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Inclementweather acutely affects road surface anddriving conditions and can negatively impact trafficmobility and safety.Highway
authorities have long been using road weather information systems (RWISs) to mitigate the risk of adverse weather on traffic.
The data gathered, processed, and disseminated by such systems can improve both the safety of the traveling public as well as
the effectiveness of winter road maintenance operations. As the road authorities continue to invest in expanding their existing
RWIS networks, there is a growing need to determine the optimal deployment strategies for RWISs. To meet such demand, this
study presents an innovative geostatistical approach to quantitatively analyze the spatiotemporal variations of the road weather
and surface conditions. With help of constructed semivariograms, this study quantifies and examines both the spatial and temporal
coverage of RWIS data. A case study of Alberta,which is one of the leaders in Canada in the use of RWISs, was conducted to indicate
the reliability and applicability of the method proposed herein.The findings of this research offer insight for constructing a detailed
spatiotemporal RWIS database to manage and deploy different types of RWISs, optimize winter road maintenance resources, and
provide timely information on inclement road weather conditions for the traveling public.

1. Introduction

Inclement weather acutely affects road and driving condi-
tions. Approximately 22% of vehicle crashes and 25% of
total travel time delays are reported to be adverse weather-
related in the USA [1, 2]. To mitigate the risk of adverse
weather on traffic, proactive strategies for transportation
management and road maintenance operations have been
developed based on road weather data [3–5]. As the predom-
inant sources of road weather data, stationary road weather
information systems (RWISs) [6] provide high temporal but
limited spatial data coverage. In contrast, a mobile RWIS [7],
which has vehicles collecting road and atmospheric condition
information, provides spatially continuous but temporally
discrete measurements. To reap the benefits of both systems,
road weather data from stationary and mobile RWIS can
be integrated to construct an RWIS database with both

high temporal and spatial coverage. However, installing and
operating both stationary and mobile RWISs is costly. In
practice, how to deploy stationary and mobile RWIS to
achieve complete spatial and temporal coverage in a cost-
effective way is yet unresolved. Spatiotemporal coverage is
the maximum distance and time lag, beyond which the
measurements are no longer representative. It is apparent
that an RWIS network with better spatiotemporal coverage
will generate more timely and reliable estimations. Timely
and reliable road surface condition information is critical for
transportation authorities to perform road maintenance and
provide weather impact warnings to travelers [8–10]. Adverse
road weather impact warnings, such as driving risk alert,
advisory speed, and alternative route recommendations, can
only be designed when real-time road weather condition
data is of high spatiotemporal coverage and resolution.
Thus, a cost-effective RWIS network design and deployment
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require an understanding of spatiotemporal variability in
road weather information. To realize such goals, the spa-
tiotemporal coverage of RWIS must be quantified. This study
quantifies that data.

Traditionally, RWISsmeasure atmospheric and pavement
conditions in the field and send data to the traffic manage-
ment centre (TMC) for road weather impact analysis. Tomás
et al. [5] proposed an autonomous system that monitors,
detects, and forecasts weather incidents with data from
stationary RWISs. Gu et al. [11] proposed a regression Kriging
method to interpolate road weather conditions using mobile
RWIS data. Integrated with other data sources, RWISs can
support advanced road weather management. Mahoney and
Myers [12] introduced a winter road maintenance decision-
support system, which integrates weather and road condition
data along with maintenance operation rules of practice.
Similarly, Cluett et al. [13] developed a framework concept
that integrates weather and traffic operation data. In addition,
the emerging connected vehicle (CV) technologies enable
convenient communication between TMC and road users. In
the state ofWyoming,USA, the road condition information is
broadcasted from roadside units to CVs for spotting weather
impact warnings [14].

Vehicles equipped with road weather sensors can also
serve as mobile RWISs and enrich road weather-related
data sources. Dey et al. [10] provided a comprehensive
practice review and found that CVs can be used as mobile
RWISs to enhance route-specific road weather data collec-
tion, condition estimation, and traffic management. Petty
and Mahoney [15] revealed the potential of CVs in road
weather data collection. In addition to the basic atmospheric
observations, the data from onboard vehicle sensors, such
as wiper state and antilock braking systems, can also be
used in road weather condition estimation. With CV-enabled
data in hand, Drobot et al. [16, 17] designed a quality
and accuracy check process, which includes crosschecks
with sensor specifications, climatological ranges, neighboring
vehicle, and station measurements, for weather-related data
from probe vehicles. Other data analysis shows that the
quality of temperature and pressure data is affected by many
factors, such as vehicle type, speed, and precipitation occur-
rence [16], and the temperature data from probe vehicles
closely resembles data from stationary weather stations [17].
Most recently, Boyce et al. [18] developed a road weather
condition assessment and forecast system, called Pikalert
System. It integrates observations from connected vehicles
with those from stationary RWIS, radar, and weather model
analysis fields. Then it recommends snow and ice removal to
road maintenance personnel and provides road weather and
condition information to the public.The prototype of the tool
has been tested in the Kansas City, USA, since the fall of 2017
[19].

RWISs, the stationary ones in particular, collect road
weather condition information effectively but expensively.
Additionally, a single RWIS data source can only take
measurements that are either rich in space or rich in
time—not both. Constructing a database that has both high
spatial and temporal coverage data calls for an effective
distribution of RWIS Environment Sensor Stations (ESSs)

and vehicles. To plan and distribute a cost-effective RWIS
network, researchers have attempted to measure the moni-
toring capability of RWISs by experience-based and model-
based methods. Manfredi et al. [20] suggested that an
area with stable road weather and surface conditions can
be regarded as regional representativeness in RWIS ESS
allocation. Using experience-based methods, Mackinnon
and Lo [21] conducted RWIS network expansion design by
considering traffic loads, collision rates, climatic zones, and
availability of meteorological information. For model-based
methods, Singh et al. [22] assumed that the RWIS spatial
coverage is a decreasing function of distance. Zhao et al.
[23, 24] determined the spatial coverage based on spatial
variability. They computed the standard deviation of weather
severity in microzones. The spatial coverage of a station was
then defined as the size of the critical buffers where the
standard deviation changes most quickly with the buffer size.
Kwon et al. [25, 26] introduced a spatial variogram approach
to determine the autocorrelation range that measures the
spatial variability of road weather conditions. The quantified
monitoring capability of a stationary RWIS was then used as
an input to determine optimal stationary RWIS density [25]
and allocate RWIS in a road network [26].

All the studies above attempted to analyze the patterns
of spatial dependence in road weather conditions. While
time series analysis is a method commonly used to quantify
correlation over time, to the authors’ knowledge, there still
lacks research that investigates spatiotemporal variability of
road weather conditions. Incorporating spatial and temporal
analysis, spatiotemporal analysis benefits from complete
spatiotemporal information and the interactive effects of
combining spatial and temporal data. The spatiotemporal
variogram commonly used in geostatistics is a useful way
to model spatial and temporal dependency and their inter-
actions. It allows researchers to visualize the spatiotemporal
variability and estimate the spatiotemporal autocorrelation. A
variety of studies have applied the spatiotemporal variogram
model to estimate spatiotemporal environmental, meteoro-
logical or climatological distributions [27–30].

To bridge the spatiotemporal research gap, this study
applied the spatiotemporal variogram to measure the spa-
tiotemporal coverage of RWISs. A case study of Alberta,
Canada, was conducted to test the proposed method and
look into seasonal trends of spatiotemporal data represen-
tativeness. There were three objectives of this study: (1)
propose a method to quantify the spatiotemporal coverage
of RWIS data; (2) evaluate the proposed method with real-
world RWIS data; and (3) investigate the seasonal variations
of spatiotemporal coverage. Determining the spatiotemporal
coverage of RWIS data can provide a guideline that helps
decision makers deploy stationary and mobile RWISs. Also,
the spatiotemporal coverage works as an essential parameter
in data integration and fusion among multiple data sources.

The remainder of this paper is organized into sections:
The next section looks into the theory behind the spa-
tiotemporal variogram; the Methodology section details the
proposed method of this study, including the research pro-
cedure, data quality diagnostics, spatiotemporal variogram
modelling, and cross validation; the Case Study section
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deploys the proposed method in the study site to investigate
the monthly spatiotemporal correlations; and, finally, the last
section discusses the concluding remarks and suggests future
work.

2. Spatiotemporal Variogram

Geostatistics is known as a class of numerical techniques
that characterize spatial attributes and infers variability from
the autocorrelation of insufficient data and measure the
uncertainty associated with estimation [31]. However, data
variability sometimes develops simultaneously in both space
and time [32]. As such, the traditional pure spatial analysis
has been incorporated with temporal analysis, namely, spa-
tiotemporal geostatistics analysis.

Generally, the key element in spatiotemporal geostatistics
is finding a valid and reliable spatiotemporal variogram that
quantifies the data structure in space and time domains. A set
of variables 𝑧 = {𝑧(𝑠, 𝑡) | 𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇} varies within a spatial
domain 𝑆 and a temporal domain 𝑇. The spatiotemporal
variogram is estimated as half of the mean squared difference
between data separated by a given spatial and temporal lag
(ℎ𝑠, ℎ𝑡) [33, 34]:

𝛾 (ℎ𝑠, ℎ𝑡)

= 1
2𝑛 (ℎ𝑠, ℎ𝑡)

𝑛(ℎ
𝑠
,ℎ
𝑡
)

∑
𝑖=1

[𝑧 (𝑠𝑖, 𝑡𝑖) − 𝑧 (𝑠𝑖 + ℎ𝑠, 𝑡𝑖 + ℎ𝑡)]2
(1)

where 𝛾(ℎ𝑠, ℎ𝑡) is the semivariance of the empirical vari-
ogram; 𝑧(𝑠𝑘, 𝑡𝑘) is the measurement at the spatial location 𝑠𝑖
and temporal location 𝑡𝑖; and 𝑛(ℎ𝑠, ℎ𝑡) is the number of pairs
in the observation. Note that ℎ𝑠 is the Euclidean distance,
which is a two- or three-dimensional spatial distance vector.
Additionally, there should be no trend of systematic variation
in the dataset and thus the estimated variogram is inde-
pendent of the individual location. Figure 1 shows a three-
dimensional spatiotemporal variogram (Figure 1(a)) together
with its projection on the front or side planes (Figure 1(b)).
The variogram in Figure 1(b) can be regarded as a pure spatial
or temporal variogram.

A variogrammodel can be described by three parameters:
the nugget effect, range, and sill. The nugget effect is the
variance at the distance of zero, representing the microscale
variation or measurement error. The range is the distance
at which the data is no longer autocorrelated and the
semivariance starts to level off. That is to say, the spatial and
temporal ranges correspond to the spatially and temporally
correlated portions in the variogram. Beyond the range,
the semivariance becomes a constant value. The sill is the
semivariance where the variogram levels off [35].

Typically, the empirical variogram is then smoothed by
a mathematical model as the estimated model is commonly
irregular, and the real data structure is likely unknown
[36]. An appropriate model ensures the positive definite-
ness of the variogram and sufficient flexibility for the data
autocorrelation structure. Thus, many models, including
the separable covariance model, product-sum covariance
model, and metric covariance model, have been proposed.

The separable covariance model assumes that the space-
time covariance function is the product of separate spatial
temporal components (i.e., 𝐶(ℎ𝑠, ℎ𝑡) = 𝐶𝑠(ℎ𝑠)𝐶𝑡(ℎ𝑡)). This
model separates the dependence on the two domains and
simplifies the variogram modelling. In contrast, the product-
sum covariance model (i.e., 𝐶(ℎ𝑠, ℎ𝑡) = 𝑘𝐶𝑠(ℎ𝑠)𝐶𝑡(ℎ𝑡) +𝐶𝑠(ℎ𝑠) + 𝐶𝑡(ℎ𝑡), with 𝑘 > 0) was proposed to analyze the
interaction between spatial and temporal domains. Also, the
metric covariance model includes a space-time anisotropy
ratio 𝜅 to incorporate distance in time and space (i.e.,
𝐶(ℎ𝑠, ℎ𝑡) = 𝐶𝑗𝑜𝑖𝑛𝑡√ℎ2𝑠 + (𝜅 ⋅ ℎ𝑡)2). Evaluation criteria, such
as root-mean-square-error (RMSE) and mean squared error
(MSE), can be applied to assess the goodness-of-fit. By
measuring the difference between the observed values and
the estimated values, the model that best reproduces the
variability of the dataset can be selected.

3. Methodology

3.1. Research Procedure. This study analyzed the spatiotem-
poral patterns of RWIS data in three steps (see Figure 2).
First, the raw RWIS data was extracted from the database
and input into the data quality diagnostics module. The data
quality diagnostics module included the data completeness
test, reasonable range test, and model analysis test. Specifi-
cally, the data completeness test identified missing records;
the reasonable range test recognized erroneous data that
are out of a reasonable range; and the model analysis test
searched for erroneous data using acceptable regions defined
by models. Based on these tests, the data quality diagnostics
module excluded invalid and erroneous data in the following
steps. Then, with the processed data in hand, this study
included the construction and fit of the variogram models
by different types of spatiotemporal variograms. The fitted
model parameters and the goodness-of-fit were obtained
during this stage. Next, by comparing the goodness-of-fit,
the best fitted variogram was selected. In this way, the
spatiotemporal coverage of RWIS data was measured from
the fitted spatiotemporal variogram.

3.2. Data Quality Diagnostics. In this study, missing and
erroneous data was diagnosed by applying a diagnostics
algorithm. RWISs typically take both road and weather-
related measurements from various sensors. For data from
a specific sensor, the diagnostics algorithm screened the
raw data to check data completeness and quality in three
tests: the data completeness test, reasonable range test, and
model analysis test. First, if a data value from one sensor
was void in one record, it was diagnosed as a missing
measurement. Next, data that fell outside of the reasonable
ranges was recognized as erroneous. The reasonable ranges
were determined based on sensor specifications, location-
specific climatological ranges, and historical data ranges
[16, 17]. Then, in the model analysis test, data that fell
beyond acceptable regions was reported as invalid. The
algorithm predetermined acceptable regions according to the
relationship among data from different sensors in one record.
For example, the feasible road surface temperature (RST)
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Figure 1: Spatiotemporal variogram. (a) Three-dimensional spatiotemporal variogram. (b) Two-dimensional variogram.
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Figure 2: Spatiotemporal coverage quantification research procedure.

regions were defined by the regression of the generalized
additive model (GAM) from historical data, which is detailed
below. GAM was applied to build the relationship between
RST and other data. Once RST measurements exceeded the
model estimation by a certain percentage (e.g., ±20%), the
measurements were determined to be erroneous data. In
this way, the diagnostics algorithm identified and removed
missing and erroneous measurements from the dataset.

In the data quality diagnostics process, GAM became
a generalized linear model with linear predictors. The lin-
ear predictors were linearly correlated with their unknown
smooth functions [37]. The smooth functions expressed the
nonparametric nonlinear associations with predictors. The
following equations show the GAM formulation.

𝑉 = 𝛽0 + 𝑓1 (𝑥1) + 𝑓2 (𝑥2) + ⋅ ⋅ ⋅ + 𝑓𝐼 (𝑥𝐼) (2)

𝑓𝑖 (𝑥𝑖) =
𝐽

∑
𝑗=1

𝑠 (𝑥𝑗) (3)

In (2), 𝑉 is the variable of interest; 𝛽0 is the intercept; and
𝑓𝑖(𝑥𝑖) represents the smooth function of the predictor 𝑥𝑖,
which is formulated as (3).The predictors can include spatial,
temporal, and spatiotemporal parameters.

3.3. Spatiotemporal Variogram Modelling. The processed
dataset was then applied to construct spatiotemporal vari-
ogram models. The basic steps to construct a spatiotemporal
variogram are as follows.

First, the systematic trend was removed from the original
data. The variogram estimator 𝛾(ℎ𝑠, ℎ𝑡) was valid only when
therewas no systematic variation.Themeasurements 𝑧(𝑠𝑘 , 𝑡𝑘)
were decomposed into a mean component 𝑚(𝑠𝑘, 𝑡𝑘) and a
residual component 𝑟(𝑠𝑘, 𝑡𝑘) (i.e., 𝑧(𝑠𝑘, 𝑡𝑘) = 𝑚(𝑠𝑘, 𝑡𝑘) +𝑟(𝑠𝑘, 𝑡𝑘)). 𝑚(𝑠𝑘, 𝑡𝑘) represents the trend while 𝑟(𝑠𝑘, 𝑡𝑘) rep-
resents the fluctuations to be estimated by spatiotemporal
variograms. The mean component can be estimated by
various theoretical or numerical models. In this step, the
residuals were extracted from the original measurements.
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Next, the variogram estimator 𝛾(ℎ𝑠, ℎ𝑡) was calculated as
shown in (1). Note that the residuals 𝑟(𝑠𝑘, 𝑡𝑘) from the last step
were regarded as measurements 𝑧(𝑠𝑘, 𝑡𝑘) in (1). The empirical
variogram was obtained in this step.

Then, variogram models were fitted. The typical vari-
ograms of separable, product-sum, and metric covariance
models are given by the following equations, respectively
[38].

𝛾𝑠𝑡 (ℎ𝑠, ℎ𝑡) = sill ⋅ (𝛾𝑠 (ℎ𝑠) + 𝛾𝑡 (ℎ𝑡) − 𝛾𝑠 (ℎ𝑠) ⋅ 𝛾𝑡 (ℎ𝑡)) (4)

where 𝛾𝑠𝑡 is the modelled spatiotemporal variogram, 𝛾𝑠 is the
spatial variogram, 𝛾𝑡 is the temporal variogram, and 𝑠𝑖𝑙𝑙 is the
overall sill.

𝛾𝑠𝑡 (ℎ𝑠, ℎ𝑡) = (k ⋅ sill𝑡 + 1) ⋅ 𝛾𝑠 (ℎ𝑠) + (k ⋅ sill𝑠 + 1)
⋅ 𝛾𝑡 (ℎ𝑡) − k ⋅ 𝛾𝑠 (ℎ𝑠) ⋅ 𝛾𝑡 (ℎ𝑡) )

(5)

where 𝑘 is positive and sill𝑠 and sill𝑡 are sills in space and time.

𝛾𝑠𝑡 (ℎ𝑠, ℎ𝑡) = 𝛾𝑗 (√ℎ2𝑠 + (𝜅 ⋅ ℎ𝑡)2) (6)

where 𝛾𝑗 is any known variogram including a nugget effect
and 𝜅 is the space-time anisotropy ratio.

When spatiotemporal variogram models were con-
structed, the model parameters, e.g., spatial and temporal
ranges, were extracted from the models. In addition, for
interpolation usingKrigingmethods, the residual component
was then interpolated on a fine grid and added to the mean
component to generate a fine grid map.

3.4. Cross Validation. To quantify the goodness-of-fit
between the fitted models and the empirical variogram, the
authors chose MSE as the measure of effectiveness. MSE
allowed the authors to evaluate the overall difference between
surfaces. MSE was calculated by the following equation. After
comparing MSE among different models, the model with the
best goodness-of-fit was selected.

MSE = 1
𝑛 ⋅ 𝑚

𝑛

∑
𝑖=1

𝑚

∑
𝑗=1

(𝛾𝑠𝑡 (ℎ𝑠,𝑖, ℎ𝑡,𝑗) − 𝛾 (ℎ𝑠,𝑖, ℎ𝑡,𝑗))2 (7)

where 𝛾𝑠𝑡(ℎ𝑠,𝑖, ℎ𝑡,𝑗) and 𝛾(ℎ𝑠,𝑖, ℎ𝑡,𝑗) are modelled and actual
spatiotemporal variogram at spatial distance ℎ𝑠,𝑖 and tempo-
ral distance ℎ𝑡,𝑗, respectively.

4. Case Study

4.1. Study Site. The study area was located in the province of
Alberta in Canada. Alberta has a humid continental climate,
which often produces extremely cold winters [39].The traffic
problems brought by snowfalls in severe winters are always
one of the major concerns of road authorities [21]. To acquire
real-time road weather and surface condition data, Alberta
is one of the leading provinces in Canada building an RWIS
network.With innovative sensors and cameras, the stationary
RWISs collect detailed road weather and surface conditions,
which can be inputs for winter maintenance operations and
weather impact warning applications. In this study, data from
stationary RWIS ESSs in the vicinity of Edmonton were
selected. Figure 3 schematically shows the locations of the 48
stationary RWIS ESSs selected. Stationary RWISs can record



6 Journal of Advanced Transportation

−30 −10 0 10 20

−1
0

0
10

20
30

Ro
ad

 S
ur

fa
ce

 T
em

pe
ra

tu
re

 (∘
C)

Daily Average Air Temperature (∘C)

(a)
−1

0
Time of Day

00:00 08:00 16:00 24:00

0
10

20
30

Ro
ad

 S
ur

fa
ce

 T
em

pe
ra

tu
re

 (∘
C)

(b)

51 52 53 54 55

−1
0

0
10

20
30

Ro
ad

 S
ur

fa
ce

 T
em

pe
ra

tu
re

 (∘
C)

Latitude (∘)

(c)

−120 −116 −112

−1
0

0
10

20
30

Ro
ad

 S
ur

fa
ce

 T
em

pe
ra

tu
re

 (∘
C)

Longitude (∘)

(d)

Figure 4: Nonlinear associations between RST and predictors. (a) Daily average air temperature. (b) Time of day. (c) Latitude. (d) Longitude.

both road- and weather-related data at prespecified temporal
resolutions. The data they measure includes latitude, lon-
gitude, elevation, air temperature, humidity, precipitation,
surface temperature, and wind speed. RST is one of the
most important parameters for road condition prediction
(e.g., black ice). Road conditions are sensitive to RST, so this
research took it as a measure for estimation. RWIS datasets
were available from 2014 to 2016. During this period, data
from winter seasons (from October to March) was chosen.

4.2. Data Quality Diagnostics. In the dataset used for this
study, the data missing ratio was 1.76% and the erroneous
ratio was 6.59%. To identify erroneous RSTmeasurements in
the model analysis test, specific GAMmodel predictors were
selected: daily average air temperature, time of day and the
latitude and longitude of the stations. The “mgcv” package
in the R software (version 3.4.3) [40] was used to fit the
GAM model. The nonlinear relationships obtained from the
GAM model to identify the acceptable regions are shown in
Figure 4. The RST measurements that exceeded ±20% of the
model estimation were defined as erroneous data.

The monthly sample size after data quality check is
exhibited in Figure 5(a). Each month has 86,498 RST mea-
surements on average. The descriptive statistics for monthly
RST data are plotted in Figure 5(b). In Figure 5(b), the central
mark on each box is the median value and the edges are
the 25th and 75th percentiles. The individual data points
beyond the whiskers are outliers. It can be observed that
there is an obvious seasonal trend between shoulder months
(October andMarch) and winter months (fromNovember to
February).

4.3. Spatiotemporal Coverage. The spatiotemporal variogram
modelling was coded in the R software program [40].
The “gstat” package was used to construct and fit the
spatiotemporal variogram models. The original data was
detrended to obtain residuals by removing the local mean
values. The empirical spatiotemporal variogram for each
month was built from the variance of difference between
any two spatiotemporal residual points. To fit the empirical
spatiotemporal variogram, some initial guess of the model
parameters was taken from pure spatial variograms and time
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Figure 5: Data summary after data quality check. (a) Monthly sample size. (b) Boxplot of the processed dataset.

series analysis. Then the spatiotemporal variograms were
fitted using the “fit.StVariogram” function. An algorithm in
the family of quasi-Newton methods [41], called L-BFGS-
B (Limited-memory Broyden–Fletcher–Goldfarb–Shanno-
B) optimization algorithm, estimated the model parameters.

For the monthly empirical variogram, three spatiotem-
poral variograms were fitted: separable, product-sum, and
metric variograms. The fitted model parameters are listed in
Table 1. Among the models, the product-sum model gave
the smallest MSE compared to others. Therefore, only the
product-summodel was used to fit the variability structure of
RST in the following analysis. Figure 6 shows the empirical
and fitted product-sum variograms for November 2014 and
January 2015. The empirical variograms visualize the spa-
tiotemporal variability of RST data. The parameters from the
fitted variograms quantify the spatiotemporal patterns and
help to estimate RST in any unobserved space-time point.

The variograms in Figure 6 illustrate the correlation
between any two pairs of spatiotemporal data points: the
higher the variogram 𝛾𝑠𝑡, the higher the correlation. The
values for the rangemodel parameter were extracted from the
fitted variograms. The data was uncorrelated when the spatial
distance or time lag between data points went beyond the
ranges. Thus, the ranges were related to data representative-
ness and can be interpreted as the spatiotemporal coverage.
In Figure 6, the lines on the front and side planes are the
pure spatial variogram at the zero time lag and temporal
variograms at the zero spatial distance, respectively.

As observed fromTable 1 and Figure 6, themodel parame-
ters differ between months. Thus, the model parameters were
extracted from monthly fitted spatiotemporal variograms to
examine whether seasonal trends exist. Figure 7 illustrates
the monthly variations of spatial and temporal ranges around
the winter seasons from 2014 to 2016. The ranges indicate
that RST measurements were correlated within a distance
on the spatial scale and within a time lag on the temporal
scale. The maximum and minimum ranges in space were
7.37 km (March 2015) and 35.55km (January 2016), and those
in time were 6.81 h (February 2016) and 16.90h (January
2015). Although ranges varied across months and years, it is
still obvious that the data from themonths suffering from low
temperatures had higher spatial and temporal coverage. RST
measurements from RWIS in the winter months (December,
January, and February) generally represented more in space
and time than the shoulder months (October and March).
This phenomenon is reasonable and related with meteorolog-
ical variations. The severe winter months in Alberta, Canada,
experience extremely cold temperatures during which the
RST stays in a low level steadily.Thus, eachRSTmeasurement
in winter months can cover more in space and time. On
the contrary, shoulder months witness the transition between
seasons. The meteorological variations in either space or
time are larger than in other months. As a result, one RST
measurement point in shouldermonths (October andMarch)
represents road surface conditions in a small coverage of
space and time.
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Figure 6: Spatiotemporal variograms. (a) Empirical variogram of Nov 2014. (b) Fitted variogram of Nov 2014. (c) Empirical variogram of Jan
2015. (d) Fitted variogram of Jan 2015.

The spatiotemporal coverage results provide a reference
for decision makers to plan an RWIS network and hence
undertake necessary road maintenance and traffic manage-
ment. The spatiotemporal coverage from variograms is the
maximum distance and time lag, beyond which the measure-
ments are no longer representative. In practice, apart from
the coverage values from variograms, lower coverage values
can be defined to guarantee higher acceptable estimation
accuracy.

As previously discussed, RST was chosen without loss of
generality, but other road surface and weather indicators can
also follow the same procedure to determine their respective
spatiotemporal coverage. Once the spatiotemporal coverage
is finalized, the density of stationary RWIS and the frequency
of mobile RWIS can be specified. On the one hand, as
data from stationary RWIS ESSs are discrete in the space

domain, the spatial coverage is an essential factor that needs
to be considered in planning a stationary RWIS network.
Since the spatiotemporal variogram gives a spatial range
(𝑆𝑅), measurements from a stationary RWIS ESS can be
regarded representative in the distance of 𝑆𝑅. Then, along
the target roadway, at least one RWIS is required to be
allocated every 𝑆𝑅 × 2. On the other hand, mobile RWIS
provides discrete data in time, so the temporal coverage is
a prerequisite in scheduling mobile RWIS vehicles. Using
the temporal range (𝑇𝑅) from the variogram, measurements
from a mobile RWIS can be regarded as representative in a
time interval of 𝑇𝑅. To construct a database with complete
temporal information, one mobile RWIS vehicle should be
scheduled to collect road weather data at least every 𝑇𝑅 × 2.
Moreover, to predict temporal changes in the near future, the
time headway between two vehicles should be less than 𝑇𝑅.
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Table 1: Fitted model parameters for the spatiotemporal variogram. (a) Separable covariance model. (b) Product-sum covariance model. (c)
Metric covariance model.

(a)

Space Time Overall Sill [∘C2] MSE [∘C2]
Range [kma] Nugget [∘C2] Range [hb] Nugget [∘C2]

November 2014 14.23 0.00 5.14 0.00 11.81 13.06
January 2015 20.73 0.00 6.90 0.00 13.70 13.48

(b)

Space Time k MSE [∘C2]
Range [km] Nugget [∘C2] Sill [∘C2] Range [h] Nugget [∘C2] Sill [∘C2]

November 2014 14.23 0.01 3.41 8.09 0.01 14.55 0.01 0.80
January 2015 20.73 0.01 5.17 14.50 0.01 19.87 0.01 0.60

(c)

Range Nugget [∘C2] Sill [∘C2] MSE [∘C2]
November 2014 532178 0.68 16.40 1.36
January 2015 640430 2.69 18.84 2.74
akm = kilometre.
bh = hour.
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Figure 7: Monthly range variations from spatiotemporal variogram. (a) Spatial. (b) Temporal.

Similarly, in a CV environment, only when the penetration
rate of CV-enabled vehicles fulfills a full temporal coverage,
the CV data can then be interpolated to generate a fine map
that shows spatiotemporal variability of road surface and
weather conditions.

5. Conclusions and Future Research

Reliable road maintenance and traffic management call for
road surface and weather data collection with high coverage;

however, RWISs collect road and weather data at a high cost.
To help in planning a cost-effective RWIS network, a quantifi-
cation method was developed to determine spatiotemporal
coverage of RWIS data. The proposed method was assessed
using authentic RWIS data. There are several key results from
this research:

(a) Due to technical problems, the measurements that the
studied RWIS ESSs collected contained a certain percentage
of missing and erroneous data. Data quality diagnostics and
imputation should be given great consideration.
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(b) Among the three spatiotemporal variogram models,
the product-sum model outperforms the others. The spatial
and temporal range values from the model identify the
spatiotemporal coverage of RWIS data. The spatiotempo-
ral coverage can be used to decide the RWIS distribu-
tions to achieve a fine understanding of the spatiotemporal
variability.

(c) A seasonal trend was found behind the monthly
spatiotemporal coverage. Data from winter months covers
more in space and time than data from shoulder months. The
seasonal trend should be considered in the RWIS network
design and operation.

(d) Analysis of spatiotemporal semivariograms suggested
a stationary RWIS ESS should be located at least every
71.1 km, while a mobile RWIS vehicle should be deployed at
least every 33.8 h in the Alberta case.

Based on the observations from this study, the proposed
method can be applied in assigning an influence radius
of RWIS ESS observations in various road weather-related
applications. The current study can be extended in sev-
eral directions. First, spatial stratified heterogeneity of the
demand surface will be tested and attributed accordingly [42,
43]. In our present study, semivariograms are constructed
by assuming a stationary process, which means the underly-
ing spatiotemporal structures are translation-invariant over
space and time. This rather strong assumption might not
hold true when used in large regions with high spatial (i.e.,
landscape) and temporal (i.e., season) heterogeneity. Second,
since semivariogram parameters are sensitive to the property
of population, the way of sampling, and the method of
estimation, further investigation is required on the spatial
sampling trinity to examine the conclusiveness of the findings
presented in our study. This will be particularly important
when the study is extended to the stage of optimal RWIS
network planning. Third, the stationary and mobile RWIS
data will be integrated and fused to construct a database
with high coverage in both space and time. Data from
different sources may not match even in the same time and
location. It is challenging to fuse data among multiple data
sources and extend their temporal and spatial coverage. A
practical, accurate, and time-efficient data integration and
fusion method is still required for efficient and reliable
road surface and weather condition estimation. Furthermore,
the spatiotemporal coverage defined in this study could
possibly vary depending upon several external factors, such
as geographical and topological characteristics of the site
under investigation. Hence, more case studies are essential to
obtain more conclusive results.
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