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 5 

Abstract: Real-time air quality prediction has been an active field of research in atmospheric environmental 6 

science. The existing methods of machine learning are widely used to predict pollutant concentrations 7 

because of their enhanced ability to handle complex non-linear relationships. However, because pollutant 8 

concentration data, as typical geospatial data, also exhibit spatial heterogeneity and spatial dependence, 9 

they may violate the assumptions of independent and identically distributed random variables in most of the 10 

machine learning methods. As a result, a space-time support vector regression model is proposed to predict 11 

hourly PM2.5 concentrations. First, to address spatial heterogeneity, spatial clustering is executed to divide 12 

the study area into several homogeneous or quasi-homogeneous subareas. To handle spatial dependence, a 13 

Gauss vector weight function is then developed to determine spatial autocorrelation variables as part of the 14 

input features. Finally, a local support vector regression model with spatial autocorrelation variables is 15 

established for each subarea. Experimental data on PM2.5 concentrations in Beijing are used to verify 16 

whether the results of the proposed model are superior to those of other methods. 17 

Keywords: Real-time air quality prediction; spatial heterogeneity; spatial dependence; support vector 18 

regression; spatial clustering; Gauss vector weight function 19 

1. Introduction 20 

Epidemiologic studies have demonstrated that short-term (acute) exposure to air pollution can 21 

damage human health; of specific concern is particulate matter, which includes fine particulate 22 

matter (PM2.5), that can accumulate in the respiratory system and directly increase the risk of death 23 

caused by lung cancer, cardiovascular disease, and pulmonary illness (Dominici et al., 2006; 24 

Diaz-Robles et al., 2015; Kloog et al., 2014; Di et al., 2017). Therefore, to protect the public from 25 

particulate matter or air pollution, real-time air quality prediction has been an active field of 26 

research in atmospheric environmental science.  27 

Existing methods for real-time air quality prediction can be roughly classified into two 28 
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categories: physically based methods and empirically based methods (Zhang et al., 2012). 29 

Physically based methods, also referred to as chemical transport models, aim to estimate air 30 

pollutants by using deterministic chemical transport models that encompass all major 31 

meteorological, physical, and chemical processes (Wayland et al., 2002). However, the performance 32 

of physically based approaches can be undermined by high uncertainty in the amount of emissions 33 

and the chemical reactions (i.e., reaction rates), which are presented at a fine space-time resolution. 34 

Comparatively, empirically based methods directly model the relationships between pollutant 35 

concentrations and relevant variables. Although empirically based methods cannot describe the 36 

pollution process, they are widely used to predict pollution because it these methods are easy to 37 

implement with suitable accuracy. Therefore, based on the in-depth development of geospatial data 38 

analysis in geographical information science (GIS), which provides an effective means to reveal the 39 

space-time distribution and evolution of air pollutant concentrations (Miller and Han, 2009), this 40 

paper focuses on empirically based methods. 41 

Empirically based methods can be further grouped into two categories, namely, statistical 42 

methods and machine learning methods. Statistical methods generally assume that the data on air 43 

pollutant concentrations are generated by a given stochastic data model, and the stages of model 44 

building consist of model specification, coefficient estimation, model verification and statistical 45 

inference (Wasserman, 2004). Many statistical models, such as the multiple linear regression model 46 

(Abdul-Wahab et al., 2005; Ghazali et al., 2010), the land-use regression model (Hoek et al., 2008; 47 

Johnson et al., 2010; Wang et al., 2013), the geographically weighted regression model (Robinson et 48 

al., 2013), and the mixed-effect model (Lee et al., 2011; Kloog et al., 2014), have been adopted to 49 

predict air pollutant concentrations. Nevertheless, these specified models tend to oversimplify the 50 

complex non-linear relationships that exist between air pollutant concentrations and predictor 51 

variables. 52 

Comparatively, machine learning methods have obvious advantages in handling complex 53 

non-linear relationships among environmental data. Machine learning methods mainly apply 54 

algorithmic models and treat the data mechanism as an unknown; additionally, the most commonly 55 

used models include artificial neural networks (ANNs) (Ordieres et al., 2005; Arhami et al., 2013), 56 

classification and regression trees (Brokamp et al., 2017), support vector regression (SVR) 57 

(Sánchez et al., 2011; Nieto et al., 2013), and hidden Markov models (Dong et al., 2009; Sun et al., 58 
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2013). Most of those machine learning methods are based on the assumptions of independent and 59 

identically distributed random variables (Pereira and Mello, 2011). However, data on air pollutants 60 

also exhibit the same characteristics as geospatial data (i.e., spatial heterogeneity and spatial 61 

dependence), which violates the assumptions of machine learning methods. Therefore, it is 62 

inappropriate to directly apply machine learning methods to model air pollutant data, and how to 63 

incorporate spatial heterogeneity and spatial dependence in the process of machine learning is an 64 

urgent problem that requires attention. 65 

It has been shown that SVR outperforms other machine learning methods in predicting air 66 

quality because training for the SVR produces a global optimum (Sánchez et al., 2011; Nieto et al., 67 

2013). As a result, this study aims to develop a space-time support vector regression (STSVR) 68 

model to predict hourly PM2.5 concentrations. The STSVR model is developed by incorporating 69 

spatial dependence and spatial heterogeneity into the modelling process used by conventional 70 

support vector regression models.  71 

2. Materials and Methods 72 

2.1 Materials 73 

2.1.1 Area description 74 

The study area was the city of Beijing, which is located in North China and is the capital of the 75 

People’s Republic of China. The area has a monsoon-influenced humid continental climate, which 76 

is characterised by higher humidity in the summers and windier, colder, and drier winters. The daily 77 

average temperature in July is approximately 26.2°C, and in January, it is about -3.7°C. The annual 78 

precipitation is approximately 570 mm, with about three-fourths of the total precipitation falling 79 

between June and August. Annually, approximately 2,671 hours of bright sunshine is received, and 80 

monthly percent possible sunshine ranges from approximately 65% in July to approximately 47% in 81 

January and February. 82 

In recent years, the study area has frequently suffered from severe air pollution. PM2.5 has been 83 

shown to be the main air pollutant, and its concentrations are greatly influenced by emission sources 84 

(Zhang et al., 2015). Lv et al. (2016) reviewed recent studies that reported source apportionment 85 

results from 2000 to 2012 in Beijing. During this period, the annual average PM2.5 concentrations 86 

gradually decreased. Summer is identified as the least polluted season, and winter is the most 87 
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polluted season. The major compositions of PM2.5 are sulphate, organic matter, nitrate and 88 

ammonium. It can also be found that vehicles, industry, dust, biomass burning, coal combustion and 89 

secondary products were major sources of PM2.5. Two periods (i.e., before 2005 and after 2005) 90 

were further assessed to investigate differences between the source contributions. Specifically, the 91 

annual average contributions of vehicle exhaust increased from 6.8% before 2005 to 10.6% after 92 

2005. The industrial contributions prior to and after 2005 were 6.9 and 15.5%, respectively. The 93 

contribution of dust was 13.3% before 2005 and 19.9% after 2005. Biomass burning also 94 

contributed less before 2005, with an annual average of 7.9%, than after 2005, when the annual 95 

average increased to 11.6%. The contributions of coal combustion were almost 15.0% in both 96 

periods. 97 

2.1.2 Data collection 98 

There are 35 air quality monitoring sites that record hourly average PM2.5 concentrations. The 99 

tapered element oscillating microbalance method is used to measure PM2.5 concentrations 100 

automatically. In addition, source apportionment by manual methods is applied to analyse pollutant 101 

components and to evaluate the accuracy of automatic monitoring. In general, the estimated error of 102 

automatic monitoring is less than 5%. The related information can be obtained from the official 103 

website of the Beijing Municipal Environmental Mentoring Center (http://www.bjmemc.com.cn). 104 

Fig. 1 shows the spatial distribution of these monitoring sites. In our experiment, air quality data 105 

were collected from these monitoring sites for the period between March and April 2014. 106 

Meanwhile, considering that meteorological elements are the main factors influencing changes in 107 

PM2.5 concentrations, the meteorological elements for that same period were obtained from weather 108 

monitoring sites and selected as the predictor variables. The meteorological data utilised in the 109 

process of predicting the concentration of PM2.5 are (1) surface temperature (ºC), (2) relative 110 

humidity (%), (3) wind force (level), (4) wind direction (angle), and (5) precipitation (mm). 111 

 112 

[Insert Fig. 1 about here] 113 

 114 

2.2 Methods 115 

As discussed above, SVR provides a better learning strategy in modelling non-spatial data. 116 

However, spatial dependence and spatial heterogeneity make it necessary to extend SVR into the 117 
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field of environmental or geospatial data analysis. Therefore, an STSVR model is developed in this 118 

paper by incorporating these spatial characteristics. The implementation of the STSVR model is 119 

shown in Fig. 2. First, spatial clustering analysis is used to address spatial heterogeneity of the 120 

space-time series of hourly PM2.5 concentrations, and then spatial autocorrelation variables based on 121 

a Gauss vector weight function are identified to address spatial dependence of hourly PM2.5 122 

concentrations. Finally, a local SVR with spatial autocorrelation variables is employed to model 123 

hourly PM2.5 concentrations. 124 

 125 

[Insert Fig. 2 about here] 126 

 127 

2.2.1 Addressing spatial heterogeneity using spatial clustering analysis 128 

Spatial heterogeneity refers to the non-stationarity of the spatial processes generating the 129 

observed data (Jiang, 2014). Specifically, the statistical characteristics of PM2.5 concentrations and 130 

the relationships between PM2.5 and the associated factors may vary over space. To address spatial 131 

heterogeneity, it is common to build a local model, such as GWR and its variants, at each spatial 132 

location. However, this approach may be inappropriate for structured heterogeneity, which means 133 

that the model tends to be more dissimilar at locations that are farther apart. It is redundant to build 134 

a point-based model at each location, and thus, region-based models may be more suitable. 135 

Spatial clustering algorithms can divide an entire study area into several homogeneous or 136 

quasi-homogeneous subareas; therefore, spatial clustering analysis is employed to group PM2.5 data 137 

into several spatial clusters, and a local region-based model is built based on the results of spatial 138 

clustering. The existing methods for spatial clustering are mainly classified into five categories: 139 

hierarchical methods, partitioning methods, grid-based methods, density-based methods, and 140 

model-based methods (Liao, 2005). Most of these methods are presented using general-purpose 141 

clustering methods, which have a limited ability to recognise spatial patterns, including neighbours 142 

(Guo et al., 2003). To overcome this limitation, a model-based method, which is called a 143 

geographical self-organising map (GeoSOM) and considers geography’s first law, is selected to find 144 

heterogeneous structures. 145 

GeoSOM is developed by extending the conventional self-organising map algorithm to 146 

explicitly consider geographic information. In GeoSOM, first, the spatial coordinates of the objects 147 
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are used as input vectors to search for the winning unit, which is called the geographical best match. 148 

Subsequently, the attribute values are used as input vectors, and only the units in the neighbourhood 149 

of the geographical best match are used to find the final best match in the output layer. Thus, both 150 

spatial proximity and attribute similarity within clusters can be guaranteed. In the process of spatial 151 

clustering analysis with GeoSOM, two crucial components need to be considered: the similarity 152 

measure and the cluster evaluation criteria. In this study, Euclidean distance is chosen as the 153 

similarity measure, and two types of clustering validity indices, namely, the DB index (Davies and 154 

Bouldin, 1979) and the Sil index (Rousseeuw, 1987), are used to select the number of clusters. A 155 

small DB index value or a larger Sil index value generally indicate better clustering results. The 156 

clusters that satisfy these two indices are chosen (Kryszczuk and Hurley, 2010). 157 

2.2.2 Addressing spatial dependence using a Gauss vector weight function 158 

Spatial dependence or spatial autocorrelation means that the PM2.5 concentration at spatial i 159 

and time t not only depend on other associated factors but also depend on the previous 160 

concentrations at both that point and its neighbour (Tobler, 1970). Therefore, it is necessary to apply 161 

spatial autocorrelation variables as inputs in prediction models to handle spatial dependence. In the 162 

field of geospatial analysis, spatial autocorrelation variables are defined via a spatial weights matrix, 163 

W (n×n), which is the formal expression of spatial dependence between observation sites (Getis 164 

and Aldstadt, 2004).  165 

Suppose � × � samples (��(�), 	��(�)) are observed at spatial location i (i= 1, …, n) and time 166 

t (t=1, …, l), where	��(�) ∈ � denotes the independent variables, and 	��(� − 1) denotes the 167 

predictive variable, i.e., the PM2.5 concentrations in this study. Spatial autocorrelation variables can 168 

be defined using the following equation. 169 

��
∗(� − 1) = ∑ �(�, �)��(� − 1)�

��� ,                         (1) 170 

where �(�, �) (an element in W) represents the spatial weight between spatial locations i and j. The 171 

general strategy for determining W is based on spatial distance or spatial contiguity. The first 172 

assumes that the degree of correlation depends on the spatial distance, and the second determines 173 

the degree of correlation based on the spatial topology relationships. Both methods make the 174 

isotropic assumption, which assumes the effect from any direction can be regarded as equivalent.  175 

However, the spreading process of air pollution is obviously anisotropic because air pollutants 176 

are usually transported based on the direction of the wind. The traditional strategy based on the 177 
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isotropic assumption does not describe the spatial dependence of air pollutant concentrations. For 178 

example, in Fig. 3, if the wind direction is NE, the PM2.5 concentrations at p0 are directly affected 179 

by the concentrations at p1, p2, p3, and p4, and they may not be affected by the concentrations at p5 180 

and p6. In addition, the affected degree is obviously negatively correlated with the angle θ and the 181 

distance (the angle is defined by the wind direction and the edge between two points, and the 182 

distance is defined by the spatial location of two points). Specifically, in the terms of p0, although 183 

points p1 and p2 have the same angle, the affected degree of p1 is higher than that of p2 because d01 is 184 

smaller than d02. Likewise, the affected degree of p3 is higher than that of p4 because the NEp0p3 185 

angle is smaller than the NEp0p4 angle, even though they are equally distant from p0. 186 

 187 

[Insert Fig. 3 about here] 188 

 189 

A Gauss kernel function can only represent the dependence of spatial distance; it cannot 190 

describe the differences in direction. To simultaneously address anisotropy, the Gauss vector weight 191 

(GVW) is presented based on the Gauss kernel function. The GVW combines the direction and 192 

distance effects with the transport process of air pollutants, which can be described as  193 
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where dij and θij represent the distance variable and the angle variable, respectively. The distance 195 

can be calculated directly by spatial locations. Because the wind direction changes over time, the 196 

angle variable is a temporal variable that can be computed by the dynamic wind direction. It is 197 

noted that there is one bandwidth parameter, c, used, and it represents the trade-off between the 198 

direction and distance effects; this bandwidth parameter needs to be optimised.  199 

2.2.3 Modelling hourly PM2.5 concentrations using STSVR 200 

A support vector machine (SVM) was developed to solve multi-dimensional function 201 

estimation problems using statistical learning theory (Vapnik, 2000). SVM can be divided into two 202 

main categories, namely, support vector classification and support vector regression. The former is 203 

used to address classification problems, and the latter is designed to handle problems associated 204 

with function approximation. Because the PM2.5 concentrations are continuous values, predicting 205 

PM2.5 concentration is a type of regression problem, and thus, SVR is suitable to model PM2.5 206 
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concentrations. Conventional SVR methods are directly employed to model hourly PM2.5 207 

concentrations without considering spatial heterogeneity and spatial dependence. As discussed 208 

above, it is more suitable to build a spatially local model for each cluster or sub-area instead of a 209 

global model for the entire study area. Meanwhile, the spatial autocorrelation variables, ��∗(� − 1), 210 

identified by the GVW function should be considered as the input variables. 211 

Therefore, the STSVR model aims to find a series of local functions �����(�)(�(�)) (j= 1, …, 212 

k) that can accurately predict the observation y with the new input data x and spatial autocorrelation 213 

variables �∗(� − 1) at area j, and k denotes the number of sub-areas obtained from spatial 214 

clustering analysis. Theoretically, a linear function �����(�)(�(�)) exists in the high dimensional 215 

feature space to formulate the non-linear relationship between the input data and the target data at 216 

sub-areas j and t. The linear function is calculated using the following equation 217 

�����(�)(�(�)) 	= �����(�)
 !([�(�), �∗(� − 1)]) + %����(�),            (3) 218 

where the parameters �����(�)
  and %����(�) are the normal vector and the threshold at area j, 219 

respectively, and �∗(�) = [�(�), �∗(� − 1)]  denotes the predictive variables. By solving the 220 

quadratic optimisation problem with inequality constraints, the STSVR model regression function 221 

can be obtained using the following equations 222 

�����(�) = ∑ ∑ (&�,����(�)
∗ (�) − &�,����(�)(�))!(��

∗(�))�(�)
���

'
(��                    (4) 223 

�(�∗) = ∑ ∑ )&�,����(�)
∗ (�) − &�,����(�)(�)*+(��

∗(�), �∗) + %����(�)
�(�)
���

'
(��           (5) 224 

where &�
∗ and &� represent the Lagrangian multipliers; +(��

∗, �∗) is called the kernel function, 225 

and any functions meeting Mercer’s condition, such as Gaussian radial basis function, can be 226 

adopted as the kernel function, which can be defined as ,-.	(−0.5‖��
∗ −	�∗‖3/5����(�)3) with a 227 

width of σ����(�). 228 

It can be found that there are two differences between STSVR and conventional SVR. First, 229 

spatial autocorrelation variables are included in the predictive variables in STSVR. Second, 230 

spatially local models need to be built for each sub-area in STSVR; in contrast, SVR aims to build a 231 

global model for the entire area. It is worth noting that the region is divided into several sub-areas to 232 

address spatial heterogeneity, but modelling spatial dependence is based on the data of the entire 233 

area, which means that the neighbours of spatial location i not only include the elements of the 234 
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sub-area of spatial location i but also the elements of other spatial areas. 235 

3. Results 236 

Experimental data were divided into two parts, one for modelling and the other (i.e., data from 237 

the last day) for prediction analysis. The latter data used for prediction analysis were regarded as 238 

unknown data and were not included in the building of the prediction model. First, GeoSOM was 239 

used to group PM2.5 space-time series data into several clusters. It should be noted that the spatial 240 

variability of PM2.5 concentrations can be identified from two aspects. The first is the result of 241 

spatial variability, which is directly analysed by PM2.5 space-time series data; the second includes 242 

the causes of spatial variability, including meteorological elements, pollution source information, 243 

and topography. By contrast, it is easy to identify spatial variability based on PM2.5 space-time 244 

series data because it does not consider multiple factors or the interactions among them. Specifically, 245 

we identified spatial clusters from the results of spatial variability, and PM2.5 space-time series data 246 

were regarded as the input for spatial cluster analysis. 247 

Two types of cluster evaluation indices, namely, the DB index and the Sil index, were 248 

employed to determine the optimal number of clusters. The values of the DB index and the Sil 249 

index with different numbers of clusters are shown in Fig. 4. The final number of clusters was 250 

chosen to be 14 because this number results in a relatively low DB index value and a relatively high 251 

Sil index value; the corresponding clustering results are shown in Fig. 5.  252 

 253 

[Insert Fig. 4 about here] 254 

 255 

[Insert Fig. 5 about here] 256 

 257 

Through the partial autocorrelation function, the PM2.5 concentration at time t is statistically 258 

relevant to the PM2.5 concentrations at sites in the upwind direction at time t-1; hence, it is 259 

unnecessary to consider PM2.5 concentrations in the upwind direction at times t-2, t-3, etc. in the 260 

input for STSVR. The bandwidth parameter c is set from 0, 0.1dmin, 0.2dmin, …, to dmin, where dmin 261 

is the nearest-neighbour distance of spatial location i., The dmin changes over space because of the 262 

varying density of air quality monitoring stations. Considering that there is no structural method on 263 

how to efficiently set the STSVR parameters, we first fixed a bandwidth value, and other 264 
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parameters were then determined by minimising the RMSEs; the smallest RMSEs for each 265 

bandwidth value are shown in Fig. 6. It can be found that the RMSEs decrease gradually with the 266 

increase in the bandwidth value, and finally, the RMSEs stabilise when the bandwidth value reaches 267 

1.6dmin. Hence, the optimal value of the bandwidth parameter was selected to be 1.6dmin. After 268 

training the parameters, we can apply the STSVR model for predictive analysis. 269 

 270 

[Insert Fig. 6 about here] 271 

 272 

To demonstrate the effectiveness of the proposed STSVR model, other models, including the 273 

auto-regressive integrated moving average model with explanatory variables (ARIMAX) model, the 274 

global SVR model, and the space-time artificial neural networks (STANNs) model, were selected 275 

for comparative analysis. Meanwhile, ARIMAX can include covariates in ARIMA models, which 276 

can consider both temporal autocorrelation and other covariates (Brockwell and Davis, 1996). 277 

Global SVR aims to model all the data using a single model, but this approach cannot handle spatial 278 

heterogeneity. STANNs were initially presented by Cheng et al. (2009) to incorporate space-time 279 

autocorrelation into feedback ANNs. In addition, the result of the STANNs in each cluster (i.e., 280 

local STANNs) was used for comparative analysis. It is worth noting that because different models 281 

were constructed on the basis of different sizes of areas, there were obvious differences in the 282 

training sample sizes (listed in Table 1). The training sample sizes of local STANNs and STSVR 283 

were both 1440Ns(C), where Ns(C) indicated the number of stations in subarea C or cluster C 284 

(listed in Table 2), and 1440 was derived from 24 samples a day within 60 days at each station. 285 

ARIMAX was used to analyse time series of a single station and then the training sample size was 286 

1440×1.STANNs and Global SVR were constructed on the basis of the samples from the whole 287 

study area and then the training sample sizes were both 1440×35. 288 

Two accuracy evaluation indices, i.e., a total accuracy index ( tp ) and a total absolute error 289 

index ( te ), were used to quantitatively evaluate the predictive results of the different models. Their 290 

expressions are as follows 291 

.( = 1 −
∑ |8��9�:(�;�(�)<=>?@��A�(�;�(�)<|
B
CDE

∑ >?@��A�(�;�(�)<
B
C

                    (6) 292 

,( =
∑ |8��9�:(�;�(�)<=>?@��A�(�;�(�)<|
B
CDE

�
                         (7) 293 
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where FG,H�I��J�(�)( and K%L,GMN��J�(�)( represent the predicted value and the observation value 294 

at spatial locations i and t, respectively. The accuracies and the absolute errors of the next 1-6, 7-12 295 

and 13-24 hours are listed in Table 1.  296 

 297 

[Insert Table 1 about here] 298 

 299 

Table 1 shows that the highest values of p for all methods occur at the next 1-6 hours, followed 300 

by the values at the next 7-12 hours; additionally, the values at the next 13-24 hours are usually the 301 

lowest. The total absolute errors at hours 1-6 hours lower than those during other periods, and the 302 

highest values occur after 13-24 hours. This means that the prediction accuracy tends to decrease as 303 

the prediction time increases; in other words, as the prediction time increases, the level of 304 

uncertainty increases. Further, according to the results of different methods, it can be found that the 305 

p from the STSVR model at the hours 1-6 and 6-12 are 0.720, 0.703, respectively, which are higher 306 

than the values from the other methods. The total absolute errors of the STSVR model at the first 307 

two periods are 22.96 and 31.99 ug/m3, respectively, which are lower than the total absolute errors 308 

from the other methods. Therefore, it is demonstrated that the results of the proposed STSVR model 309 

are better than the results of the other methods. 310 

Moreover, the results of four randomly selected stations (i.e., S1, S2, S20, and S31, whose 311 

locations are shown in Fig. 5) are shown in Fig. 7. In contrast, the curves from the STSVR model 312 

are closer to the actual change, which further verifies the effectiveness of the proposed method.  313 

 314 

[Insert Fig. 7 about here] 315 

 316 

Moreover, the accuracies of the STSVR model in different sub-areas are listed in Table 3. It is 317 

obvious that the accuracies dramatically change over space. The predicted results at C7 are superior 318 

to those at other clusters during the next 1-6 hours. However, the accuracy at C7 during the next 319 

7-12 and 13-27 hours are not the highest. The predicted results at C1 are better than those at other 320 

clusters at hours 7-12, and the predicted results at C11 are better than those at other clusters at hours 321 

13-24. Meanwhile, it was also found that the lowest accuracies at the next 1-6, 7-12, and 13-24 322 

hours correspond to C13, C13, and C9, respectively.  323 
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 324 

[Insert Table 2 about here] 325 

 326 

4. Conclusions and future work 327 

The paper develops an extended support vector regression model to predict hourly PM2.5 328 

concentrations. Spatial heterogeneity and spatial autocorrelation are incorporated into the modelling 329 

process of SVR. First, spatial clustering is executed to address spatial heterogeneity by dividing the 330 

study area into several sub-areas. Using a novel Gauss vector weight function approach, spatial 331 

autocorrelation variables are determined and selected as a part of the input features. Finally, the 332 

traditional algorithm of SVR is adopted to map the relationships of each local sub-area. The 333 

experiment data on PM2.5 concentrations in Beijing are used to verify that the proposed method is 334 

superior to comparative methods, and the proposed method had high prediction accuracy and 335 

reliability. The main reason for this is that STSVR can address spatial heterogeneity, spatial 336 

autocorrelation, non-linearity, and external regressors simultaneously; in contrast, the comparative 337 

methods (i.e., ARIMAX, global SVR, STANNs, and local STANNs) address only some of these 338 

characteristics. The performance comparisons of the different methods are shown in Table 3. 339 

 340 

[Insert Table 3 about here] 341 

 342 

In fact, spatial heterogeneity can be classified into spatial local heterogeneity and spatial 343 

stratified heterogeneity (Wang et al., 2016). STSVR can mainly be used to address spatial stratified 344 

heterogeneity, which means that the relationships between air pollutant concentrations and other 345 

relevant variables change over spatial areas, but they are uniform within the same area. However, 346 

spatial local heterogeneity refers to relationships that change across spatial locations. That is, 347 

STSVR cannot address spatial local heterogeneity well. Meanwhile, we make an implicit 348 

assumption that the relationships between PM2.5 concentrations and meteorological elements satisfy 349 

stationary conditions, which means the relationships will not change over time. Then, under this 350 

condition, we can employ statistical models to make predictions. It is obvious that the assumption 351 

will not be valid if the time span is long. For at least one year of data, it may be necessary to 352 

construct seasonal models or dynamic models, and an available strategy is to split the data into a 353 
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short time-span series. In addition, STSVR cannot accurately predict abnormal or outlier patterns, 354 

such as pollution episodes (Zhang et al., 2012). However, abnormal patterns occur at low 355 

frequencies during this time period, and they are considered to result from an unknown or novel 356 

mechanism (Jiang et al., 2003). However, only a single model is used to fit all the samples of a 357 

sub-area. Because of the relatively small number of abnormal samples, this single model cannot 358 

describe the novel mechanism implicit in the abnormal patterns. Hence, it is difficult for STSVR to 359 

predict the abnormal patterns well.  360 

Future studies should focus on improving the following aspects of the STSVR model: (1) 361 

explore the space-time clustering method to correctly identify space-time heterogeneity and not just 362 

spatial heterogeneity; and (2) develop a hybrid method to address extreme concentrations to solve 363 

the problems commonly encountered in empirically based approaches. Moreover, only five 364 

meteorological parameters were selected to predict the PM2.5 concentrations, and this may explain 365 

why none of the accuracies of the included methods were very high. In the future, if we can collect 366 

other statistical data, including environmental data and human activity data, these additional 367 

features can be added to improve prediction results. 368 
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 447 

Fig. 1. Spatial distribution of air quality monitoring stations in Beijing 448 
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 451 

Fig. 2. The general framework of STSVR 452 
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 454 

Fig. 3. An illustration of the spatial dependence of air pollutant concentrations 455 
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 457 

Fig. 4. The DB index and SI index varied with different cluster numbers 458 
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 461 

Fig. 5. The clustering results from the PM2.5 concentration data 462 
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Fig. 6. The RMSEs of different bandwidth parameters 465 
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 468 

Fig. 7. The curves of different methods for the following 1-12 hours 469 
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 471 

Table 1 Comparison of different methods applied to the entire area 472 

Time 1-6 hour 7-12 hour 13-24 hour 

Methods 
Training sample 

sizes 

p 

 

e 

(ug/m3) 

p 

 

e 

(ug/m3) 

p 

 

e 

(ug/m3) 

ARIMAX 1440×1 0.681 26.64 0.667 34.20 0.444 72.09 

STANNs 1440×35 0.625 33.09 0.395 63.49 0.409 76.88 

Local STANNs 1440×Ns(C) 0.731 21.61 0.687 32.18 0.437 72.91 

Global SVM 1440×35 0.691 24.63 0.675 29.95 0.667 44.51 

STSVR 1440×Ns(C) 0.769 19.76 0.703 31.81 0.594 53.79 

 473 
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 475 

Table 2 Comparisons among different clusters or sub-areas using the STSVR model 476 

Time 1-6 hour 7-12 hour 13-24 hour 

Clusters Ns(C) 
p 

 

e 

 (ug/m3) 

p 

 

e 

 (ug/m3) 

p 

 

e 

(ug/m3) 

C1 3 0.832 11.79 0.871 8.93 0.746 29.78 

C2 2 0.781 18.46 0.710 24.73 0.490 57.36 

C3 2 0.860 13.21 0.750 23.88 0.568 53.93 

C4 1 0.757 21.54 0.872 11.63 0.638 41.60 

C5 2 0.727 36.32 0.523 70.15 0.424 92.17 

C6 4 0.828 14.08 0.658 33.11 0.480 71.89 

C7 4 0.873 10.86 0.531 55.52 0.430 80.44 

C8 5 0.825 14.55 0.840 17.88 0.714 39.22 

C9 2 0.759 23.45 0.573 55.37 0.420 75.62 

C10 2 0.732 22.47 0.770 25.51 0.665 44.29 

C11 3 0.564 24.91 0.688 26.86 0.817 21.58 

C12 3 0.742 24.68 0.667 46.74 0.615 55.76 

C13 1 0.433 32.14 0.347 51.52 0.655 42.65 

C14 1 0.691 23.38 0.686 23.35 0.709 31.23 

 477 

  478 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

25 

 

Table 3 The performance comparison of different methods 479 

Performance 

Models 
Heterogeneity 

Autocorrelation 

（anisotropy） 
Non-linearity External regressors 

ARIMAX √ × × √ 

STANNs × × √ × 

Local STANNs √ × √ × 

Global SVR × × √ √ 

STSVR √ √ √ √ 

The symbol √ (×) denotes that the model can (or cannot) address the corresponding characteristic. It is worth noting that the 

third column (i.e., autocorrelation) indicates whether the model can address anisotropy of the spreading process of air pollution. 
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Highlights:  

� Spatial clustering analysis was used to handle spatial heterogeneity among PM2.5 

data. 

� A Gauss vector weight was presented to define spatial autocorrelation variables as 

so to accord with the transport process of air pollutants 

� An extended support vector regression model was constructed by considering the 

spatial characteristics of the air pollutant data, namely spatial dependence and 

spatial heterogeneity. 


