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Prediction of hourly PMs using a space-time support
vector regression model

Abstract: Real-time air quality prediction has been an acfieéd of research in atmospheric environmental
science. The existing methods of machine learnnegvadely used to predict pollutant concentrations
because of their enhanced ability to handle compiax-linear relationships. However, because politita
concentration data, as typical geospatial data,oaéxhibit spatial heterogeneity and spatial depecde
they may violate the assumptions of independeniderdically distributed random variables in mos$ttioe
machine learning methods. As a result, a space-support vector regression model is proposed talipte

hourly PM, s concentrations. First, to address spatial hetermgjty, spatial clustering is executed to divide

the study area into several homogeneous or quasielgeneous subareas. To handle spatial dependence, a

Gauss vector weight function is then developeceterthine spatial autocorrelation variables as pafthe
input features. Finally, a local support vector regsion model with spatial autocorrelation variables
established for each subarea. Experimental dataPdys concentrations in Beijing are used to verify

whether the results of the proposed model are soipter those of other methods.

Keywords: Real-time air quality prediction; spatial heterogigyy spatial dependence; support vector

regression; spatial clustering; Gauss vector weigtttion
1. Introduction

Epidemiologic studies have demonstrated that dieomt-(acute) exposure to air pollution can
damage human health; of specific concern is paatieumatter, which includes fine particulate
matter (PMs), that can accumulate in the respiratory systedhdarectly increase the risk of death
caused by lung cancer, cardiovascular disease,pafrdonary illness (Dominici et al., 2006;
Diaz-Robles et al., 2015; Kloog et al., 2014; Daét 2017). Therefore, to protect the public from
particulate matter or air pollution, real-time a@uality prediction has been an active field of
research in atmospheric environmental science.

Existing methods for real-time air quality predbeti can be roughly classified into two
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categories: physically based methods and empyichised methods (Zhang et al., 2012).
Physically based methods, also referred to as dantiansport models, aim to estimate air
pollutants by using deterministic chemical transponodels that encompass all major
meteorological, physical, and chemical processesy(@d et al., 2002). However, the performance
of physically based approaches can be underminddgbyuncertainty in the amount of emissions
and the chemical reactions (i.e., reaction rategkjch are presented at a fine space-time resolution
Comparatively, empirically based methods directlpdel the relationships between pollutant
concentrations and relevant variables. Although igoghly based methods cannot describe the
pollution process, they are widely used to preg@fution because it these methods are easy to
implement with suitable accuracy. Therefore, basethe in-depth development of geospatial data
analysis in geographical information science (G¥)ich provides an effective means to reveal the
space-time distribution and evolution of air padioit concentrations (Miller and Han, 2009), this
paper focuses on empirically based methods.

Empirically based methods can be further grouped two categories, namely, statistical
methods and machine learning methods. Statistiedhoas generally assume that the data on air
pollutant concentrations are generated by a givechastic data model, and the stages of model
building consist of model specification, coeffidiesstimation, model verification and statistical
inference (Wasserman, 2004). Many statistical nmdrich as the multiple linear regression model
(Abdul-Wahab et al., 2005; Ghazali et al., 2016¢ land-use regression model (Hoek et al., 2008;
Johnson et al., 2010; Wang et al., 2013), the ggatueally weighted regression model (Robinson et
al., 2013), and the mixed-effect model (Lee etZ011; Kloog et al., 2014), have been adopted to
predict air pollutant concentrations. Nevertheléssse specified models tend to oversimplify the
complex non-linear relationships that exist betwedn pollutant concentrations and predictor
variables.

Comparatively, machine learning methods have olsviadvantages in handling complex
non-linear relationships among environmental déf@achine learning methods mainly apply
algorithmic models and treat the data mechanisamasknown; additionally, the most commonly
used models include artificial neural networks (A8YNOrdieres et al., 2005; Arhami et al., 2013),
classification and regression trees (Brokamp et 2017), support vector regression (SVR)

(Sanchez et al., 2011; Nieto et al., 2013), anddndMarkov models (Dong et al., 2009; Sun et al.,
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2013). Most of those machine learning methods ased on the assumptions of independent and
identically distributed random variables (Pereina &ello, 2011). However, data on air pollutants
also exhibit the same characteristics as geospd#itd (i.e., spatial heterogeneity and spatial
dependence), which violates the assumptions of meclkearning methods. Therefore, it is
inappropriate to directly apply machine learningtmoels to model air pollutant data, and how to
incorporate spatial heterogeneity and spatial deégece in the process of machine learning is an
urgent problem that requires attention.

It has been shown that SVR outperforms other mackearning methods in predicting air
guality because training for the SVR produces daloptimum (Sanchez et al., 2011; Nieto et al.,
2013). As a result, this study aims to develop acegiime support vector regression (STSVR)
model to predict hourly P concentrations. The STSVR model is developed bgrparating
spatial dependence and spatial heterogeneity mmtontodelling process used by conventional

support vector regression models.
2. Materialsand Methods
2.1 Materials

2.1.1Area description

The study area was the city of Beijing, which isdted in North China and is the capital of the
People’s Republic of China. The area has a monsdluenced humid continental climate, which
is characterised by higher humidity in the sumnaers windier, colder, and drier winters. The daily
average temperature in July is approximately 26.2%d in January, it is about -3.7°C. The annual
precipitation is approximately 570 mm, with aboltee-fourths of the total precipitation falling
between June and August. Annually, approximatedy 2 hours of bright sunshine is received, and
monthly percent possible sunshine ranges from appedely 65% in July to approximately 47% in
January and February.

In recent years, the study area has frequentlgmadffrom severe air pollution. BMhas been
shown to be the main air pollutant, and its conmeginins are greatly influenced by emission sources
(Zhang et al., 2015). Lv et al. (2016) reviewederdcstudies that reported source apportionment
results from 2000 to 2012 in Beijing. During thieripd, the annual average Rlconcentrations

gradually decreased. Summer is identified as thstlpolluted season, and winter is the most
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polluted season. The major compositions of ;BMire sulphate, organic matter, nitrate and
ammonium. It can also be found that vehicles, itrgudust, biomass burning, coal combustion and
secondary products were major sources ob PMwo periods (i.e., before 2005 and after 2005)
were further assessed to investigate differencesdes the source contributions. Specifically, the
annual average contributions of vehicle exhaustssed from 6.8% before 2005 to 10.6% after
2005. The industrial contributions prior to andeaf2005 were 6.9 and 15.5%, respectively. The
contribution of dust was 13.3% before 2005 and %®.8fter 2005. Biomass burning also
contributed less before 2005, with an annual aee@g7.9%, than after 2005, when the annual
average increased to 11.6%. The contributions @ combustion were almost 15.0% in both
periods.
2.1.2Data collection

There are 35 air quality monitoring sites that rddeourly average PMsconcentrations. The
tapered element oscillating microbalance methodused to measure B concentrations
automatically. In addition, source apportionmentniignual methods is applied to analyse pollutant
components and to evaluate the accuracy of autommatnitoring. In general, the estimated error of
automatic monitoring is less than 5%he related information can be obtained from thieciaf
website of the Beijing Municipal Environmental Merihg Center (http://www.bjmemc.com.cn).
Fig. 1 shows the spatial distribution of these raimg sites. In our experiment, air quality data
were collected from these monitoring sites for fheriod between March and April 2014.
Meanwhile, considering that meteorological elemets the main factors influencing changes in
PM, sconcentrations, the meteorological elements far saene period were obtained from weather
monitoring sites and selected as the predictorabbes. The meteorological data utilised in the
process of predicting the concentration of RMire (1) surface temperature (°C), (2) relative

humidity (%), (3) wind force (level), (4) wind dirgon (angle), and (5) precipitation (mm).

[Insert Fig. 1 about here]

2.2 Methods

As discussed above, SVR provides a better learsirajegy in modelling non-spatial data.

However, spatial dependence and spatial heteragemaike it necessary to extend SVR into the
4
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field of environmental or geospatial data analy$lserefore, an STSVR model is developed In this
paper by incorporating these spatial charactesisiitie implementation of the STSVR model is
shown in Fig. 2. First, spatial clustering analysisused to address spatial heterogeneity of the
space-time series of hourly Blconcentrations, and thepatial autocorrelation variables based on
a Gauss vector weight function are identified talrads spatial dependence of hourly 2ZM
concentrations. Finally, a local SVR with spatiatacorrelation variables is employed to model

hourly PM, s concentrations.

[Insert Fig. 2 about here]

2.2.1Addressing spatial heterogeneity using spatialteltiisg analysis

Spatial heterogeneity refers to the non-statiopasit the spatial processes generating the
observed data (Jiang, 2014). Specifically, thestiedl characteristics of PM concentrations and
the relationships between BMand the associated factors may vary over spacaddcess spatial
heterogeneity, it is common to build a local modeich as GWR and its variants, at each spatial
location. However, this approach may be inapprogriar structured heterogeneity, which means
that the model tends to be more dissimilar at looatthat are farther apart. It is redundant tddoui
a point-based model at each location, and thuggnmdgased models may be more suitable.

Spatial clustering algorithms can divide an ensitedy area into several homogeneous or
guasi-homogeneous subareas; therefore, spatiakchg analysis is employed to group Pilata
into several spatial clusters, and a local regiasell model is built based on the results of spatial
clustering. The existing methods for spatial cliste are mainly classified into five categories:
hierarchical methods, partitioning methods, griddzth methods, density-based methods, and
model-based methods (Liao, 2005). Most of thesehoust are presented using general-purpose
clustering methods, which have a limited abilityrégognise spatial patterns, including neighbours
(Guo et al., 2003). To overcome this limitation,n@odel-based method, which is called a
geographical self-organising map (GeoSOM) and damnsigeography’s first law, is selected to find
heterogeneous structures.

GeoSOM is developed by extending the conventiomdi-osganising map algorithm to

explicitly consider geographic information. In G&g, first, the spatial coordinates of the objects
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are used as input vectors to search for the winamty which is called the geographical best match.
Subsequently, the attribute values are used a$ wggtors, and only the units in the neighbourhood
of the geographical best match are used to finditia® best match in the output layer. Thus, both
spatial proximity and attribute similarity withinusters can be guaranteed. In the process of kpatia
clustering analysis with GeoSOM, two crucial comgats need to be considered: the similarity
measure and the cluster evaluation criteria. s #tudy, Euclidean distance is chosen as the
similarity measure, and two types of clusteringdit} indices, namely, the DB index (Davies and
Bouldin, 1979) and the Sil index (Rousseeuw, 19879, used to select the number of clusters. A
small DB index value or a larger Sil index valuengelly indicate better clustering results. The
clusters that satisfy these two indices are ch@sgrszczuk and Hurley, 2010).
2.2.2Addressing spatial dependence usaf@auss vector weight function

Spatial dependence or spatial autocorrelation mésatsthe PMs concentration at spatial
and timet not only depend on other associated factors bst alepend on the previous
concentrations at both that point and its neight§dabler, 1970). Therefore, it is necessary to yppl
spatial autocorrelation variables as inputs in fotexh models to handle spatial dependence. In the
field of geospatial analysis, spatial autocorrelatvariables are defined via a spatial weights imatr
W (n Xn), which is the formal expression of spatial dee between observation sites (Getis
and Aldstadt, 2004).

Supposen x | samples(x;(t), y;(t)) are observed at spatial locatiofi=1, ..., ) and time
t (t=1, ..., 1), wherex;(t) € R™ denotes the independent variables, andt — 1) denotes the
predictive variable, i.e., the PMconcentrations in this study. Spatial autocorr@havariables can
be defined using the following equation.

yi(t=1) = S w(i, )yt = 1), (1)

where w(i,j) (an element iW) represents the spatial weight between spatiatimesi andj. The
general strategy for determinindy is based on spatial distance or spatial contigditye first
assumes that the degree of correlation dependeeogpiatial distance, and the second determines
the degree of correlation based on the spatialleggorelationships. Both methods make the
isotropic assumption, which assumes the effect fmogndirection can be regarded as equivalent.

However, the spreading process of air pollutionligiously anisotropic because air pollutants

are usually transported based on the directiorhefwind. The traditional strategy based on the
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Isotropic assumption does not describe the spatipendence of air pollutant concentrations. For
example, in Fig. 3, if the wind direction is NEgtPM, 5 concentrations giy are directly affected
by the concentrations at, p,, ps, andps, and they may not be affected by the concentrataips
andps. In addition, the affected degree is obviouslyategly correlated with the angieand the
distance (the angle is defined by the wind directamd the edge between two points, and the
distance is defined by the spatial location of paints). Specifically, in the terms @#, although
pointsp; andp, have the same angle, the affected degrgeisthigher than that g, becausel; is
smaller thardy,. Likewise, the affected degree pf is higher than that gb, because the Nigps

angle is smaller than the Ig§p4 angle, even though they are equally distant fppm

[Insert Fig. 3 about here]

A Gauss kernel function can only represent the wiggece of spatial distance; it cannot
describe the differences in direction. To simultarsdy address anisotropy, the Gauss vector weight
(GVW) is presented based on the Gauss kernel fumciihe GVW combines the direction and

distance effects with the transport process obalilutants, which can be described as

_dijzsinéfj © ]
w(d.glg=] e = [ 04050 )
0 if 90°'<g, ¢)<180

whered; and@; represent the distance variable and the angleblarirespectively. The distance
can be calculated directly by spatial locationscdese the wind direction changes over time, the
angle variable is a temporal variable that can cmaputed by the dynamic wind direction. It is
noted that there is one bandwidth parameteysed, and it represents the trade-off between the
direction and distance effects; this bandwidth peater needs to be optimised.
2.2.3Modelling hourly PM s concentrations using STSVR

A support vector machine (SVM) was developed tovesomulti-dimensional function
estimation problems using statistical learning tig®apnik, 2000). SVM can be divided into two
main categories, namely, support vector classiboaand support vector regression. The former is
used to address classification problems, and ttier lss designed to handle problems associated
with function approximation. Because the PMoncentrations are continuous values, predicting

PM, s concentration is a type of regression problem, #n$, SVR is suitable to model BM
7
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concentrations. Conventional SVR methods are dyeemployed to model hourly PM
concentrations without considering spatial hetenegg and spatial dependence. As discussed
above, it is more suitable to build a spatiallydibbmodel for each cluster or sub-area instead of a
global model for the entire study area. Meanwtihie, spatial autocorrelation variableg, (t — 1),

identified by the GVW function should be consideasdthe input variables.

Therefore, the STSVR model aims to find a seriewadl functions f,cq(;) (x(8)) (=1, ...,
k) that can accurately predict the observatiovith the new input data and spatial autocorrelation
variablesy*(t — 1) at areaj, and k denotes the number of sub-areas obtained from apati
clustering analysis. Theoretically, a linear fuontif,,.q;)(x(t)) exists in the high dimensional

feature space to formulate the non-linear relatignbetween the input data and the target data at

sub-areag andt. The linear function is calculated using the fallog equation
farea(j) (x() = Wgrea(j)(p([x(t):y*(t - DD+ barea(j)l (3)
where the parameterwﬂrea(j) and bg,eq(;) are the normal vector and the threshold at grea

respectively, andx*(t) = [x(t),y"(t —1)] denotes the predictive variables. By solving the
guadratic optimisation problem with inequality coasts, the STSVR model regression function

can be obtained using the following equations
Warea(j) = Zézl Z?ii)(ﬁ;area(j) (t) - .Bi,area(j) (f))fp(xf(t)) (4)

f) = Bhor 2 (Biareaty(®) = Biareat (0K (x5 (6), ) + bareay (5)
where B and f3; represent the Lagrangian multiplie§{x;,x*) is called the kernel function,

and any functions meeting Mercer’s condition, sashGaussian radial basis function, can be

adopted as the kernel function, which can be dédfa@exp(—0.5]x; — x*[|?/0greqcjy®) With a

width of Garea(]') .

It can be found that there are two differences betwSTSVR and conventional SVR. First,
spatial autocorrelation variables are included he fpredictive variables in STSVR. Second,
spatially local models need to be built for eacb-atea in STSVR; in contrast, SVR aims to build a
global model for the entire area. It is worth ngtthat the region is divided into several sub-ateas
address spatial heterogeneity, but modelling spdépendence is based on the data of the entire

area, which means that the neighbours of spatetioni not only include the elements of the
8
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sub-area of spatial locatiobut also the elements of other spatial areas.
3. Results

Experimentadata were divided into two parts, one for modellamgl the other (i.e., data from
the last day) for prediction analysis. The lattatadused for prediction analysis were regarded as
unknown data and were not included in the builddhghe prediction model. First, GeoSOM was
used to group Pl space-time series data into several clusteriotld be noted that the spatial
variability of PM, s concentrations can be identified from two aspettee first is the result of
spatial variability, which is directly analysed B, s space-time series data; the second includes
the causes of spatial variability, including metdogical elements, pollution source information,
and topography. By contrast, it is easy to idensipatial variability based on P space-time
series data because it does not consider mulaglers or the interactions among them. Specifically
we identified spatial clusters from the resultspétial variability, and Pl space-time series data
were regarded as the input for spatial clusterysisl

Two types of cluster evaluation indices, namely B index and the Sil index, were
employed to determine the optimal number of clgstéhe values of the DB index and the Sil
index with different numbers of clusters are shawrFig. 4. The final number of clusters was
chosen to be 14 because this number results iiatavety low DB index value and a relatively high

Sil index value; the corresponding clustering rissate shown in Fig. 5.

[Insert Fig. 4 about here]

[Insert Fig. 5 about here]

Through the partial autocorrelation function, thdJR concentration at timeis statistically
relevant to the Pl concentrations at sites in the upwind directiontiate t-1; hence, it is
unnecessary to consider RMconcentrations in the upwind direction at tintex t-3, etc. in the
input for STSVR. The bandwidth parametas set from0, 0.1dmin, 0.Xmin, ..., 10 dmin, Wheredmin
is the nearest-neighbour distance of spatial lonatj The dni, changes over space because of the
varying density of air quality monitoring statior@@onsidering that there is no structural method on

how to efficiently set the STSVR parameters, westfifixed a bandwidth value, and other
9
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parameters were then determined by minimising tiMSRs; the smallest RMSEs for each
bandwidth value are shown in Fig. 6. It can be tbtimat the RMSEs decrease gradually with the
increase in the bandwidth value, and finally, ti3JEs stabilise when the bandwidth value reaches
1.6dmin. Hence, the optimal value of the bandwidth paremetas selected to be @G, After

training the parameters, we can apply the STSVRainod predictive analysis.

[Insert Fig. 6 about here]

To demonstrate the effectiveness of the proposeésV&Imodel, other models, including the
auto-regressive integrated moving average modél @dplanatory variables (ARIMAX) model, the
global SVR model, and the space-time artificial raémetworks (STANNS) model, were selected
for comparative analysis. Meanwhile, ARIMAX can luime covariates in ARIMA models, which
can consider both temporal autocorrelation and rotowariates (Brockwell and Davis, 1996).
Global SVR aims to model all the data using a gimgbdel, but this approach cannot handle spatial
heterogeneity. STANNs were initially presented kye@g et al. (2009) to incorporate space-time
autocorrelation into feedback ANNSs. In additione tfesult of the STANNSs in each cluster (i.e.,
local STANNS) was used for comparative analysiss Worth noting that because different models
were constructed on the basis of different sizesrels, there were obvious differences in the
training sample sizes (listed in Table 1). Thenirag sample sizes of local STANNs and STSVR
were both 144R9C), whereNgC) indicated the number of stations in suba€ar clusterC
(listed in Table 2), and 1440 was derived from amples a day within 60 days at each station.
ARIMAX was used to analyse time series of a sirggion and then the training sample size was
1440x1 STANNs and Global SVR were constructed on the bakihe samples from the whole
study area and then the training sample sizes bate1440x35.

Two accuracy evaluation indices, i.e., a total s@cy index (p,) and a total absolute error

index (e ), were used to quantitatively evaluate the pradiatesults of the different models. Their

expressions are as follows

e =1 Y. |Prediction(i);—Observation(i)¢| (6)
t Y Observation(i);
™ |Prediction(i);—Observation(i)¢|
€ = (7)

n

10
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where Prediction(i), and Observation(i), represent the predicted value and the observathrev
at spatial locationsandt, respectively. The accuracies and the absoluteseaf the next 1-6, 7-12

and 13-24 hours are listed in Table 1.

[Insert Table 1 about here]

Table 1 shows that the highest valuegp &r all methods occur at the next 1-6 hours, feéd
by the values at the next 7-12 hours; addition#tlg, values at the next 13-24 hours are usually the
lowest. The total absolute errors at hours 1-6 ©itmwer than those during other periods, and the
highest values occur after 13-24 hours. This méaetsthe prediction accuracy tends to decrease as
the prediction time increases; in other words, las prediction time increases, the level of
uncertainty increases. Further, according to tkalte of different methods, it can be found that th
p from the STSVR model at the hours 1-6 and 6-120af20, 0.703, respectively, which are higher
than the values from the other methods. The tdisblate errors of the STSVR model at the first
two periods are 22.96 and 31.99 ufy/mespectively, which are lower than the total &lxgoerrors
from the other methods. Therefore, it is demonstraihat the results of the proposed STSVR model
are better than the results of the other methods.

Moreover, the results of four randomly selectediata (i.e., S1, S2, S20, and S31, whose
locations are shown in Fig. 5) are shown in Figln7contrast, the curves from the STSVR model

are closer to the actual change, which furtherfiesrthe effectiveness of the proposed method.

[Insert Fig. 7 about here]

Moreover, the accuracies of the STSVR model ired#it sub-areas are listed in Table 3. It is
obvious that the accuracies dramatically change syvace. The predicted results at C7 are superior
to those at other clusters during the next 1-6 fiodowever, the accuracy at C7 during the next
7-12 and 13-27 hours are not the highest. The gietliresults at C1 are better than those at other
clusters at hours 7-12, and the predicted resul@da are better than those at other clustersuaisho
13-24. Meanwhile, it was also found that the lowasturacies at the next 1-6, 7-12, and 13-24

hours correspond to C13, C13, and C9, respectively.
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[Insert Table 2 about here]

4. Conclusions and future work
The paper develops an extended support vector sggre model to predict hourly P

concentrations. Spatial heterogeneity and spaitalcarrelation are incorporated into the modelling
process of SVR. First, spatial clustering is exedub address spatial heterogeneity by dividing the
study area into several sub-areas. Using a novak&aector weight function approach, spatial
autocorrelation variables are determined and smleats a part of the input features. Finally, the
traditional algorithm of SVR is adopted to map tleationships of each local sub-area. The
experiment data on P concentrations in Beijing are used to verify ttted proposed method is
superior to comparative methods, and the proposethad had high prediction accuracy and
reliability. The main reason for this is that STS\dan address spatial heterogeneity, spatial
autocorrelation, non-linearity, and external regogs simultaneously; in contrast, the comparative
methods (i.e., ARIMAX, global SVR, STANNs, and Ib&TANNS) address only some of these

characteristics. The performance comparisons odlifferent methods are shown in Table 3.

[Insert Table 3 about here]

In fact, spatial heterogeneity can be classifiet ispatial local heterogeneity and spatial
stratified heterogeneity (Wang et al., 2016). STS38R mainly be used to address spatial stratified
heterogeneity, which means that the relationshgtsvéen air pollutant concentrations and other
relevant variables change over spatial areas,Hayt are uniform within the same area. However,
spatial local heterogeneity refers to relationshipat change across spatial locations. That is,
STSVR cannot address spatial local heterogeneityl. ideanwhile, we make an implicit
assumption that the relationships between Ptbncentrations and meteorological elements satisfy
stationary conditions, which means the relationshiygll not change over time. Then, under this
condition, we can employ statistical models to mpkedictions. It is obvious that the assumption
will not be valid if the time span is long. For latst one year of data, it may be necessary to

construct seasonal models or dynamic models, aravaiable strategy is to split the data into a
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short time-span series. In addition, STSVR cangotiately predict abnormal or outlier patterns,
such as pollution episodes (Zhang et al., 2012)wéver, abnormal patterns occur at low
frequencies during this time period, and they areswered to result from an unknown or novel
mechanism (Jiang et al., 2003). However, only glsimodel is used to fit all the samples of a
sub-area. Because of the relatively small numbeaboiormal samples, this single model cannot
describe the novel mechanism implicit in the abradrpatterns. Hence, it is difficult for STSVR to
predict the abnormal patterns well.

Future studies should focus on improving the folfayvaspects of the STSVR model: (1)
explore the space-time clustering method to cdgredentify space-time heterogeneity and not just
spatial heterogeneity; and (2) develop a hybridho@tto address extreme concentrations to solve
the problems commonly encountered in empiricallyselo approaches. Moreover, only five
meteorological parameters were selected to préldkcPM s concentrations, and this may explain
why none of the accuracies of the included methveele very high. In the future, if we can collect
other statistical data, including environmentaladaind human activity data, these additional
features can be added to improve prediction results
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471

Table 1 Comparison of different methods applied to théreratrea

472
Time 1-6 hour 7-12 hour 13-24 hour
Methods Training sample p e p e e
sizes (ug/n) (ug/n?) (ug/n)
ARIMAX 1440x1 0.681 26.64 0.667 34.20 0.444 72.09
STANNSs 1440%35 0.625 33.09 0.395 63.49 0.409 76.88
Local STANNs 1440M9C) 0.731 21.61 0.687 32.18 0.437 72.91
Global SVM 1440x35 0.691 24.63 0.675 29.95 0.667 514
STSVR 1440N4C) 0.769 19.76 0.703 31.81 0.594 53.79
473
474
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478

Table 2 Comparisons among different clusters or sub-aueas) the STSVR model

Time 1-6 hour 7-12 hour 13-24 hour
e e e
Clusters NgC) P (ug/n) P (ug/n) P (ug/n)
C1 3 0.832 11.79 0.871 8.93 0.746 29.78
C2 2 0.781 18.46 0.710 24.73 0.490 57.36
C3 2 0.860 13.21 0.750 23.88 0.568 53.93
C4 1 0.757 21.54 0.872 11.63 0.638 41.60
C5 2 0.727  36.32 0.523 70.15 0.424 92.17
C6 4 0.828  14.08 0.658 33.11 0.480 71.89
Cc7 4 0.873  10.86 0.531 55.52 0.430 80.44
Ccs8 5 0.825 1455 0.840 17.88 0.714 39.22
C9 2 0.759  23.45 0.573 55.37 0.420 75.62
C10 2 0.732  22.47 0.770 25.51 0.665 44.29
Cl1 3 0.564 2491 0.688 26.86 0.817 21.58
C12 3 0.742  24.68 0.667 46.74 0.615 55.76
C13 1 0.433 32.14 0.347 51.52 0.655 42.65
Ci14 1 0.691  23.38 0.686 23.35 0.709 31.23
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479 Table 3 The performance comparison of different methods

Performance Autocorrelation
Heterogeneity Non-linearity External regressors
Models (anisotropy
ARIMAX N X X J
STANNSs X X N X
Local STANNs N, X N, X
Global SVR X X N, J
STSVR J J J J

The symbol v (x) denotes that the model can (or cannot) addressorresponding characteristic. It is worth mgtthat the

third column (i.e., autocorrelation) indicates wietthe model can address anisotropy of the sprggmiocess of air pollution.
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Highlights:

e Spatia clustering analysis was used to handle spatial heterogeneity among PM 5
data

e A Gauss vector weight was presented to define spatial autocorrelation variables as
so to accord with the transport process of air pollutants

e An extended support vector regression model was constructed by considering the
gpatial characteristics of the air pollutant data, namely spatia dependence and
spatia heterogeneity.



