
 International Journal of

Geo-Information

Article

Method for the Analysis and Visualization of Similar
Flow Hotspot Patterns between Different
Regional Groups

Haiping Zhang 1,2,3,†, Xingxing Zhou 1,2,3,4,†, Xin Gu 5, Lei Zhou 6, Genlin Ji 1,2,4 and
Guoan Tang 1,2,3,*

1 Key Laboratory of Virtual Geographic Environment, Ministry of Education, Nanjing Normal University,
Nanjing 210023; China; gissuifeng@163.com (H.Z.); zhouxxgis@163.com (X.Z.); glji@njnu.edu.cn (G.J.)

2 State Key Laboratory Cultivation Base of Geographical Environment Evolution (Jiangsu Province),
Nanjing 210023, China

3 Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and
Application, Nanjing 210023, China

4 School of Computer Science and Technology, Nanjing Normal University, Nanjing 210023, China
5 Department of Geography Sciences, University of Maryland College Park, MD 20742, USA;

gu12347@terpmail.umd.edu
6 School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications,

Nanjing 210023, China; zhoulei@njupt.edu.cn
* Correspondence: tangguoan@njnu.edu.cn; Tel.: +86-137-7662-3891
† These authors equally contributed to the work.

Received: 30 June 2018; Accepted: 13 August 2018; Published: 15 August 2018
����������
�������

Abstract: Interaction among different regions can be illustrated in the form of a stream. For example,
the interaction between the flows of people and information among different regions can reflect city
network structures, as well as city functions and interconnections. The popularization of big data has
facilitated the acquisition of flow data for various types of individuals. The application of the regional
interaction model, which is based on the summary level of individual flow data mining, is currently
a hot research topic. Thus far, however, previous research on spatial interaction methods has mainly
focused on point-to-point and area-to-area interaction patterns, and investigations on the patterns
of interaction hotspots between two regional groups with predefined neighborhood relationships,
that being with two regions, remain scarce. In this study, a method for the identification of similar
interaction hotspot patterns between two regional groups is proposed, and geo-information Tupu
methods are applied to visualize interaction patterns. China’s air traffic flow data are used as an
example to illustrate the performance of the proposed method to identify and analyze interaction
hotspot patterns between regional groups with adjoining relationships across China. Research results
indicate that the proposed method efficiently identifies the patterns of interaction flow hotspots
between regional groups. Moreover, it can be applied to analyze any flow space in the excavation of
the patterns of regional group interaction hotspots.

Keywords: regional group interaction; similar hotspot flow patterns; spatial interaction; visual
analytics; geo-information Tupu; GIS

1. Introduction

Our society is built on the basis of mobility of certain elements, such as people, goods, and
information technology. These flow elements form a flow space [1]. In contrast to the traditional
local space, flow space emphasizes the interaction and interactive relationships of elements [2,3].
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Geographers used to focus on physical space [4–6] but have turned their attention to flow space
because of the continuous advancement of economic globalization and Internet technology [7–10].
Drastic changes in the global economy have strengthened global exchanges through tourism, trade, and
technology, thereby directly promoting the flow of people, logistics, and technology. In addition, with
the development of Internet technology, information flow has decreased distances between places [2].
Distance is no longer an applicable metric of space when the time required to transmit information
over one kilometer is almost the same as that required to transmit information over 100,000 kilometers.
That is, the Internet has changed the transmission of spatial information. In fact, geographers should
focus not only on the flow space itself, but also on the reconstruction of spatial organization structure
based on flow elements, the function of organization networks, and the identification of emerging flow
patterns [11]. Therefore, a quantitative analytical method for establishing and defining interaction
patterns is important because they are the base methods for defining spatial relationships between two
regional groups.

Many methods for determining the interaction patterns of flow space have been proposed
over the past few decades. Numerous algorithms used to mine comprehensive spatio-temporal
interaction patterns for spatial interaction models have been constructed [12–16]. However, the spatial
dependence of interactive nodes in these methods is limited. Some of these nodes apply complex
network methods to discover spatial interaction patterns [17–20]. Models for regional interaction based
on the concept of complex networks have been proposed [21]. These models, such as the method of
interaction relation proposed by Kira, consider dependencies and similarities among flowing nodes
to identify areas with strong interactivity. However, this method only recognizes individual regions
with similar interactions rather than interaction patterns between different regions groups. A regional
movement pattern recognition (MZP) algorithm based on the aggregation of metro nodes has been
proposed [22]. Chen et al. expanded the proximity relationship on the basis of the MZP algorithm
and taxi OD data and proposed the MPFZ algorithm [23]. All these methods mainly focus on point
data and their adjacency relationship. Their main disadvantages are their inefficiency and inability to
provide a visually well-resolved solution for the excavation of the interaction model, which enable
to simultaneously visualize both analysis results and test parameters in a map. Thus, none of the
aforementioned methods can provide a visual representation of the interaction pattern between two
regional groups.

A basic characteristic of existing models is that they lack a recognition method for interactive
flow patterns that may exist between one regional group and another. Moreover, the use of existing
models to define adjacency relationships between two regional groups is difficult. We refer to the
literature on adjacency matrixes to define regional adjacency relations. For example, strong interaction
is not only observed between regions A and B (B does not have a predefined proximity relationship)
but also in several of their surrounding regions. We assume that the interaction relationship is strong
and that regions A and its surroundings and region B and its surroundings satisfy a predefined
adjacency relationship. Then, regional groups A and B are located. Thus, we can conclude that a strong
interaction between A or B and their surroundings exist. Moreover, a regional group interaction flow
pattern is formed between regions A and B.

This work presents an advanced method for discovering, analyzing, and visualizing the flow
patterns of interaction hotspots between two different regional groups. First, a review of literature
is presented, and the expected results of the method is described (Section 2). Second, a new method,
which is used to mine the flow patterns of regional groups, is proposed (Section 3). The regional
adjacent relationship is defined (Section 3.1.1), the structure of the flow pattern mining algorithm
is described (Section 3.1.2), and flow pattern visualization (Section 3.2.1) and methodological issues
(Section 3.2.2) are introduced. Finally, a case study involving flow volume data and the proposed
method is presented (Section 4).
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2. Literature Review

Individual flow data are mainly modeled by the pattern of node-to-node flow [24,25]. Thus,
many of the macro-pattern summary or interactive pattern discovery methods for individual flow
data are based on node-flow data [26–28], and works on flow data modeling and analysis between
regions remain limited. Moreover, interactions between areas can be abstracted as point-to-point
interactions. Basic methods for spatial analysis can be easily used to model and analyze interactions
between regional groups even if point-to-point flow data is aggregated to region-to-region flow data.
However, interaction modeling and analysis between regional groups involve many issues, such as the
identification, determination, and effective visualization of the regional adjacency relationship. Most
of the existing works are based on the first two cases. Existing related research are briefly reviewed
below. We discuss point-to-point and area-to-area flow patterns, as well as the flow patterns of two
different regional groups, to understand the limitations of the objectives of existing methods. We
specifically focus on patterns with strong relationships.

Most of the flow data exist in the form of point-to-point interactions with directional arrows.
Related interaction analysis methods mainly include point-to-point interaction pattern mining [29–33]
and interactive pattern mining in between multiple points, as well as the model analysis of adjacent
points in the same community [34–37]. In Figure 1a, the interaction between the three nodes in the
northwest corner and the two nodes in the southeast corner is remarkably stronger than that among the
other nodes. A similar situation exists between the neighboring points in the southwest and northeast
corners. Figure 1b illustrates that the MZP algorithm [22] can discover a strong interaction pattern
between a set of adjacent nodes to another set of adjacent nodes in network-structure data. Then, the
two patterns shown in Figure 1c could be identified. The MZP algorithm mainly solves such problems
and provides valuable reference value for related research. However, this algorithm has extremely
high time complexity and fails to provide a visual representation of analytical results. Thus, Chen et al.
proposed the MPFZ method. However, Chen’s method only extended the data that had been applied
by the network MZP algorithm from network node flow to other analyses of the arbitrary node flow
data without implementing other major changes.
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In some cases, the interaction pattern for flow data between different areas is emphasized.
For example, the point-to-point with arrow data (Figure 2a) shows the area is obtained from area-to-area
flow data through basic spatial overlay and statistical calculation methods. Figure 2a shows that the
arrow must also contain an attribute to indicate the size of the interaction value for each area-to-area
flow data. The results shown in Figure 2a indicate that the regional interaction shown on Figure 2b can
be easily identified. Thus, the regional interaction pattern shown in Figure 2c is obtained.ISPRS Int. J. Geo-Inf. 2018, 7, 328 4 of 17 
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Figure 2. Example and analytical methods for regional flow data. (a) Area-to-area flow data;
(b) area-to-area flow data with high interaction values; and (c) area-to-area flow patterns.

The area-to-area model has an obvious disadvantage, that is, each area interaction pattern ignores
the spatial autocorrelation characteristics of the starting and ending areas with other existing adjacent
areas. Thus, any area interaction pattern and the surrounding area in interaction directions and sizes
are autocorrelated. Figure 3a shows that the interaction between several adjacent areas in the northwest
and southeast is more pronounced than those between the area-to-area flow data. Additionally, similar
patterns are identified in the southwest and northeast sides. Figure 3b shows that the goal of this
work is to identify the flow patterns of regional group interactions by defining specific area adjacency
relationships. Figure 3c shows the results and visualization of the expected flow pattern. Then, further
research on the interaction strength, value size, and significance level of each regional group must be
conducted on the basis of analytical results. In this paper, a method for mining interaction patterns
between regional groups is proposed, and a spatial interaction visualization solution similar to spatial
or spatiotemporal [38] hotspots pattern visualization methods is also provided.
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Figure 3. Flow pattern and visualization of interaction hotspots between regional groups.
(a) Area-to-area flow data; (b) area-to-area flow data and area pairs with high interaction values;
and (c) similar hotspot flow patterns between regional groups.

3. Methodology

In this work, the entire research framework includes the input of node-based flow data, the
processing of data, and the interaction pattern mining, output, and visualization of regional group flow
patterns (Figure 4). This study supports node-based flow data input during the design process because
most of the flow data are counted and then stored by nodes. First, the input node-to-node flow data
are converted in accordance with a certain regional unit and then converted into region-to-region flow
data. This process can be realized by using common GIS overlay and statistics functions. Then, the
adjacency relationship of the regional units is determined (Section 3.1.1), and adjacent areas wherein
the interaction value reaches a certain threshold are merged on the basis of this adjacency relationship
before being constructed into regional groups. Subsequently, all similar hotspot flow patterns between
different regional groups are identified (Section 3.1.2). Finally, the geo-information Tupu visualization
method is used to present regional groups with similar hotspot flow patterns, and visual variables are
used to visualize the evaluation results of their own characteristics in each flow pattern. Hereafter, we
refer to the similar patterns of flow hotspots between regional groups as RG-Flow-Pattern.
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Figure 4. Overview of the framework for the analysis and visualization of similar flow hotspot patterns
between regional groups.

3.1. Algorithm for Similar Hotspot Patterns between Regional Groups

In this study, the algorithm for the modeling of regional interaction hotspots mainly includes
three aspects, namely, (1) the definition of the regional neighborhood relationship, (2) the construction
of an algorithm that reconstructs the patterns of regional interaction hotspots on the basis of defined
neighborhood relationships, and (3) the use of multiple test parameters to evaluate the results of the
identified area interaction hotspot models.

3.1.1. Regional Adjacency Relationship Modeling

We must define the regional adjacency relationship and its merger principle to identify the
pattern of interaction hotspots. In the proposed method, four methods for determining the adjacency
relationship of the area are defined. Figure 5 shows that if each grid is used as a region, then the
adjacency relationship between regions can be expressed as that in Figure 5b–e. Figure 5a shows that
if we assume that the target area is the red area, then the specific meanings of the four adjacency
relationships can be briefly described as:

Adjacent edges
In Figure 5b, four areas share common edges with the target area, and these four areas are

defined as the adjacent areas of the target area. The adjoining relationship in this case is called an
edge–adjacent relationship. Under this rule, a target area may have more or less than four adjacent
areas in an actual partition.

Adjacent edges and corners
Figure 5c shows an adjacency relationship similar to that shown in Figure 5b. However, it includes

an area that shares a common node with the target area, except that the area with a common edge
and a target area belongs to the adjacent edge of the target area. This kind of adjoining relationship is
called edge–corner adjacency.

Customized adjacent range
In Figure 5d, a circular buffer area is defined with the center of mass of the target area as the

origin. When other areas are within or intersect the buffer area, they are defined as the adjacent areas
of the target area. In this method, the adjacency relationship is called the adjoining relationship of
customized adjacent range.

Logical adjacent relationship
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In addition to the three aforementioned methods used to define the adjacency relationship, we
can also determine whether the target area and the other areas are adjacent by customizing the logical
relationship that is independent of the spatial position. Figure 5e shows logical relations between the
three blue areas and the target area. Therefore, although these three areas do not coincide with the
target area or the vertices, they are defined as the adjacent areas of the target area.

Basically, these four approaches are the typical modeling methods used to present the spatial
relationship of surface features. Other adjacencies include k-nearest and are custom based on the
spatial adjacency matrix.
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relationship; (c) adjacent edge and corner relationship; (d) customized adjacent range relationship; and
(e) logical adjacent relationship.

3.1.2. Region Merging and Recognition of Similar Hotspot Flow Patterns

Definitions of similar hotspot flow patterns between regional groups
In this study, a set of datasets that contain n planar area units are given as Rset =

{R1, R2, . . . , Rn}(i = 1, 2, . . . , n), where Ri represents the nth region. In a regional group interactive
hotspot flow pattern, the origin area group is defined as RGOset = {R1, R2, . . . , Ru }, and the
destination area group is defined as RGDset = {R1, R2, . . . , Rv }. In addition, regional flow is defined as
the pair of origin and destination areas with interactions in a regional group interaction hotspot pattern.
The dataset RFset is given to store all regional flow in the regional group interaction hotspot flow
pattern, (RIH-FP); RFset = {RF1, RF2, . . . , RFm}(j = 1, 2, . . . , m). jth regional flow can be represented
as RFj = RFj_o → RFj_d , RFj_oεRGOset, indicating the origin of the regional flow. RFj_dεRGDset
represents the destination area of regional flow. In some situations, for ease of exposition, we use the
term flow pattern instead of RIH-FP. Flow pattern has various definitions.

Definition 1. A regional group interactive hotspot flow model consists of three components, namely, the
starting regional group RGOset, the destination regional group RGDset, and the interaction direction that
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indicates the interaction relationship. A regional group interaction hotspot pattern has the same direction as any
RFj = RFj_o → RFj_d in the RFset.

Definition 2. A single region in the RGOset of the origin region group and in the destination region group
RGDset must satisfy the definition of area-adjacent relationship given in Section 3.1.1.

Definition 3. The number of regions in the origin and destination regional groups of a regional group interactive
hotspot flow pattern cannot be 1 at the same time, that is, at least more than one region is included in the beginning
or termination regional group.

Definition 4. The interaction value of regional flow refers to the value of interaction from one region to another
and is represented by InterVal. Although this value has different meanings in different applications, it must meet
the following conditions:

Given a threshold θ, the interaction strength value P (RFj) of the jth regional stream RFj must
satisfy the following conditions:

RFj =
InterVal

(
RFj_o → RFj_d

)
InterVal

(
RFj_o → RF∗_d

)
∗ InterVal

(
RF∗_o → RFj_d

)(P(RFj
)
≥ θ

)
(1)

where InterVal
(

RFjo → RFjd
)

represents the interaction value from the origin area RFj_o to the
destination area RFj_d. InterVal

(
RFj_o → RF∗_d

)
represents the sum of the interaction values of the

origin region RFj_o to all other destination regions. InterVal
(

RF∗_o → RFj_d

)
represents the sum of

the interaction values of all the origin regions to the destination region RFj_d.

Definition 5. The RFset, which contains all regional flow in the same flow pattern. It is not allowed that a
predefined adjacent relationship exists from the starting region(s) to the ending region(s) in any regional flow RF.

Region merge
We randomly selected a group of regional flow data that satisfies P

(
RFj
)
≥ θ,

RFj = RFj_o → RFj_d , set RFj = RFj_o → RFj_d as the first region flow of a new regional interactive
hotspot flow pattern, express the size of the interaction value size as InterVal(RFj_o → RFj_d ). Then,
RFj_o is used as the starting regional group element of the new regional interactive hotspot flow pattern
and satisfies RFj_oεRGOset. The use of RFj_d as the new regional interactive hotspot flow pattern,
which is the termination elements of regional group, should satisfy RFj_dεRGDset. We search for all

regions adjacent to RFj_o, whose set is defined as ARGOset =
{

RFjo1
, Rjo2

, . . . , Rjou

}
(m = 1, 2, . . . , u).

The mth adjacent region of RFj_o is RFj_o_m. All regions adjacent to RFj_d are searched in the same

way, and the set is defined as ARGDset =
{

RFjd1
, Rjd2

, . . . , Rjdv

}
(n = 1, 2, . . . , v). The nth region

adjacent of RFj_d is RFj_d_n. For RFj_o_m in any ARGOset, if RFj_o_m interacts with the area RFj_d_n in
the ARGDset, thereby constituting the regional flow RFj_m_n = RFjom

→ RFj_d_n , then:

P(RF) =
InterVal(RFj_o→RFj_d) + InterVal(RFj_o_m→RFj_d_n)

(InterVal(RFj_o→RF∗_d) + InterVal(RFj_o_m→RF∗_d_n))∗(InterVal(RF∗_o→RFj_d) + InterVal(RF∗_o_m→RFj_d_n))
,

(2)

where InterVal(RFj_o → RFj_d) is the interaction value of the regional flow RFj,
InterVal(RFj_o → RF∗_d ) indicates the sum of the interaction values of the starting area RFj_o to all other
termination areas RF∗_d, and InterVal

(
RF∗_o → RFj_d

)
represents the sum of the interaction values of

all other starting regions RF∗_o to the ending region RFj_d . Similarly, InterVal
(

RFj_o_m → RFj_d_n

)
is
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the interaction value of the regional flow RFj_m_n, and InterVal
(

RFj_o_m → RF∗_d_n
)

indicates the sum

of the interaction values of the starting area RFj_o_m to all other areas. InterVal
(

RF∗_o_m → RFj_d_n

)
indicates all other areas to the interaction value of RFj_d_n.

After calculating the P(RF) value, if P(RF) ≥ θ, then RFj_o_m is also included at the origin regional
group of the regional group interaction pattern, RFj_o_mεRGOset is satisfied, the RFj_d_n is included
in the termination zone group of the regional group interaction pattern, and RFj_d_n∈RGDset is
satisfied. After all the steps are completed, other adjacent areas are subjected to statistical calculation
by using the same method, and an area that does not meet the merge threshold and operation is
ended. The adjacent regions of the newly-included start and end regions are then searched, and
the aforementioned operations are iterated until no region satisfies the merge threshold. Finally, a
complete regional interaction hotspot flow pattern origin and termination zone groups are obtained.

Regional interaction hotspot flow pattern recognition
The starting and ending zone groups of several regional interactive hotspot patterns are formed

by merging the upper part of the region. If the set of start area groups for an area interaction
hotspot flow pattern RIH-FP is defined as RGOset = {R1, R2, . . . , Ru }, then the ending regional group
is defined as RGDset = {R1, R2, . . . , Rv }, and the set of the regional flow is defined as RFset =

{RF1, RF2, . . . , RFm}(j = 1, 2, . . . , m). RFp represents the pth region flow, and RFq represents the qth
region flow. The initial regional group RGOset, the termination area group RGDset, and the interaction
stream set RFset between the two regional groups constitute a complete regional interaction hotspot
flow pattern. The direction of interaction between the regional groups is indicated by directional
arrows. Thus, the start region group, the termination region group, and the directional arrow constitute
the basic visualization element of an area interaction hotspot flow pattern and form a feature structure
of the flow pattern. In addition to the visual elements and feature structure, evaluation values are
needed to distinguish the strength of each flow pattern based on a complete regional interaction
hotspot flow pattern. If the variable P is used to indicate the strength of a certain RIH-FP, then:

P =
m

∑
j=1

P
(

RFj
)

(3)

where P
(

RFj
)

represents the interaction strength value of the jth regional flow in the regional flow set
RFset. The interaction strength of the entire RIH-FP is the sum of the values of all the regional flow
interaction strengths in the RFset.

If V denotes the size of the interaction value of a certain RIH-FP, then V should satisfy the
following formula:

V =
m

∑
j=1

Interval
(

RFj
)

(4)

where Interval
(

RFj
)

represents the interaction value of the jth region flow in the regional flow set
RFset. The interaction value of the entire RIH-FP is the sum of all regional flow interaction values in
the RFset.

Furthermore, the contribution of each of the starting regional group and the termination regional
group to the current flow pattern interaction value in a complete pattern must be separately calibrated.
For the ith region Rj in the starting regional group RGOset:

DO
(

Rj
)
=

∑m
j=1 Interval

(
RFj
)

InterVal
(

RFj_0 → RF∗_d
) (Rj ∈ RGOset, RFj ∈ RFset, RFj_o = Ri

)
(5)
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For the ith region Rj in the termination regional group RGDset:

DD
(

Rj
)
=

∑m
j=1 Interval

(
RFj
)

InterVal
(

RF∗_o → RFj_d

)(Rj ∈ RGOset, RFj ∈ RFset, RFj_d = Ri

)
(6)

3.2. SHFP-RG Visualization Method Based on Geo-Information Tupo Theory

3.2.1. Visualization of a Single RG-Flow-Pattern

In the proposed RG-Flow-Pattern method, analytical results are evaluated and investigated by
using different flow pattern variables. These variables enable the assessment of the starting and ending
regional groups and the comprehensive assessment of the interaction model. Presenting evaluation
variables that match a particular pattern in tabular form is not conducive to spatial pattern analysis
and precludes the mapping and further visual analysis of spatial data analysis results. Designing a
scientific and reasonable RG-Flow-Pattern visualization method is crucial. Thus, the RG-Flow-Pattern
visualization method is designed as shown in Figure 6a,b. Figure 6a,b are two basic examples of
RG-Flow-Pattern visualization. The basic meanings and expressions of the two examples are described
in detail below.

Figure 6. Two examples and instrumental definition of single RG-Flow-Pattern visualization.
(a) A regional interaction hotspot flow pattern with low interaction value; and (b) a regional interaction
cold-spot flow pattern with high interaction value; and (c) legend of FG-Flow-Pattern.

As we mentioned earlier, a complete RG-Flow-Pattern contains three basic constructs, namely,
the starting regional group, the termination regional group, and directional arrows. The size of the
interaction value and the contribution rate of each RG-Flow-Pattern to each of the start and termination
regional groups and some visual variables, such as color and size, are expressed to visualize the results
of each RG-Flow-Pattern. Figure 6a,b show that if one proceeds from the basic definition, the basic
requirements of the RG-Flow-Pattern structure are satisfied.

Comparing the two findings reveals remarkable differences in the overall color tone of the regional
groups. The regional group shown in Figure 6a has a warm tone, whereas that in Figure 6b has a
cool tone. The strength of each RG-Flow-Pattern is expressed by the warmth or coolness of color
tones. A warm tone indicates that the RG-Flow-Pattern behaves in a strong interactive pattern, and
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a cool tone indicates that the RG-Flow-Pattern behaves in a weak interactive pattern. The degree of
strength is measured on the basis of the P value obtained through Equation (2). The critical value
of strength is divided in accordance with the overall distribution of P values of all models by using
natural discontinuity and quantile methods. The P values can be defined by the user. Figure 6a belongs
to the strong regional interaction flow pattern, which is further defined as the hotspot flow pattern.
Figure 6b belongs to the weak interactive flow pattern, which is further defined as the cold-spot flow
pattern. In addition to the collective differences in the coolness and warmth of the tones of regional
groups, the inner regions of each RG-Flow-Pattern differ. This difference represents the contribution
rate of a single region to the current RG-Flow-Pattern interaction value. Dark colors are associated
with the high contribution rate of the region to the RG-Flow-Pattern interaction value and vice versa.
Contribution rate is calculated through Equations (4) and (5). The contribution of a single zone in the
starting regional group is used to measure the contribution rate of a single region in the termination
regional group for each flow pattern. This rule can be applied to hotspot and cold-spot flow patterns.
The first two parts of the legend shown in Figure 6c illustrate the specific meanings and corresponding
relationships between the expression flow pattern strength and the contribution rate of interaction
values in each region to the visualization results.

In addition, to compensate for the inadequacy of the interaction value that can be used to evaluate
the strength of the interaction model, the RG-Flow-Pattern also needs to evaluate the value of the
overall model interaction value on the basis of the V value. In the visualization, the size of the V value
is expressed by the thickness of the arrow, which indicates the current RG-Flow-Pattern interaction
value. Comparing Figure 6a,b shows that although the RG-Flow-Pattern in the former shows a strong
flow pattern, the interaction value is smaller than that in the latter. The flow pattern direction portion
of Figure 6c provides a legend of the interaction value size relationship.

In addition to directional arrows, the complete visualization result of the RG-Flow-Pattern
includes starting and ending regional groups, cool- and warm-toned variable groups that represent
the strong and weak P values of the interaction pattern, a saturation visual variable that represents the
contribution rate V of a single region to the value of the current pattern interaction value, and a visual
arrow variable that represents the size of the flow pattern interaction value.

3.2.2. Visualization and Classification of Multiple RG-Flow-Patterns Based on Geo-information Tupu

In the traditional spatial data distribution and visualization patterns, the distribution pattern of
the same topic and region can be presented on a map. For example, Local Moran’s I and General G
index [39,40], the classical methods for the analysis of the local spatial autocorrelation, facilitate the
presentation of model analysis on the same map. However, presenting the regional group interactive
hotspot flow pattern on the same map is difficult. Figure 7 shows that although pattern-01 and
pattern-02 belong to two different flow patterns in the same region, both patterns have a single
repeating unit in the real and termination regional groups. Thus, expressing the two patterns on the
same map is difficult for such situations.

The theory and method of geo-information Tupu was originally presented by Chen in the 1990s
and can be used to solve this problem [41]. Chen’s geo-information Tupu theory emphasizes the
structuring, abstraction, classification, and relevance of the features of geographic laws and uses
these principles in a map sequence. The map sequence can be adopted by the geo-information Tupu
method because in many cases, presenting multiple RG-Flow-Patterns on the same map is difficult,
and the different RG-Flow-Patterns of the same topic can also be divided on the basis of type. The
RG-Flow-Pattern map sequence can be arranged in accordance with type, interaction strength, and
value size. Only the type division of the RG-Flow-Pattern map is introduced in this work given that
interaction strength and values can be directly organized on the basis of P and Z values.

In fact, for RG-Flow-Patterns, type division is also a relatively simple task. In this work,
RG-Flow-Patterns are classified into basic and complex types. The basic types mainly include the five
types shown in Figure 8.
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regions and single direction RG-Flow-Pattern; (b) many-to-many region and double direction
RG-Flow-Pattern; (c) one-to-many single direction RG-Flow-Pattern; (d) many-to-one single direction
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4. Case Study: National Migration Flow Data of China

4.1. Study Area and Data Descriptions

On a daily basis, a large number of people travel from one place to another because of work,
leisure travel, or other purposes. Human mobility can reflect many area characteristics, such as
urban attractiveness and tourism resources. China has a population of 1.3 billion, and different
regions have drastically different economic, political, cultural, and resource characteristics. Massively
imbalanced population size and regional disparities further promote population movements [2].
China’s nation-wide cross-regional transportation includes three types of transportation, namely,
automobiles, trains, and aircraft. This work uses the migratory flow data of mainland China the main
data source with the prefecture-level city as the smallest research unit given its effectiveness in the
analysis of flow data across regions. We adopt the RG-Flow-Pattern method for empirical analysis.
Figure 9 shows the distribution of population migration routes (by airplane) for the main study area
on 1 April 2017. Only the top 10 data inflows and relocations from each prefecture-level city are used
in this work.
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The demographic data provided by the Tencent location big-data platform are used in this
research. Tencent is a major Internet company in China that provides nationwide, location-based,
real-time migration big-data services. This platform provides daily migration data for mainland China.
Migration types include migration through aircraft, trains, and automobiles. The top 10 regions ranked
on the basis of flow data are included, and the degree of the hotspot flow value of inward and outward
movement is calculated. Among the three patterns of transportation data, flight data has the longest
distance, and the RG-Flow-Pattern method is more effective at analyzing flow data with long distances
between the origin and destination areas. Therefore, the population migration data of flights are
analyzed in this study. The data used in this study involve 315 cities with approximately 6300 data
points and include flow data with original city, destination city, and hot value as the main attributes.
The hot value of each directed flow data record is positively correlated with the number of passengers.
In our model, the hot value is used as an interaction value in the calculation.

The data used in the experiment consists of two components. A component of the data is the
administrative division polygons at the prefecture-level city. These data are mainly used to determine
spatial relationships among cities. The other component is the population flow data of flights among
different cities. The interaction value between the two cities is measured on the basis of the heat value
by mainly using the OD data mining of similar regional group flow patterns. Table 1 shows the main
attributes of the two parts of data.

Table 1. Data attributes description.

Data Type Attribute Meaning Attribute Type

Administrative polygons city_name Name of each city String

Population flow data of flights
origin_city_name Name of origin city String
destination_city_name Name of destination city String
hot_value Hot value between cities Double

4.2. Result

The RG-Flow-Pattern method proposed in this study was adopted. The prefecture-level city is set
as the regional unit, and the modal method of spatial relationship shown in Figure 5c is used. Then,
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the θ value of P (RFj) ≥ θ was set to 0.00001. The partial patterns obtained in the analytical results are
shown in Figure 10:
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Figure 10. Four examples of RG-Flow-Patterns geo-information Tupu obtained under the threshold
of 0.00001. (a) A cold-spot RG-Flow-Pattern; (b) a hotspot RG-Flow-Pattern; (c) a cold-spot
RG-Flow-Pattern; (d) a hotspot RG-Flow-Pattern.
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Figure 10a shows that RG-Flow-Pattern algorithm identified that some regions in the southwestern
part of China (the red part) and the eastern part of the coastal area (the blue part) form the regional
group interaction flow model. Figure 10a shows the geographical distribution of the flow pattern on
the left, and Figure 10a shows the interaction pattern on the right. The latter shows that the pattern
belongs to the cold-spot flow pattern, and the direction of the flow pattern is from the southwest area
to the eastern coastal area. The color of a single area represents the contribution of the flow of that area
to the entire pattern. The southwest area is used as the starting regional group of the flow pattern, in
which the color depth of each area represents the contribution of the sum of the values of the area that
flows out to the termination area group to the outflow value (also called the outdegree) of the entire
model. The coastal area is the most frequent end-of-flow model, in which the color depth of each area
indicates the contribution rate of the inflow value of the area to the inflow value of the entire model. A
dark color indicates a high contribution rate.

Figure 10b,d are interactive hotspot flow patterns recognized by the G-Flow-Pattern algorithm.
Figure 10c is another set of identified regional group interaction cold-spot flow patterns.

5. Discussion and Conclusions

5.1. Discussion

5.1.1. Principle underlying the Selection of the Regional Adjacency Relationship and Regional
Merge Threshold

The adjacent edge-and-corner approach is used to determine the adjacency of an area. In this
approach, an area adjoining the target area is considered as adjacent as long as an edge or corner
adjacent to the target area exists. Other methods mentioned in Section 3.2.1 can be selected to model
the area’s adjacency. However, the use of different regional adjacency relationships may also result in
differences in the models based on RG-Flow-Pattern analysis given the effect of regional adjoining
relationships on the model. Spatial statistical methods, such as Moran’s I, the Geary index, and
geographically-weighted regression, are recommended as a reference for the selection rules of regional
spatial relations. Furthermore, when the value of θ in P (RFj) ≥ θ is different, the resulting flow
pattern may also vary. When the value of θ is large, the number of flow patterns to be formed is small.
The number of areas in the flow pattern that constitutes the starting and termination area groups also
decreases. To solve this problem, the recommended practice is to obtain the P (RFj) ≥ θ values for
all regional flows, and then use the bar histogram to evaluate the distribution of all regional flow P
(RFj) ≥ θ values and select them in accordance with the analytical target. A reasonable threshold
is taken as the value of θ. This method can control the number and strength of flow patterns to a
certain extent.

5.1.2. Evaluation of Results

A complete flow pattern includes the basic elements of the flow pattern (starting regional group,
termination regional group, and interaction arrows), interaction strength, interaction value size, each
individual flow pattern, and the rate of contribution of the area’s traffic to the interaction value of the
entire flow pattern. Although this design enables each flow pattern to contain sufficient information
for self-evaluation, it presents the following disadvantages: First, these assessments are solely for a
single-flow model and are insufficient for the assessment of the overall characteristics of all models.
For a single-flow pattern, four situations starting from the strength of the pattern and the size of
the interaction value are observed: a strong interaction pattern with a large interaction value; a
weak interaction pattern with a small interaction value; a strong interaction pattern with a small
interaction value; and a weak interaction pattern with a large interaction value. Understanding these
four scenarios is useful for the subsequent analysis of the overall characteristics of the model. If the
strength and interaction values of each flow pattern can be described by the XY coordinate system,
then the four cases can be expressed clearly and transparently by using a four-quadrant diagram.
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5.1.3. Shortcomings and Future Improvements

The RG-Flow-Pattern method requires that all flow patterns with certain intensities are recognized
from the mass flow data, and a plurality of visual variables are used to express patterns and related
evaluation amounts. However, the method exhibits the following deficiencies: First, although this
method aims to analyze any type of flow data, such as people, logistics, and traffic flow, it encounters
difficulty in finding two cross-regional regional groups with short interaction distance. Thus, this
method is suitable for the mining of regional group interaction patterns between regions with long
interaction distances. Although one can solve this problem by setting small partitions, more often
than not, the interactive areas used for analysis are predefined and show geographic importance
and cannot be customized because of their size. In subsequent studies, we will attempt to construct
a flow data mining model that is based on this method and that is suitable for short interaction
distances. Second, in a complete regional group interaction flow model, a strong self-interactive
pattern may exist between a single region of a starting regional group and a single region of an ending
regional group. In this case, the RG-Flow-Pattern method cannot recognize their self-interactive
pattern. This self-interactive pattern mining method is relatively simple but is mainly challenged by
the identification and improvement of the role of the self-interactive pattern in the proposed flow
model. Expression is performed visually to facilitate subsequent visual analysis. These are the tasks
that require further improvement.

5.2. Conclusions

Geographers have shifted their attention from physical space to flow space because of
globalization and the development of the Internet. Methods for spatial analysis have also been
extended to the discovery of spatial interaction patterns. Although spatial interaction has always
been the focus of the GIS field, spatial interactions and even space-time interactions have attracted the
attention of scholars because of the advent of big-data technologies. Numerous researchers mainly
focus on point-to-point, area-to-area, or interaction-based research on regional convergence or diffusion
but few have considered the interaction patterns that may exist between regional groups with adjoining
relationships. In fact, the interaction of most flow data does not only exist between two separate areas
but also between a group of areas and another regional group.

We assume that an imbalance in certain resources results in the development of a relationship
between one area and another. Furthermore, under the condition of resource imbalances, the
surrounding area of one certain region has a similar demand for a certain resource, thereby causing
the target area and its surroundings with limited sources (regional groups) to interact with other
regional groups with abundant resources. The proposed RG-Flow-Pattern analysis and visualization
method can effectively mine the possible interaction patterns between two regional groups under
such scenarios. In this analytical method, all regional groups with interaction relationships that satisfy
a specific traffic threshold are identified. Moreover, in our proposed method, the strength level of
each group of interaction flow patterns, the interaction size of the patterns, and each of the interaction
variables and the extent to which the area contributes to the overall model interaction volume can be
measured on the basis of the outcome variables.

The first law of geography is the basic principle of the GIS spatial analysis model, that is, the
spatial unit has spatial correlation characteristics [42]. In the past, spatially distributed characteristics
tend to be considered in analytical models of spatial distributions and relationships. Concomitant
with the “interactive” turn of the GIS analysis model and from the perspective of flow space, the
spatial flow model or spatial interaction model should also consider spatial correlation. However, the
spatial flow model is more complex than spatial distribution and relationship models, and visualizing
all patterns on a single map is difficult. In this work, we proposed a method for the analysis of
spatial group interaction models based on the relevance of neighboring regional units. Moreover, we
used the geo-information Tupu [41] method to express analytical results and address the difficulty of
single-diagram visualization. Our analysis and visualization method can be extended to mine data on
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regional interaction relationships in any other flow data forms. If the target OD data is in point-to-point
form, then the OD data based on a certain area unit must be summarized and the RG-Flow-Pattern
model must be used for pattern mining. When the OD data itself is based on a certain area unit, then
the RG-Flow-Pattern model can be used directly.

Abbreviations

Point-to-point From one point to another point
Area-to-area From one area to another area
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