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Abstract Landslides are destructive not only to property and infrastructure but also to people living in 

landslide-prone regions. Landslide susceptibility mapping (LSM) is critical for preventing and 

mitigating the negative impacts of landslides. However, many previously proposed LSM modeling 

techniques included only the attribute information of spatial objects and ignored the spatial structural 

information of spatial objects, which led to suboptimal LSM. In addition, the selection of condition 

factors was not objective to such an extent that it may have reduced the reliability of LSM. To address 

these problems, a new method based on GeoDetector and a spatial logistic regression (SLR) model is 

proposed. GeoDetector is used to select condition factors based on the spatial distribution of landslides. 

The SLR model is used to make full use of the structural and attribute information of spatial objects 

simultaneously in LSM. The GeoDetector-SLR model is validated using data from the Duwen 

Highway Basin, which includes the epicenter of the May 12 2008 Wenchuan earthquake in 

southwestern China. Prediction accuracy of the GeoDetector-SLR model is found to be 86.1%, which 

is an 11.9% improvement over the traditional logistic regression model, indicating an improved and 

reliable solution for evaluating landslide susceptibility. 

Keywords Landslide susceptibility mapping; GeoDetector; spatial logistic regression; spatial 

autocorrelation 

1. Introduction 

Landslides are the most common and dangerous type of natural disaster in mountainous regions, 

and can cause severe damage to people's lives and property (Petley, 2012). In 2014 alone, a total of 

8,128 landslides occurred in China, and resulted in nearly 350 deaths and direct economic losses of an 
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estimated US$827 million (http://data.mlr.gov.cn). Landslide susceptibility mapping (LSM) is a critical 

tool in disaster prevention and mitigation as it can show potential areas prone to landslides (Dai et al. 

2002). However, the accuracy of LSM results is often limited by adverse effects that can increase the 

uncertainty of LSM and may hinder regional planning decisions. Therefore, it is necessary to improve 

the accuracy of landslide susceptibility assessments. 

In most cases, spatial structure information exists between adjacent mapping units. To perform 

LSM, there are two main basic mapping units: slope-based and grid-based units (Eeckhaut et al. 2009). 

Compared to slope-based units, grid-based units are widely applied because they can be easily 

obtained. For this reason, many researchers have applied grid-based units to assess landslide 

susceptibility (Bai et al. 2010; Ilia and Tsangaratos 2016; Li et al. 2016). In this case, the properties of 

adjacent grids are similar because one spatial object (landslide surface) is usually divided into several 

identical grids. As a result, spatial autocorrelation usually exists in the adjacent grids (Erener and 

Düzgün 2012). Spatial autocorrelation provides important spatial structure information of geographic 

phenomena(Wang et al. 2014). Taking full advantage of this information will help reduce the 

uncertainty of LSM. Although a large number of methods have been applied to LSM (Akgun 2012; Bai 

et al. 2010; Lee and Choi 2004; Li et al. 2016; Luo and Liu 2018; Pham et al. 2015; Wang and Sassa 

2005), a few of these methods have considered this important information (Erener and Düzgün 2010, 

2012).  

 The models of LSM can be broadly divided into three categories: heuristic methods, statistical 

methods, and physical methods (Luo and Liu 2018). Physical methods require more exact mechanism 

and process information of landslides (Luo and Liu 2018) and are only suitable for a single landslide 
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surface or a small study area (Westen et al. 2008). Therefore, statistical methods are more commonly 

used for quantitative evaluation of landslide susceptibility over a large area. An assumption of 

independence exists when statistical models are applied; however, the data of LSM always involve 

spatial autocorrelation rather than being independent (Erener and Düzgün 2012). Under these 

circumstances, it is difficult to obtain optimal results as some statistical methods are unable to make 

use of significant spatial autocorrelation information (Erener and Düzgün 2010).  

The inability to make full use of spatial structure information restricts the application of spatial 

data to some extent. Nevertheless, with the development of spatial statistics, there are now many 

methods with which the effects of spatial autocorrelation can be eliminated, such as data transformation 

and the spatial autoregression (SAR) model (Wang et al. 2010b). Data transformation reduces 

dependence by down-sampling to make the data follow a random distribution. However, data 

transformation results in larger confidence intervals and higher variance (Wang et al. 2010b). SAR 

makes the residual error tend toward white noise by absorbing the spatial structure information (Wang 

et al. 2010b), and it has been widely accepted and applied to other fields (Blangiardo and Cameletti 

2015; Erener and Düzgün 2010; Lichstein et al. 2002). 

In addition to underuse of spatial structure information, lack of an effective method to select 

factors is another cause of LSM accuracy reduction. Redundant condition factors increase the 

instability of the model and decrease the predictive accuracy (Jebur et al. 2014). For this reason, many 

studies have screened for factors that contribute significantly to landslides. For example, the factor 

analysis method, certainty factor method, and optimization technique were used to exclude redundant 

factors (Dou et al. 2015, Jebur et al. 2014, Lee and Talib 2005). These methods improve the reliability 
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of the LSM to a certain extent, but these methods do not account for the spatial pattern characteristics 

of spatial data, which reduces their accuracy. GeoDetector is a spatial statistics tool that can assesses 

the relative importance of different factors controlling or contributing to a geographic phenomenon 

(Luo and Liu 2018). And it has been widely used in other fields for it could account for the spatial 

patterns of spatial data (Wang et al. 2010a). 

There are two common issues with using LSM. One is that spatial structure information is not 

fully used; the other is that the selection of condition factors is usually insufficiently effective. To 

resolve these issues, a new model based on GeoDetector and spatial logistic regression (SLR) is 

proposed in this paper and is referred to as GeoDetector-SLR. GeoDetector-SLR uses Geodetector to 

select condition factors and apply SLR to modeling (The SLR model is one of the SAR models, which 

can simultaneously utilize structural information and attribute information of spatial data). The new 

model is applied to the Duwen Highway Basin in the Longmen Mountain fault zone, China, and the 

new model is compared with the logistic regression (LR) model, which is unable to incorporate spatial 

structure information. 

2. Study area and data 

2.1. Study area 

The Duwen Highway Basin is located in the Longmenshan Mountain Range, a section of the 

Minjiang River watershed, Wenchuan County, Sichuan Province, China (Fig. 1). Its geographic 

coverage is approximately 30°54'–31°36'N latitude and 103°14'–103°45'E longitude, with an area of 

925 km2. On May 12, 2008, the MS 8.0 May 12 Wenchuan earthquake occurred in the study area (Yin 
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et al. 2009), which caused secondary geological disasters such as landslides and debris flows along the 

Duwen Highway; the area entered an active phase expected to last for 10–20 years (Cui et al. 2008).  

The study area is located between the Longmen Mountain System and the Lushan System, in the 

transition zone from the Qinghai–Tibet Plateau to the Sichuan Basin and the marginal mountainous 

terrain. This area is a typical alpine valley area, with elevation of 734–5,304 m. The overall topography 

of the area is slanting, high in the northwest and low in the southeast. Hillsides in this area are usually 

steep and with an average slope angle of 36.4°. The study area has a continental monsoon climate with 

an average annual rainfall of 529–1,332 mm. The Minjiang River is the main river in this area.  

Duwen Highway has three sections from north to south: the Duwen–Mianjiu, Mianjiu–Yingxiu 

and Yingxiu–Dujiangyan sections. Phyllite and quartz sandstones of the Devonian Hanlizhai Group 

and the Proterozoic Huangshuihe Group are located in the Duwen–Mianjiu section, intrusive rocks 

such as biotite granite and plagiogranite of the Proterozoic Jinning–Jinjiang period characterize the 

Mianjiu–Yingxiu section, and interbedded layers of cuttings, quartz sandstone, and mudstone in the 

Triassic Xujiahe Formation are found in the Yingxiu–Dujiangyan section. The bedrock exposed along 

the Duwen Highway mainly consists of granite, diorite, limestone, phyllite, sandstone, and granite 

rocks (Gui-Sheng et al. 2016; Zhang et al. 2015).  

Fault zones in this area are relatively well developed, making it vulnerable to geological disasters 

(Zhuang et al. 2010). There are two large thrust faults along the Longmenshan thrust belt at the eastern 

margin of the Tibetan Plateau; one is a 240-km-long surface rupture along the Beichuan fault, and the 

other is a 72-km-long surface rupture along the Pengguan fault. These faults were ruptured by the May 
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12 Wenchuan earthquake (Xu et al. 2012). Additionally, there is an NW-striking left-lateral reverse 

rupture about 7 km in length between the Beichuan and Pengguan faults (Xu et al. 2009). 

2.2. Data 

Based on remote sensing images interpretation and field geological hazards survey, 4,841 

landslides were obtained (Fig. 1). These images were observed by the Pleiades satellite on December 7, 

2014, including multi-spectral images at 2m resolution and panchromatic images at 0.5m resolution. A 

total of 15 explanatory variables were used in this paper, and all of them are the monitoring results of 

the national geographic conditions survey. They were provided by the Sichuan Province Bureau of 

Surveying, Mapping and Geoinformation, China. These monitoring results all passed stringent quality 

checks by the geographical experts and geologists appointed by Sichuan Bureau of Surveying, 

Mapping and Geoinformation, China. 

(http://www.mlr.gov.cn/xwdt/chxw/201510/t20151019_1384486.htm). Therefore, the quality of these 

data is reliable, and has been verified in several published papers and an unpublished government 

report (Meng et al. 2016; Wang et al. 2017).  

The landslide factors were divided into geological/topographic (fault zone, seismic intensity, rock 

mass, geologic time, elevation, roughness, slope, aspect, and river), ecological (vegetation, 

precipitation, land stress, and soil erosion), and socio-economic (roads, residences, and hydropower 

stations). Details of the data, such as type and structure, are shown in Table 1. The specific properties 

of these factors can be found in Meng et al. 2016; Wang et al. 2017. Seven explanatory factors (Fig. 

2) were selected as potential influencing factor by GeoDetector (factor selection is described in Section 
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3). Two discrete factors were included in the selected factors, and the classification of the two discrete 

factors was done by the data provider. 

 

 

Fig. 1 Landslide inventory map of the Duwen Highway Basin. (a) landslide inventory, (b) remote 

sensing image map, (c) the location of study area. 
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Principal conditional factors used in this study are shown in Fig. 2 (a-g). In it, the factor ‘rock 

mass’ (Fig. 2a) has five levels: the harder rock group, hard rock group, soft rock group, softer rock 

group, and loose rock group, denoted respectively as E, D, C, B, and A (Meng et al. 2016; Wang et al. 

2017). The classification criteria are based on the "Engineering Rock Mass Classification Standard", 

which is one of China's national standards (GB50218-2014). 

(http://www.mohurd.gov.cn/wjfb/201508/t20150829_224347.html). Fig. 2b is the slope angle map. 

After the 12 May 2008 Wenchuan earthquake, the ecological environment has undergone major 

changes (Zhang et al. 2015); therefore, seismic intensity is regarded as the condition factor in this 

study. The seismic intensity of the 2008 Wenchuan earthquake is shown in Fig. 2d, the four seismic 

zones (VIII-XI) are the seismic intensities distribution of the 2008 Wenchuan earthquake and is 

expressed as Ms 8, Ms 9, Ms 10, and Ms 11, respectively. ‘seismic intensity’ was produced by the 

China Earthquake Administration (CEA 2008). Fig. 2c is the residential area buffer map. Roughness of 

terrain is shown in Fig. 2e, where larger values denote rougher surfaces. Fig. 2f is the road buffer map. 

Finally, Fig. 2g represents elevations of the area. 

Table 1 The names, structures, types, descriptions, and classification of environmental variables. 

NDVI is the abbreviation of " Normalized Difference Vegetation Index ". The data is provided by the 

Sichuan Province Bureau of Surveying, Mapping and Geoinformation, China. 

Variables Name 
Data 

structure 

Variable 

type 
Data description Class 

Y 
landslide 

point 
point binary landslide occurred or not  landslide  

X1 fault zone line continuous distance to line geological 

X2 
seismic  

intensity 
polygon discrete 2008 Wenchuan earthquake geological 

X3 rock mass polygon discrete the hardness of the rock and soil geological 
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X4 geologic time polygon discrete 
different times of Rocks and 

stratum 
geological 

X5 elevation raster  continuous height above sea level topographic  

X6 roughness  raster  continuous the roughness index of terrain topographic  

X7 slope raster  continuous extracted from DEM topographic  

X8 aspect raster  discrete extracted from DEM topographic  

X9 river line continuous distance to river topographic  

X10 precipitation  polygon discrete precipitation classification ecology 

X11 soil erosion raster  discrete soil erosion degree ecology 

X12 NDVI raster  discrete the vegetation of surface  ecology 

X13 road line continuous distance to road ecology 

X14 
hydropower 

station 
point continuous distance to point ecology 

X15 settlement  point continuous distance to point ecology 
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Fig. 2 Thematic maps of condition factors. (a) Rock mass. The harder rock group, hard rock group, soft 

rock group, softer rock group, and loose rock group of rock mass, denoted respectively as E, D, C, B, 

and A. (b) slope, (c) distance from settlements, (d) seismic intensity. The four seismic zones (VIII-XI) 

are the seismic intensities distribution of the 2008 Wenchuan earthquake and is expressed as Ms 8, Ms 
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9, Ms 10, and Ms 11, respectively. (e) terrain roughness, (f) distance to highway, (g) elevation. The 

data is provided by the Sichuan Province Bureau of Surveying, Mapping and Geoinformation, China. 

3. Methods 

The process of LSM is divided into three main phases. The first phase including the selection of 

condition factors. The second phase is model incorporation, in this phase the condition factors selected 

by GeoDetector and the landslide inventory layer was divided into basic mapping units, and their 

attribute tables were extracted to form test data sets and training data sets. Modeling in the third phase, 

which include model training, mode verification and model comparison. Fig. 3 illustrates the research 

flow of this article. 

 

Fig. 3 Research flow. Research flow includes three major phases: Factor selection in the first phase, 

Model incorporation in the second phase, and modeling in the third phase. 

3.1. GeoDetector 

An evaluation index system of condition factors needs to be established when undertaking LSM. 

However, a universal framework for selection of condition factors is lacking (Luo and Liu 2018). The 

GeoDetector is utilized for quantitatively evaluating one potential factor relative to a spatial 

phenomenon and can be used for factor selection (Wang et al. 2010a). GeoDetector was first applied 
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for detecting potential disease factors (Wang et al. 2010b). Because GeoDetector makes very few 

assumptions about the data, the application of GeoDetector has been extended to remote sensing and 

geoscience (Luo et al. 2016). The GeoDetector software is freely available from 

http://www.GeoDetector .org/. 

The core hypothesis of GeoDetector is that if an independent variable has an important influence 

on a dependent variable, the spatial distributions of the independent variable and the dependent variable 

should be similar (Wang and Hu 2012). That similarity can be measured based on the ratio of local 

variance to global variance (Wang et al. 2016). As such, the study area was divided into basic mapping 

units for LSM, and the landslide rate R (Fig. 4a) of each unit was taken as the y-variable by 

GeoDetector. Based on the type of landslide data, the value of R can be calculated in two ways. If the 

historical landslide representation is polygon-based, R is the ratio of the landslide area to the area of the 

basic mapping unit. If the historical landslide representation is point-based (center of the landslide 

body), R is expressed by the count of landslide points in the mapping unit. To calculate the local 

variance of each region of R in the x-layer (Fig. 4b), GeoDetector specifies that the x-variable entered 

must be partitioned data (Wang et al. 2016). Therefore, it is necessary to reclassify continuous 

variables such as the elevation and slope. The principle of GeoDetector is as follows: 

𝑞 = 1 −
1

𝑁𝜎2
∑ 𝑁𝑖𝜎𝑖

2𝑚
𝑖=1         𝑞 ∈ [0,1]         (1) 

where m is the stratum count in the x-layer, N is the number of mapping units in the study area, σi
2 is 

the variance of R in the ith stratum, and σ2 is the variance of R in the entire area. Large values of the 

index q indicate a large contribution of the x-layer to landslide occurrence. 
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Assuming the x-layer (Fig. 4b) is a potential influencing factor of y-layer (Fig. 4a), such as 

lithology or rock mass, it can be divided into three strata. This step is shown in Fig. 4b, where the 

x-layer is divided into regions labeled Ⅰ, Ⅱ, and Ⅲ, which show its attributes. The local and global 

variances were calculated by overlaying the analysis of the y-layer and the x-layer (Fig. 4c) to detect 

whether the x-layer contributes to the spatial distribution of landslides. If x is related to R, there will be 

a similar spatial pattern between R and x. In other words, the value of R in each stratum of x will be 

more homogeneous and have lower variance. Ideally, x would completely explain the spatial pattern of 

R, where the variance of R is close to 0 and q is close to 1. In a case, where the partition of x is 

completely unrelated to the spatial pattern of R, the variance of R in each partition of the x-layer is the 

same, and the value of q is zero.  

Fig. 4 Principles of GeoDetector. Panel a is the y-layer showing the landslide rate (R) for each unit, b is 

the x-layer as a potential condition factor, and c shows the spatial distribution similarity between the 

y-layer and x-layer obtained by overlapping these layers. 

3.2. Implementation of GeoDetector 

As mentioned above, GeoDetector requires the potential influence factor x to be partition data. 

Therefore, continuous variables were reclassified into five classes using the natural break method (Fig. 

2.). The study area was divided into regular grids to calculate the variable R (Fig. 4a), and the 
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frequency of landslides in the grid was taken as the R value. The R-layer and x-layer were then 

overlapped, and the attributes of each layer were joined. Then, the attribute table of each mapping unit 

was exported as the input data to GeoDetector. The relative contributions of all potential factors 

calculated by GeoDetector are shown in Fig. 5. The first seven variables with q-statistic index greater 

than 0.05 were selected as the independent variables in the SLR model. 

 

Fig. 5 The q-statistic indices calculated by GeoDetector. Graphical representation of the relative 

contributions of potential factors to landslide formation. NDVI is the abbreviation of Normalized 

Difference Vegetation Index. 

3.3. Spatial logistic regression 

The main objective of the LR model is to determine the probability of an event occurring by 

constructing a regression relationship between a binary variable and multiple independent variables 

(Bai et al. 2010). LR models are ideally suited to the types of data used in landslide susceptibility 
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assessments because they can contain both discrete and continuous variables (Akgun 2012; Lee and 

Sambath 2006). The principle equations governing the LR model are as follows: 

𝑌 =  ln
𝑃(𝑥)

1−𝑝(𝑥)
= 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + ⋯+ 𝛽𝑖𝑋𝑖 + 𝜀 (𝑖 = 1,2, … , 𝑛)    (2) 

𝑃 =
𝑒𝑌

1+𝑒𝑌                                                  (3) 

where X1, X2…Xi are independent variables and β0, β1…βi are the regression coefficients to be 

determined. The function P(x) represents the probability of a landslide occurring (x is a condition 

factor). In the application of spatial data, the Y variable may be not only related to the Xi variables but 

also related to itself (the surrounding landslides). Thus, there is spatial autocorrelation in the data 

(Erener and Düzgün 2012). In that case, it is necessary to include this important spatial structure 

information in the LR model (Wang et al. 2010b), and Eq. (1) can be modified as follows: 

𝑌 =  𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + ⋯+ 𝛽𝑖𝑋𝑖 + 𝜌𝑊𝑌 + 𝜀.                      (4) 

Eq. (4) is the spatial auto-regression (SAR) model (Anselin 1988; Erener and Düzgün 2012; Lichstein 

et al. 2002), which is robust with respect to spatial autocorrelation data because both spatial attribute 

information and spatial structure information can be accounted for simultaneously. In Eq. (4), ρ is the 

spatial autocorrelation parameter, ε is the error term obeying a Gaussian distribution, and W is the 

spatial weight matrix of n × n dimensions where n is the total number of samples. This matrix defines 

the adjacency relationship between landslide mapping units. The factor ρWY is the spatial structure 

effect caused by spatial autocorrelation (Wang et al. 2010b). 

If there is no spatial autocorrelation in y-variables, then ρ = 0, and Eq. (4) becomes the same 

general regression model as Eq. (1). Unlike the non-spatial model, the model ρWY contains the spatial 

structure information of the spatial object and is absorbed as a latent variable in the SAR model. This 
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step prevents the non-spatial model from incorporating it into the residual to derive a biased estimate. 

Integration of Eq. (4) with Eq. (2) results in the SLR model, and W of the spatial structure effect ρWY 

as follows: 

𝑊 =

[
 
 
 

0 𝑓(𝑑12) ⋯ 𝑓(𝑑1𝑗)

𝑓(𝑑21) 0 ⋯ 𝑓(𝑑2𝑗)

⋮ ⋮ ⋱ ⋮
𝑓(𝑑𝑖1) 𝑓(𝑑𝑖2) ⋯ 0 ]

 
 
 

,                            (5) 

𝑓(𝑑𝑖𝑗) =
𝑑𝑖𝑗

∑ 𝑑𝑖𝑗
𝑗
1

 ,                                              (6) 

𝐿 = 𝑦 ln
exp (𝛼+𝑋𝛽+𝜌𝑊𝑦)

1+exp (𝛼+𝑋𝛽+𝜌𝑊𝑦)
− (1 − 𝑦) ln(1 + exp (𝛼 + 𝑋𝛽 + 𝜌𝑊𝑦)).    (7) 

Eq. (5) is the weight matrix, and f(dij) is an inverse distance weighting function whose expression is Eq. 

(6). dij represent the distance between the i-th and 𝑗-th mapping units. 

Estimation of parameters such as traditional least-squares may result in deviations and 

inconsistencies, issues which are usually resolved with the maximum likelihood function shown in Eq. 

(7). To reduce overhead time during calculations, an integrated nested Laplacian approximation was 

used to solve the model (Blangiardo and Cameletti 2015). 

3.4. Implementation of SLR model 

The study area of this work is 925 km2 in extent. After a compromise between computing 

efficiency and spatial resolution was calculated, a 200 × 200 m grid was chosen as the basic mapping 

unit. The center of the landslide scar was taken as the mark of a landslide in this study. And assign an 

approximation average elevation of the landslide body to the central point. If there is a landslide point 

in the grid, the value of Y is 1; if the converse is true, then Y is 0. The eight x-layers and the y-layers 

were overlapped, and the attribute table was exported for use as input in the SLR model. Prior to 
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entering the data, the data were divided into 30% and 70% as testing data and training data, 

respectively. 

To compare the advantages and disadvantages of SLR and LR, both were developed for the model 

using the freely available statistical software package R (not to be confused with the landslide rate, R). 

The INLA package (http://www.r-inla.org/) in R was used to infer and solve the model. The expression 

of the SLR model is as follows: 

Y = (−0.046 × settement) + (0.393 × slope) + (−0.012 × ELEVATION) + (0.101 × road) +

(0.418 × roughness) + (−1.299 × seismic intensity  VIII ) + (−0.878 × seismic intensity IV ) +

(−0.857 × seismic intensity V) + (−0.771 × seismic intensity VI ) + (0.533 × lithology E) +

(−0.599 × lithology D ) + (−1.764 × lithology C ) + (−1.488 × lithology B ) + (−1.404 ×

lithology A ).  (8)  

4. Result 

4.1. Verification and comparison 

Verification and comparison of the model included the following three aspects: goodness of fit, 

complexity of the model, and predictive accuracy. The deviance information criterion (DIC) is a 

comprehensive index used to quantify goodness of fit and evaluate the complexity of a model 

(Spiegelhalter et al. 2002). Lower DIC values indicate higher reliability of the model. The receiver 

operator characteristics (ROC) curve (Akgün and Bulut 2007; Yesilnacar and Topal 2005) was chosen 

to express the predictive capabilities of the models. However, the ROC curve (Fig. 6) cannot fully 

represent the details of the predictive ability of the model. Therefore, a confusion matrix was used to 
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quantitatively evaluate the accuracy of 0-value predictions and 1-value predictions, and the overall 

predictive accuracy. In this study, the DIC and the confusion matrix were used for comparing the 

model degree of fit and model prediction accuracy, respectively (Table 2). The area under the ROC 

curve (AUC) (Chung and Fabbri 2003) and the confidence of the AUC values are shown in Table 2. 

Compared with the prediction accuracy of traditional spatial LR, that of SLR is significantly increased 

by 11.9% (Table 3). The reasons for this are detailed in the discussion section. 

Table 2 Comparison of logistic regression (LR) and spatial logistic regression (SLR) in terms of model 

verification results. 

Method 
Deviance information 

criterion 

Standard 

Error 

Area Under the ROC 

Curve 

Confidence interval 

(95%) 

LR 19841.46 0.08 0.79 (0.78,0.81) 

SLR 17244.78 0.04 0.93 (0.92,0.94) 

 

 

Fig. 6 The receiver operator characteristics (ROC) curve of logistic regression model (LR) and spatial 

logistic regression model (SLR). AUC is the acronym of area under the ROC curve. 
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Table 3 The confusion matrix of the logistic regression model (LR) and spatial logistic regression 

model (SLR). 

Method Landslide occurred 
Prediction 

Percent Accuracy 
Yes No 

LR 
Yes 486 235 67.4% 

74.2% 
No 1553 4662 75.0% 

SLR 
Yes 609 849 84.5% 

86.1% 
No 112 5366 86.3% 

The spatial structure effect was taken as a latent variable in the SLR model as Equation (4) shows, 

and it was extracted by the SLR model (Fig. 7). A larger spatial structure effect indicates a stronger 

spatial effect, and thus greater deviation of the LR model results.  

  

Fig. 7 Map of the study area illustrating the range of the spatial structure effect. Note the high-value 

areas of spatial autocorrelation in the south. 
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4.2. Landslide susceptibility mapping 

The probability of a landslide occurring was classified using the natural break method to perform 

LSM (Fig. 8). The susceptibility map output from the LR model is shown in Fig. 8a, and the output of 

the SLR model in shown in Fig. 8b. The actual landslide point density map was used as a reference to 

represent real landslides (Fig. 8c). Compared with the actual landslide distribution, the SLR results are 

highly consistent. However, the most landslide prone areas of the LR’s output shows large deviation 

from the actual landslide distribution in areas of high spatial effect values. The outputs were then 

combined with the spatial structure effect and the output of the two models for further analysis. 
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Fig. 8 Landslide susceptibility map. Panel (a) is the landslide susceptibility map produced by the LR 

model; (b) is the landslide susceptibility map produced by SLR; (c) is the density map of actual 

landslide spatial points. LS, MS, and HS respectively indicate three landslide susceptibility levels of 

low, moderate, and high. 
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5. Discussion 

A new model for LSM based on SLR and the use of Geodetector has been proposed in this paper. 

The predictive accuracy of LSM is improved by making full use of spatial data and objective selection 

of condition factors. The new model was applied to the Duwen Highway Basin, China, and the results 

of the LSM show significant improvement compared with the LR model, especially in areas with 

strong spatial effects. In theory, the SLR model accounted for attribute information and spatial 

structural information at the same time, which avoids the defect of insufficient information usage. In 

practice, a more reliable map of landslide susceptibility was acquired, and could be used to provide 

more accurate decision-making information for landslide risk management. 

Spatial structure information had different effects on the results in different regions. In the 

southwestern part of the study area (Fig. 8g), landslides occurred 45 times per square kilometer. This 

was the region most prone to landslides and was also the area with the strongest spatial autocorrelation 

effect (red part of Fig. 8g and c). This strong spatial autocorrelation effect means that a deviation that 

cannot be neglected in this region occurred in the traditional LR model. Because of the side effects of 

spatial autocorrelation, the area of high landslide occurrence in Fig. 8e was incorrectly predicted to be 

an area with low landslide occurrence, which would have a severe impact on decision-making 

concerning landslide risk management. In the northern part of the study area, the spatial distribution of 

landslides was relatively weak (Fig. 8d), which corresponds to the lower spatial effect value in Fig. 7. 

The LR result in this area was consistent with the actual landslide distribution, and there was no major 

deviation like that in Fig. 8e. Thus, the LR model has improved the accuracy in Fig. 8f compared with 

Fig. 8e, and the traditional LR model is therefore more reliable when there is a weak spatial effect.  
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The SLR model is robust with spatial autocorrelation effects. The map produced by the SLR 

model shows good consistency with the spatial pattern of actual landslide points in the region with the 

strongest spatial effects (Fig. 8g). This finding substantiates the robustness of the SLR model when 

using SLM data with a strong spatial autocorrelation effect. In addition, the spatial details of Fig. 8f 

were accurately identified by the SLR model with the relatively weak spatial effect region, which 

shows that the SLR model is equally applicable in regions with both high and low spatial effects; 

therefore, it can serve as a general solution for most LSM scenarios. Although the SLR model was 

more accurate than the traditional LR model in this study (Table 3), the improvement in prediction 

accuracy does not mean that the results of traditional LR are entirely unreliable. This result only 

reflects the strong spatial effect of landslides in the study area, and the results of the LR model, which 

do not account for spatial structure information, have a larger deviation. 

Why is the prediction accuracy of the SLR model greatly improved compared with the LR model? 

According to the first law of geography (Tobler 1970), adjacent landslide areas have similar 

geographical environments, with the presence of landslides themselves indicating greater potential for 

landslides in the surrounding area. In this paper, the spatial autocorrelation effect of high-value areas 

(red region in Fig. 7) and high-value parts of landslide-intensive areas (red region of Fig. 8c) are 

spatially consistent, which indicates that spatial autocorrelation can be an important indicator in 

landslide-prone regions. However, traditional LR only considers the attribute information of the spatial 

data and ignores the influence of the spatial patterns of landslides themselves, which caused traditional 

LR models to incorporate autocorrelation information into residuals. This issue leads to large 

deviations in traditional LR model regions with strong spatial effects.  
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Removing redundant information and making full use of potential information are both important 

for LSM to improve accuracy. LSM models based on statistical theory will have unstable results if they 

contain redundant variables or do not contain significant variables (Jebur et al. 2014). Many studies 

therefore excluded insignificant condition factors in LSM, whereas very few studies have considered 

how to include the potential information implicated in the condition factors. This may be related to data 

unavailability, but if the data have important potential information that has not been included in the 

model, it will result in information waste. The advantage of the methods described in this paper is that 

redundant variables are eliminated by using GeoDetector, and the potential information is further 

extracted using the SLR model.  

Compared with other models, spatial models are rarely used in landslide risk assessment. Perhaps 

a reason behind this is that during evaluation of landslide susceptibility, the Y-variable is binary, which 

means its spatial effect is not easy to extract, and increases the complexity of the model. Another 

reason may be that the effect is not strong enough in the study area such that some LSM methods have 

not fully accounted for the impact of spatial autocorrelation. Some works have compared spatial and 

traditional models (Erener and Düzgün 2010), the results of these studies are consistent with those of 

this article. However, if variable screening models are integrated, the advantages will be more 

pronounced.  

Spatial autocorrelation is always accompanied by spatial heterogeneity. Consequently, the 

sensitivity of the results to the stratification of factors varies from region to region. Spatial 

heterogeneity affects the weight of condition factors, which caused the dominant factor in landslides 

vary from stratification to stratification (Chalkias et al. 2014; Wang et al. 2016). Thus, to obtain 
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optimal results, the study area should be divided into several zones based on a certain condition factor 

and modeling in each zone. Relative to a regional scale, the study area for this article was small; thus, 

the sample size may be insufficient if the study area is divided into several zones. Therefore, 

stratification heterogeneity was not considered for this area. Nevertheless, as supplement, we included 

three partitioning condition factors as dummy variables in the LSM model. That means in addition to 

the stratification heterogeneity of continuous factors, the stratification heterogeneity of the categorical 

factors has been taken into account. Thus, the effect of stratification heterogeneity was reduced. 

Although spatial modeling has demonstrated improvements in goodness-of-fit and prediction 

accuracy, some limitations still exists in this study. First, the complexity of the SLR model means that 

its computational efficiency is much lower than that of the LR model (the time cost of the SLR model 

is about 1,200 fold more that of the LR model), which results in the need to find a compromise between 

resolution and computational efficiency for large study areas such as the one presented here (a 200 × 

200 meter grid is relatively coarse resolution). Secondly, the year 2014 was six years after the 2008 

Wenchuan earthquake. Although the destructive effect of the event has weakening year by year (Zhang 

et al. 2015), the impact of it on the distribution of landslides in the study area still cannot be neglected. 

Nevertheless, the seismic intensity of the earthquake had weaker control than the factors of rock mass, 

slope, and elevation, which indicates that the earthquake six years prior was less influential to landslide 

occurrences than the topographic and ecological condition factors (Fig. 5). Regardless, if more seismic 

impact data were included, the results would have been more convincing. 

Both GeoDetector and SLR can include both the spatial structural information and attribute 

information of spatial data. Therefore, for future landslide susceptibility modeling, a combination of 
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GeoDetector and other LSM models may be considered. Besides, the spatial effect may be considered 

as a potential variable for other LSM models so that more models can make full use of the structural 

information of spatial objects. 

6. Conclusion 

This study aimed to improve the reliability of LSM, and a new model based on GeoDetector and 

SLR was built. The new method solves two common problems in LSM: the selection of condition 

factors being insufficiently objective, and the information of spatial objects being underused. The new 

model provides a general solution that makes full use of spatial structure information and accurately 

selects condition factors. Improvements made with this new model is expected to significantly enhance 

the reliability of landslide susceptibility maps. 
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Highlights 

1. Spatial autocorrelation is important information for geographic data. Taking full 

advantage of this information can improve the accuracy of the landslide 

susceptibility map.  

2. Making full use of spatial data attribute information and spatial structure 

information is conducive to reduce the uncertainty of landslide susceptibility 

mapping. 

3. Eliminating redundant information and mining potential information can improve 

the predictability of the landslide susceptibility mapping. 

4. Model integration can simultaneously meet the need to reduce multiple adverse 

impact on landslide landslide susceptibility mapping. 
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