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a b s t r a c t

PM2.5 pollution is an environmental issue caused by multiple natural and socioeconomic factors, pre-
senting with significant spatial disparities across mainland China. However, the determinant power of
natural and socioeconomic factors and their interactive impact on PM2.5 pollution is still unclear. In the
study, the GeogDetector method was used to quantify nonlinear associations between PM2.5 and po-
tential factors. This study found that natural factors, including ecological environments and climate, were
more influential than socioeconomic factors, and climate was the predominant factor (q¼ 0.56) in
influencing PM2.5 pollution. Among all interactions of the six influencing factors, the interaction of in-
dustry and climate had the largest influence (q¼ 0.66). Two recognized major contaminated areas were
the Tarim Basin in the northwest region and the eastern plain region; the former was mainly influenced
by the warm temperate arid climate and desert, and the latter was mainly influenced by the warm
temperate semi-humid climate and multiple socioeconomic factors. The findings provided an interpre-
tation of the influencing mechanisms of PM2.5 pollution, which can contribute to more specific policies
aimed at successful PM2.5 pollution control and abatement.

© 2018 Elsevier Ltd. All rights reserved.
1. Introduction

PM2.5 pollution's negative effects on public health have
burdened China severely in recent years (Butt et al., 2017; Lu et al.,
2015). As a geographical phenomenon, PM2.5 pollution is inevitably
influenced by the comprehensive geographical environment,
including natural and socioeconomic conditions (Guo et al., 2014;
Timmermans et al., 2017; Wang et al., 2014). China is characterized
as a vast territorial area, and the natural and socioeconomic
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conditions and their interactions differ widely across regions,
simultaneously, PM2.5 pollution presents geographically discrepant
distribution in China (Ma et al., 2016).

Multidisciplinary researchers have conducted numerous studies
on the sources and driving factors of PM2.5. Researchers have
recognized industry, fossil fuel combustion, motor vehicles, and
building yards as general anthropogenic sources of PM2.5 in many
cities in the world (Chowdhury et al., 2007; de Miranda et al., 2012;
Huang et al., 2014; Marcazzan et al., 2003; Timmermans et al.,
2017). Social and economic activities can affect the generation of
and changes in these sources. Thus, some researchers have exam-
ined the relationships between PM2.5 pollution and socioeconomic
factors and indicated that socioeconomic factors such as economic
growth, urbanization, industrialization, and others drove increases
in PM2.5 concentrations (Guan et al., 2014; Hao and Liu, 2016; Li
et al., 2016; Meng et al., 2015).

PM2.5 is a type of air pollutant and the transformation, diffusion,
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and even the generation of areas severely polluted with PM2.5 are
inevitably affected by meteorological conditions. Generally, PM2.5
pollution deteriorates and forms a thick haze in continuous and
stableweather conditions (Green et al., 2015; Tao et al., 2014; Zhang
and Cao, 2015). Long-term meteorological conditions are also
related to the spatial and seasonal variability of PM2.5, especially in
China (Guo et al., 2017; Pant et al., 2015; Yang et al., 2017a; Zhang
and Cao, 2015). The ecology or land use environment is the
spatially common carrier of pollution sources and potential factors
of PM2.5; different ecological systems can also affect PM2.5. Human
settlements are undoubtedly concentrated primary and secondary
anthropogenic emission sources (Cao et al., 2016; Guo et al., 2014;
Zhang et al., 2015). Environmental chemists have also documented
that fertilizer use on farmlands is the largest emission source of
ammonia (NH3), which mainly contributes to urban PM2.5 by
combining with urban emission pollutants, such as volatile organic
compounds, NOx, and SO2(Gu et al., 2014; Wang et al., 2016a).
Furthermore, air pollutants in city suburbs aggregate into the city
and enhance PM2.5 pollution under the urban heat islands effect
(Aslam et al., 2017; Bloomer et al., 2009; Zhang et al., 2009). Other
ecological systems also have different effects on PM2.5; for example,
desert areas are natural sources of sand and dust in PM2.5 (Lu et al.,
2017), and forests can absorb and purify PM2.5 pollution (Nowak
et al., 2014).

PM2.5 is comprehensively affected by natural and socioeconomic
factors, and the use of related factors have been highlighted with
effectiveness in improving PM2.5 mapping (Liu et al., 2018). How-
ever, the discrepant influences of the factors and their interactions
have rarely been examined. Investigators are usually concerned
with unilateral factors such as natural or socioeconomic factors,
while a quantification of the influences of integrated natural and
socioeconomic multi-factors has been overlooked. Traditional
methods are disadvantaged in examining the interactions of factors
influencing air pollution. The interaction of two factors can be
multiple coupling forms in reality, while it is usually the product of
two factors in traditional regression methods. Additionally, statis-
tical models of interactions are usually created using local regions
and are limited in reflecting the spatial global variability of in-
fluences (Pearce et al., 2011). Coefficients with spatial differences
can be derived by using GIS-based regression methods or machine
learning algorithms, but they have poor large-scale explanatory
capability because of the existence of spatial stratified heteroge-
neity (Lin et al., 2014; Wang et al., 2016b).

China is experiencing tremendous economic growth and has
increasingly become an important engine for world economic
growth with its rapid urbanization and industrialization; it is also
one of the main regions facing serious PM2.5 pollution. Anthropo-
genic emissions drive the increases in PM2.5, but not all concen-
trated areas of anthropogenic emissions are highly polluted
because of the differences in natural conditions (Jin et al., 2017; Lu
et al., 2017). Quantifying the influences of potential factors and
their interactions are important for understanding the spatial
pattern of PM2.5 pollution and the driving mechanisms, which can
contribute to successful policy making for controlling and reducing
PM2.5 pollution. This study aimed to quantitatively investigate the
influence of potential factors, including industry, construction,
traffic, coal combustion, ecological environments, and climate and
their interactive effects on PM2.5 pollution in China.

2. Materials and methods

2.1. PM2.5 data

PM2.5 data is a subset of a published global PM2.5 concentration
dataset for the study region in 2015 from the Atmospheric
Composition Analysis Group at Dalhousie University (http://fizz.
phys.dal.ca/~atmos/martin/?page_id¼140) (Fig. 1). The spatial res-
olution of the raw data is 0.1� � 0.1�. This dataset has good accuracy
with a high cross-validated R2 of 0.81 (Van Donkelaar et al., 2016)
and has been used in many research studies (Donkelaar et al., 2015;
Lu et al., 2017; Mcguinn et al., 2017; Xie et al., 2016). The cross-
validated R2, between the estimated annual average PM2.5 and
observation values in 313 cities of China in 2015, is 0.72.

2.2. Potential driving factors, proxies, and data

Given that socioeconomic factors, including industry, con-
struction, traffic, coal combustion, and natural factors, including
ecological environment and climate, were related to aspects of the
natural and anthropogenic sources, influences, and secondary in-
fluences of PM2.5, we integrated these factors in this study. The
corresponding proxies of these potential factors are shown in Fig. 2.

Socioeconomic data, including industrial output (IO), construc-
tion output (CO), and coal consumption (CC) in 2015 were obtained
from the Provincial Statistical Yearbook on China National Knowl-
edge Infrastructure (CNKI: http://data.cnki.net/Yearbook). The unit
area mean values of the three types of socioeconomic data, which
are the original values divided by the administrative area, were
calculated and used. Data on roads were gathered from Open-
StreetMap (https://www.openstreetmap.org). The roads included
urban roads and multistage highways such as expressways; na-
tional, provincial, and county highways; and township roads. Road
density (RD) was calculated using “line density” in spatial analysis
tools in ArcGIS software. To match the following modeling needs,
industrial output, construction output, and road density were dis-
cretized and classified using the geometrical interval method in
ArcGIS according to their quantitative values, and coal consumption
was classified using the natural breaks method (Fig. 3aed).

Data on ecosystem types (ET) in 2015 were provided by the Data
Center for Resources and Environmental Sciences, Chinese Acad-
emy of Sciences (http://www.resdc.cn). The spatial resolution of
the raw data was 1 km� 1 km. To obtain the ecosystem types in
each 10 km� 10 km grid, we extracted the most common
ecosystem type in each 10 km� 10 km grid as the ecosystem type
for each grid except human settlement. The area of human settle-
ment was small compared with other ecosystem types, but human
activity space and manmade pollutants, including PM2.5, were not
just confined to the spatial range of the human settlement. Thus,
the ecosystem type where the total area of the human settlement
was larger than 25 km2 was considered a human settlement
ecosystem (Fig. 3e).

China has diverse climatic conditions. Zheng et al. (2010) pro-
posed a new scheme for generating China's climate regionalization
(CR) based on daily meteorological observation data during
1971e2000. We regenerated the climate regionalization by vecto-
rizing Zheng's scheme and merging some small partitions (Fig. 3f).

2.3. GeogDetector model

The GeogDetector model is a novel spatial variation analysis
method, which can be used to explore the driving force of a
responding variable under the assumption that the two variables
are associated if their spatial stratified heterogeneity tend to be
consistent (Wang et al., 2010; Wang and Hu, 2012). Compared to
traditional linear models, GeogDetector is capable of handling
categorical dependent variables, finding the dominant driving
force, and investigating the interaction between two variables with
no assumption of linearity and immunity to the colinearity of
dependent variables.

It comprises four modules: factor detector, interaction detector,
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Fig. 1. Spatial pattern of PM2.5 concentrations in 2015 for mainland China.

Fig. 2. Factors and their proxies.

D. Yang et al. / Environmental Pollution 241 (2018) 475e483 477
risk detector, and ecological detector (Wang and Hu, 2012). The
factor detector uses a q value to quantify the influences of factors
(Xs) on Y; q is given by following formula:

q ¼ 1�
PL

h¼1Nhs
2
h

Ns2

SSW ¼
XL
h¼1

Nhs
2
h; SST ¼ Ns2

where h¼ 1, …, L is the number of subregions (or subclasses) of
factors X andNh, andN donates the number of samples in subregion
h and the total number of samples over the whole study region,
respectively; s2h and s2 denotes the variance of samples in subre-
gion h and the global variance of Yover the entire study region. SSW
and SST are the within sum of squares and the total sum of squares,
respectively. The value of q ranges from 0 to 1. The larger the q
value, the stronger the influence of variable X on Y.

The interaction detector can examine the interaction of different
factors (Xs) and reveals whether the interaction of factors (X1 and
X2) weaken or enhance the influence on Y or whether they are
independent in influencing Y. The q value of factors X1 and X2
calculated from a factor detector can bemarked as q (X1) and q (X2).
A new factor layer and subregions can be generated by overlaying
the factor layer X1 and X2 spatially; it can be marked as X1∩X2 and



Fig. 3. Spatial distribution of six underlying factors: (a) industrial output, (b) construction output, (c) road density, (d) coal consumption, (e) ecosystem type, and (e) climate
regionalization.
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Table 2
The influences of factors in driving PM2.5 concentrations.

Factors q value

Socioeconomic factors IO (106$Yuan/Km2) 0.14***
CO(103$Yuan/Km2) 0.12***
RD (Km/K m2) 0.10***
CC(106$Kg/Km2) 0.13***

Natural factors ET 0.30***
CR 0.56***

Note: ***donates that q value is significant at the 0.001 level (p< 0.001).
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∩ denotes the intersection between the factor layer X1 and X2.
Then, the q value of X1∩X2, represented as q (X1∩X2), can be
calculated. The interactive relationship can be interpreted as five
categories by comparing the interactive q value of the two factors
and the q value of each of the two factors (Wang and Hu, 2012; Wu
et al., 2017). The five categories are presented in Table 1.

The spatial difference of an influencing factor should have
different influences on Y in different regions. The risk detector can
determine whether there is a significant difference in influence on
Y in two subregions via a t-test. Its formula is:

tyh¼1yh¼2
¼ Yh¼1 � Yh¼2"

VarðYh¼1Þ
nh¼1

þ VarðYh¼2Þ
nh¼2

#1=2

where Yh represents the average of Y in the subregion h; nh is the
size of samples in subregion h, and Var is variance.

The ecological detector is used to compare whether X1 has a
significantly greater influence or contribution than X2. It is
measured using the statistics F:

F ¼ NX1ðNX2 � 1ÞSSWX1

NX2ðNX1 � 1ÞSSWX2

SSWX ¼
XL1
h¼1

Nhs
2
h; SSTX2 ¼

XL2
h¼1

Nhs
2
h

where NX1 and NX2 represent the number of samples of the two
factors X1 and X2, respectively; SSWX1 and SSWX2 are the within
sum of squares in the subregion generated by factor layers X1 and
X2, respectively. L1 and L2 represent the number of subregions of
X1 and X2, respectively. The null hypothesis is defined as H0:
SSWX1¼ SSWX2. The rejected H0 at the significance level a indicates
that it is statistically significant.

In this research, the geographical detector model is used to
examine the influence of six potential influencing factors, including
industry, construction industry, traffic, coal combustion, ecological
environment, and climate and their interaction effects on PM2.5
concentrations.
3. Results

3.1. The influence of potential driving factors on PM2.5

concentrations

The influence (q values) of the six driving factors on PM2.5
concentrations were calculated using the factor detector and are
presented in Table 2. Among the six potential driving factors, CR
had the greatest influence on the pattern of PM2.5 concentrations
(q¼ 0.56), followed by another natural factor, ET (q¼ 0.30).
Compared with natural factors, socioeconomic factors presented
smaller influences on PM2.5 concentrations. Among the socioeco-
nomic factors, IO presented as having a dominant influence
(q¼ 0.14) on PM2.5 concentrations, while RD presented as having
Table 1
The interactive categories of two factors and the interactive relationship.

Description Interaction

q (X1∩X2)<Min (q (X1), q (X2)) Weaken; univariate
Min (q (X1), q (X2))< q (X1∩X2)<Max (q (X1), q (X2)) Weaken; univariate
q (X1 ∩X2)>Max (q (X1), q (X2)) Enhanced, bivariate
q (X1∩X2)¼ q (X1) þ q (X2) Independent
q (X1 ∩X2)> q (X1) þq (X2) Nonlinearly enhance
the least influence (q¼ 0.10).

3.2. The interaction effects of factors on PM2.5 concentrations
(interaction detector)

A total of 15 pairs of interactions between the 6 factors were
detected using the interaction detector. The interactive q value of
each pair of factors was found to be more than both the two factors'
q values but was less than the sum of the two factors' q values. Thus,
the interactive relationship between each pair of factors was
bivariate enhanced each other in influencing PM2.5 concentrations.
Fig. 4 shows the specific comparisons between the interactive q
value and the two factors’ q values. Among the interactions of so-
cioeconomic factors, q (IO∩CC) was the maximum (0.21), indicating
that the interaction between IO and CC was strongest. Also, the
interaction was strongest between IO and ET among the in-
teractions between socioeconomic factors and ET, and the inter-
action between IO and CR was strongest among all the interactions
between socioeconomic factors and natural factors. Additionally,
the interaction between natural factors, ET and CR, was not
significantly enhanced compared with both the original q values of
ET and CR.

3.3. The leading impact areas (subregions) of factors in influencing
PM2.5 concentrations

The average PM2.5 concentrations in all subregions of the six
factors were calculated and the significance of influence differences
was captured using the risk detector. The socioeconomic factors
were divided according to their numerical values from small to
large. PM2.5 concentrations in all subregions of the socioeconomic
factors presented increasing trends along with increases in these
factors generally (Fig. 5), indicating that larger the values of these
Fig. 4. The comparison of the interactive q value and the original q value of each pair of
factors.
Note that X1 donates the first factor, X2 donates the second factor, and X1∩X2 is the
interaction of the two factors. For example, in the pair of (IO, CO), X1 donates IO, X2
donates CO, and X1∩X2 is the interaction of IO and CO.



Fig. 5. The comparison of the interactive q value and the original q value of each pair of factors.
Note: In Figure a, numbers 1e6 (or 8) in the abscissa axis denote the number of subregions (subclasses) of the socioeconomic factors, which were divided based on their values from
small to large. In Figure b, numbers 1e7 (or 15) in the abscissa axis represent the number of subregions (subclasses) of the natural factors; the corresponding relations are presented
in Table A. 1.
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factors were associated with higher PM2.5 concentrations. The
average PM2.5 concentration was highest (58.15 mg/m3) in the
subregion of human settlement in ET, followed by desert (49.04 mg/
m3) and farmland (46.89 mg/m3). Among subregions of CR, the
average PM2.5 concentration was the highest (69.67 mg/m3) in the
subregion with a warm temperate arid climate, followed by warm
temperate semi-humid climate (54.02 mg/m3), warm temperate
humid climate (53.52 mg/m3), and north subtropics (50.74 mg/m3).

The area where the PM2.5 concentrations were high can be
identified as a high-risk area for PM2.5 pollution. The first several
subregions of each factor where the average PM2.5 concentrations
were relatively high (more than 40 mg/m3 generally) were mapped
to inform the areas with high risk of PM2.5 pollution (Fig. 6). The
eastern plain area, especially the North China Plain, was affected by
multiple factors and was a high risk area for PM2.5 pollution, while
the northwest region, especially the Tarim Basin region which is
mainly affected by deserts and a warm temperate arid climate, was
also a high-risk area for PM2.5 pollution.

The significance of varying influence among different sub-
regions of IO showed that there were no significant differences
between subregions 5 and 6, and there were significant differences
between other pairs of subregions (Table A. 2). Similarly, therewere
Fig. 6. The spatial distribution of the
no significant differences between subregions 5 and 6, and there
were significant differences between other pairs of subregions of
CO (Table A. 3). For factor RD, there were significant differences
between all pairs of subregions except the pair of subregions 2 and
4 (Table A. 4). The results of significant differences were all true
between all pairs of subregions of both CC and ET (Table A. 5 and A.
6). The significance of varying influences of CR was true except the
pair of warm temperate semi-humid climate region and warm
temperate humid climate region (Table A. 7).
3.4. Statistical significance of differences among influencing factors

The significance of varying influence among the six factors was
examined using the ecological detector. The results (Table 3)
showed that more than two-thirds were not statistically significant,
while there were statistically significant differences between IO
and other socioeconomic factors (CC, RD, and CO) and between CO
and RD. By combining the findings from the factor detector, it could
be concluded that IO has a significantly stronger effect on PM2.5
than CO, RD, and CC; and CC has a significantly stronger effect on
PM2.5 than RD.
leading impact areas of factors.



Table 3
Statistically significant differences in the factors’ influence on the spatial pattern of
PM2.5 concentration.

Difference CR ET CC RD CO IO

CR
ET N
CC N N
RD N N N
CO N N N Y
IO N N Y Y Y

Note: Y means the difference of the influence of the two factors is significant with
the confidence of 95%, while N means no significant difference.
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4. Discussion

Integrated natural and socioeconomic factors and their in-
teractions drove the discrepant geographical pattern of PM2.5
concentrations in China. This paper quantified the influences of the
socioeconomic and natural factors, as well as their interactive
impact on PM2.5 concentrations using the GeogDetector model. The
results showed that natural factors, including ecosystem and
climate, were more influential than socioeconomic factors in
driving PM2.5 pollution. Among the influencing factors, climate was
the dominant factor, and industry was more influential than the
other socioeconomic factors. Among all the interactions of the six
influencing factors, the interaction between industry and climate
presented the largest influence, which was larger than the inter-
action of ecosystem and climate. The Tarim Basin was a severely
contaminated region located mainly in the warm temperate arid
climate and desert ecosystem. Another severely contaminated re-
gion distributed in the plain areas in the eastern region was pri-
marily in the warm temperate semi-humid climate and influenced
by multiple socioeconomic factors.

Although socioeconomic factors such as industry, traffic,
construction, and coal consumption were related to the direct
sources of PM2.5 pollution, the results documented that socio-
economic factors had less influence than natural factors. Meteo-
rological conditions usually have a direct and real-time impact on
PM2.5 in many different aspects, such as transformation and
diffusion caused by wind, purification caused by rainfall, the ag-
gregation of air pollutants, and the formation of secondary particle
matter caused by unusual weather conditions. Previous studies
have indicated that local meteorology was a relatively strong
influencing factor in air pollution (Pearce et al., 2011; Zhao et al.,
2013). There are fewer emission sources in a forest system and
forests also have certain subduction effects on PM2.5, so pollution
concentrations in forest regions were relatively low (Nowak et al.,
2014, 2006). However, sand-dust from deserts, straw burning and
fertilizer use in farmland systems, and anthropogenic emissions
from human settlements can enhance PM2.5 pollution (Guan et al.,
2017; Wang et al., 2016a; Zhang et al., 2015). Thus, the integrated
ecosystem also has an important influence on PM2.5 pollution
(Table 2).

The interaction detector revealed that the interactions between
all the factors presented enhanced influence. As the socioeconomic
factors were related to anthropogenic emissions, their interactions
would increase anthropogenic emissions and reinforce each other
in influencing PM2.5 pollution. Socioeconomic activities mainly
spatially interact with human settlements and farmland systems in
an ecological environment, and these interactions also enhance the
influence of PM2.5 pollution. Gu et al. (2014) have reported similar
findings in interpreting the chemical transportation process of ur-
ban PM2.5 pollution. Nevertheless, the formation of severe haze and
the highly polluted areas is usually inseparable from weather and
local climatic conditions.
Additionally, the leading impact areas (high-risk areas of PM2.5
pollution) were revealed using the risk detector. As the hypothesis
that the PM2.5 concentrations were generally high in subregions
with high values of the socioeconomic variables, and the subclass of
ecosystem, mainly human settlements, desert, and farmland and
the subclass of climate, including the warm temperate arid climate,
warm temperate semi-humid climate, warm temperate humid
climate, and north subtropics were also found to have high PM2.5
concentrations (Fig. 5).

The risk detector also confirmed that two highly polluted re-
gions, the Tarim Basin (and its surrounding areas) and the eastern
plain, were affected bymultiple leading impact subregions of either
natural or socioeconomic factors, or both. In the Tarim Basin, the
high PM2.5 concentrations were mainly attributable to the Takla
Makan Desert and warm temperate arid climate (Fig. 6). The lack of
plant-covered geographical surfaces formed under the influence of
dry weather strengthened the effect of the wind and further pro-
moted dust storm outbreaks (Ma et al., 2013; Wang et al., 2009).
Thus, the interaction of the desert ecosystem and climate resulted
in long-term highly polluted areas of PM2.5.

The eastern plain, especially the North China Plain, is the main
agricultural area of China and has high concentrations of heavy
industries, high road density, and accelerating urban sprawl. This
geographical environment contributed a substantial amount to
primary emissions and secondary inorganic PM2.5 pollutants (Guo
et al., 2014). Adverse weather conditions in the planetary bound-
ary layer, such as a continuous strong temperature inversion,
downdrafts, and weak surface wind speeds are frequent and
continual in the winter, which can further cause pollutants to
accumulate in a shallow layer (Zhang et al., 2014; Zhao et al., 2013).
Moreover, coal-fired heating and less vegetation coverage (decid-
uous broad-leaf forests) were related to substantial increases in
pollution sources in winter (Wu et al., 2015; Xiao et al., 2015; Yu
et al., 2013; Zheng et al., 2005). Hence, the interactions between
multiple leading impact subregions of natural and socioeconomic
factors led to the formation of severe PM2.5 pollution, especially
during winter in the North China Plain.

Previous studies had similar findings and determined that the
air pollution over eastern China was associated with both anthro-
pogenic emissions and meteorological conditions (Yang et al.,
2017b; Zhang and Cao, 2015). Although there were also massive
cities, industries, and transportation in other regions, such as in the
Greater Changsha Metropolitan Region, the Chengdu-Chongqing
Urban Agglomeration, and the Pearl River Delta, the emissions of
industrial waste gas, such as SO2 and soot (He et al., 2014), and coal
combustion were less than the North China Plain, and natural
conditions (climate and ecology) were not conducive to forming
severe haze, and their PM2.5 concentrations were much lower than
in the North China Plain. No other region had as many anthropo-
genic emission sources and such favorable natural conditions for
developing severe PM2.5 pollution as the North China Plain (Fig. 6).

The ecological detector's results indicated that industry has a
significantly stronger effect on PM2.5 than coal consumption, traffic,
and the building industry, and coal consumption has a significantly
stronger effect on PM2.5 than traffic on the national scale. Socio-
economic factors differ widely across regions, and empirical studies
have indicated varying contributions of these factors to PM2.5
pollution in different cities or regions (Wang et al., 2013; Wei et al.,
1999; Yu et al., 2013). Some previous studies on the national scale
have also explored the effected factors of PM2.5. Huang et al. (2014)
indicated that China's emitted PM2.5 was coarser mainly due to
strong industry emissions; however, nonindustrial sources had a
larger contribution in developed countries. Timmermans et al.
(2017) indicated that industry and traffic were the largest con-
tributors during summer months, and residential combustion was
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the largest during winter months in China.
Spatial stratified heterogeneity is a spatial representation of

natural and socioeconomic phenomena, including PM2.5 pollution.
Theoretically, the GeogDetector in this study is based on a spatial
variance analysis of the spatial consistency between PM2.5 con-
centrations and suspect geographical strata (subregions or sub-
classes). The key assumption is that if the spatial distribution of two
variables tends to be consistent, then there is a statistical associa-
tion between the two variables. Thus, the statistical association can
imply potential mechanisms within distinct spatial strata and
suggest potential factors involved in the observed process (Wang
et al., 2010; Wang and Hu, 2012). This assumption reflects a gen-
eral understanding of natural phenomena.

In this paper, discrepant influences and interactions among
possible factors involved in PM2.5 pollution were examined.
Although anthropogenic emissions related to socioeconomic fac-
tors are the primary cause for increases in PM2.5 concentrations,
this study verified that natural factors had a stronger influence in
driving regional severe and persistent PM2.5 pollution, especially in
the Tarim Basin and the North China Plain. The existence of spatial
stratified heterogeneity within PM2.5 pollution determined that the
association between PM2.5 concentrations and the possible factors
was usually weak on a large scale; relationships derived from the
regression model were explicable on a limited local scale, but lack
explanatory power on a large scale (Lin et al., 2014; Lu et al., 2017).

Some limitations of the study should be clarified. The first lim-
itation is that the results are statistical and do not prove causality,
the specific factors for PM2.5 pollution are quite complex and
diverse in different regions. However, the results can screen out
highly suspicious factors for confirming the causality with further
analysis. The second limitation is from the raw data of PM2.5. The
raw data of PM2.5 are estimated based on aerosol optical depth
(AOD). The accuracy is considerably high, but it also shows uncer-
tainty in different regions (Van Donkelaar et al., 2016). The error in
the raw PM2.5 data would affect the results inevitably. In addition,
different industrial structure may contribute to different amount of
polluting emissions and produce different effects on PM2.5 pollu-
tion. The potential impacts were not fully considered, which would
also introduce some uncertainties. Thus, data for emission in-
ventory with high spatial resolution can be used in further studies
to improve the accuracy and efficiency of the quantification of
anthropogenic influences on PM2.5 pollution.

5. Conclusions

The study involved a quantitative analysis of natural and social-
economic factors’ influence on PM2.5 pollution in China. The
discrepant influences among natural and social-economic factors in
PM2.5 pollution were revealed; the spatial differences of PM2.5
pollutionwas related to the spatial disparity of the factors and their
interactions. The findings can contribute to better understanding
the influencing mechanisms of PM2.5 pollution and the geograph-
ical factors for forming persistent and highly polluted areas, and
imply that more specific control strategies need to be targeted in
different regions toward successful PM2.5 pollution control and
abatement.
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