge-
neity of regional carbon emissions. Urbanization, economic
development, and energy structure played relatively small role
in the spatial heterogeneity.

In 2007, the driving factors were ranked as follows: fixed
assets investment > industrial structure > economic output >
economic development > population size > energy structure >
urbanization > technological level. Since joining the WTO in
2001, China’s economy gained new opportunities for develop-
ment, and fixed assets investment grew very fast. In comparison
with 2000, the total fixed assets investment increased by 12.04
times. The growth rate of fixed assets investment was much
larger. Some regions, which had been the larger emitter such
as Shandong, Jiangsu, and Guangdong, gained more fixed as-
sets investment, and regional carbon emissions also increased.
Thus, fixed assets investment had become the most influential
factors for the spatial heterogeneity of regional carbon emis-
sions in 2007. Proportion of secondary industry increased from
45.4% in 2000 to 46.7% in 2007. Meanwhile, the relatively
undeveloped regions with less carbon emissions, such as
Jiangxi, Guangxi, also increased the proportion of secondary
industry output. These made the industrial structure be still one
of the main contributors, but its influence also decreased.
Economic output was the third contributing factor, but it was
clear that its power of determinant decreased from 0.598 in
2000 to 0.437 in 2007. Economic development and population
size also contributed much to the spatial heterogeneity. The
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Table 2 Normal statistics z

Year z Year z Year z Year z

2000 − 2.034** 2004 − 2.224** 2008 2.504** 2012 2.510**

2001 − 2.011** 2005 − 2.547** 2009 2.334** 2013 8.951***

2002 − 2.266** 2006 − 2.065** 2010 2.478** 2014 − 2.377**
2003 − 2.175** 2007 − 2.447** 2011 2.166** 2015 − 2.266**

** and *** indicate that the variable is statistically significant at the 5%
significance level and 10% significance level, respectively
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influences of energy structure, urbanization, and technological
level were much smaller than other driving factors.

In 2015, based on the influencing degree on the spatial
heterogeneity, the driving factors were ranked as follows:
fixed assets investment > economic output > technological

level > population size > energy structure > urbanization >
industrial structure > economic development. Fixed assets in-
vestment contributed most to the spatial heterogeneity; never-
theless, its power of determinant decreased from 0.521 in
2007 to 0.453 in 2015. Economic output was also the main
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Fig. 4 The agglomeration patterns of regional carbon emissions in 2000, 2007, and 2015

Table 3 Factors and their
explanations used in the analysis Factors Symbols Definition measuring methods

Economic output EO Gross domestic product (GDP)

Economic development ED Per capita GDP

Urbanization U Proportion of urban population in total population

Population size P Regional total population

Industrial structure IS Proportion of the secondary industry

Energy structure ES Proportion of coal consumption in total energy consumption

Technological level T Energy consumption per unit GDP

Fixed assets investment F Total fixed assets investment
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contributing factor, but its power of determinant showed a
decrease trend during the study period. It indicated that the
spatial distribution of economic output became different grad-
ually to the spatial distribution of regional carbon emissions,
and economic output had been decreasing its influence on
spatial heterogeneity of regional carbon emissions.
Technological level became the third contributing factor.
Nevertheless, the driving mechanism in 2015 was different
than that in 2000 and 2007. In 2000, the technological level
was relatively backward, and energy efficiency was also low,
these making the spatial distribution of poor technological
level be similar to that of high carbon emissions. In 2015,
advanced technology had already been introduced, and energy
consumption per unit GDP decreased, these making the spa-
tial distribution of high technological level be similar to that of
high carbon emissions. It belonged to transition period in
2007; thus, the power of determinant of technological level
was the smallest. It illustrated that improvement of technolog-
ical level did not decrease the regional carbon emissions.
Population size also played an important role in the spatial
heterogeneity. Energy structure, urbanization, economic de-
velopment, and industrial structure played relatively small role
in the spatial heterogeneity. Over the study period, the influ-
ences of urbanization and energy structure were much smaller
than other factors, indicating that their influences on spatial

heterogeneity of regional carbon emissions were not
significant.

Wang et al. 2017 and Xu and Lin 2017 deemed that fixed
assets investment and economic output were the main influ-
ential driving factors, which was consistent with our conclu-
sion. The increase in fixed assets investment drove growth in
industries and then increased the carbon emissions, but the
influence of industrial structure varied considerably in differ-
ent years, and this conclusion was consistent with Wang and
Feng 2017. Cheng et al. 2014 and Jiang et al. 2016 also
thought that urbanization and energy structure had smaller
influence on spatial heterogeneity. Our conclusions on the
influence of population size and technological level were also
consistent with the studies of Wang et al. 2017 and Zhang
et al. 2017b.

Interaction detections between driving factors

Do each two driving factors enhance or weaken each another
when they were taken together, or are they independent in
influencing the spatial heterogeneity of regional carbon emis-
sions? In order to reveal the interactive influence between
each two driving factors, the interaction detector was applied.
This paper only analyzes the interaction influences in 2015,
and the results were shown in Table 4. The results of the
interaction detections in 2015 can be divided into two types:
enhance and nonlinear, and enhance and bivariate. It indicated
that the power of determinant of each two driving factors was
bigger than that of each one driving factor, and each driving
factor enhanced other factors’ influences when they were tak-
en together. That is, the interactive influence on spatial hetero-
geneity was greater. As shown in Table 4, the interactive in-
fluences between technological level and fixed assets invest-
ment, economic output and technological level, population
size and technological level, and economic output and eco-
nomic development were greater than others. The interactive
influences between economic output and technological level,
population size and technological level, and economic output
and economic development were greater than the sum of each
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Table 4 Results of the interaction detections in 2015

q EO U P ES T IS ED Types EO U P ES T IS ED

U 0.61 U EN

P 0.43 0.66 P EB EN

ES 0.69 0.52 0.53 ES EN EN EN

T 0.93 0.46 0.92 0.43 T EN EB EN EB

IS 0.51 0.41 0.45 0.37 0.69 IS EB EN EB EN EN

ED 0.89 0.53 0.50 0.44 0.45 0.37 ED EN EN EN EN EN EN

F 0.56 0.68 0.48 0.72 0.95 0.60 0.65 F EB EN EB EN EB EB EN

EN denotes Benhance and nonlinear;^ EB denotes Benhance and bivariate^
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two factors’ influence. The interactive influence between tech-
nological level and fixed assets investment was greater than
the maximum of their separate influences. It was obvious that
the interactive influences between technological level and oth-
er factors were significant. As analysis in BInteraction detec-
tions between driving factors^ section, the spatial distribution
of high technological level and high carbon emissions was
similar in 2015. These regions with high technological level
always had larger population, economic output, and fixed as-
sets investment. This meant that improvement of technologi-
cal level could not decrease or slow down regional carbon
emissions if no attention was paid to other factors.

Conclusions and policy recommendations

We firstly studied the spatial-temporal dynamics of regional
energy-related carbon emissions using global Moran’s I and
Getis-Ord Gi and applied geographical detector model to ex-
plain the spatial heterogeneity of regional carbon emissions.
We draw some conclusions:

(1) Energy-related carbon emissions showed an overall in-
creasing trend in China. Regional carbon emissions re-
vealed significant global and local spatial autocorrela-
tion. The carbon emissions were greater in eastern and
northern regions than in western and southern regions.
Shandong, Henan, Hebei, and Anhui had been the hot
spots over the study period, and Xinjiang, Qinghai,
Sichuan, and Guangdong had been the cold spots over
the same period.

(2) The influences of each factor were different in 2000,
2007, and 2015. Fixed assets investment and economic
output had always been the main contributing factors
over the study period, and economic output had been
decreasing its influence. Industrial structure played an
important role in 2000 and 2007, but its influence
showed a decrease trend and became smaller in 2015.
Technological level became the third contributing factor
in 2015, and its driving mechanism was different than
that in 2000 and 2007. The influence of population size
was in relatively stable condition. The influences of ur-
banization and energy structure were much smaller than
other factors.

(3) The results of the interaction detections in 2015 can be
divided into two types: enhance and nonlinear, and en-
hance and bivariate. Each driving factor enhanced other
factors’ influences when they were taken together. The
interactive influences between technological level and
fixed assets investment, economic output and technolog-
ical level, population size and technological level, and
economic output and economic development were great-
er than others.

Based on the above findings, we proposed some policy
recommendations as follows. Regional fixed assets invest-
ment and economic output have become the first two con-
tributing factors. Along with the rapid increases of economic
output in different regions, the total fixed assets investment
would also increase additionally. In 2015, industrial sectors
accounted for about 40% of the total fixed assets investment.
Industrial sectors emitted most of the energy-related carbon
emissions. Thus, reasonable fixed assets investment was
very important for regional carbon emissions. For the re-
gions with large fixed assets investment, energy-saving as-
sessments should be implemented for the new projects of
fixed assets investment, and new fixed assets investment
for energy-intensive sectors should be controlled. Although
industrial structure’s influence became relatively smaller in
2015, it needed also to pay enough attention to the industrial
restructuring. As mentioned above, improvement of techno-
logical level could not decrease or slow down regional car-
bon emissions if no attention was paid to other factors. It is
important for the regions with low fixed assets investment.
In 2015, the distribution of the low technological level was
similar to that of regional carbon emissions. But it is hard
for these regions, such as Xinjiang, to inhibit the investment
in industrial sectors. New technological level is necessary
for these regions, and these regions need to apply the clean
technology or new technology to improve the production
capacity of cleaner production. Urbanization and energy
structure played relatively minor role, but their influences
cannot be ignored. In the foreseeable future, the level of
urbanization in China will continue to increase. Its spatial
influence was not significant, but urbanization can promote
the regional carbon emissions by industrial restructuring,
influencing economic growth, changes in residents’ con-
sumption, and various other factors (Donglan et al. 2010).
Thus, the quality of the development of regional urbaniza-
tion should be paid enough attention. Most region’s coal
proportions were still high, and the disparity of regions
was relatively small. So it is necessary to decrease the coal
proportion for every region.

Geographical detector model is excellent to explore the
interactive influences between driving factors. But it can only
probe the interactive influences between two driving factors.
In fact, energy-related carbon emissions are influenced by
many factors. So, the GeoDetector software needs to be im-
proved to probe the interactive influences among three or
more driving factors in the future studies. Thus, more targeted
policies will be proposed.
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