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A B S T R A C T

Dimension reduction and variable selection are two types of effective methods that deal with high-dimensional
data. In particular, variable selection techniques are of wide-spread use and essentially consist of individual se-
lection methods and interval selection methods. Given the fact that the vibrational spectra have continuous
features of spectral bands, interval selection instead of individual spectral wavelength point selection allows for
more stable models and easier interpretation. Numerous methods have been suggested for interval selection
recently. Therefore, this paper is devoted to a selective review on interval selection methods with partial least
squares (PLS) as the calibration model. We described the algorithms in the five classes: classic methods, penalty-
based, sampling-based, correlation-based, and projection-based methods. Finally, we compared and discussed the
performances of a subset of these methods on three real-world spectroscopic datasets.
1. Introduction

In recent years, the extensive use of multivariate calibration methods
in multi-component spectral analysis has made them extremely popular
techniques, especially for vibrational spectral data such as infrared (IR)
spectroscopy, near infrared (NIR) spectroscopy, and ultraviolet–visible
spectroscopy [1]. Multivariate calibration is devoted to the establishment
of calibration models that relate variables to the properties of interest
such as concentration values. Notably, wavelengths (spectral points) of
the spectra are treated as variables in the modeling.

With the modern spectroscopic instrumental technology, a common
feature of the obtained data is that there tend to be numerous variables
but measured on much fewer samples, which is known as the challenging
“large p, small n ” problems in statistics. Take the NIR data investigated in
this review for example. The spectra used for empirical analysis ranges
within 10000–4000 cm�1 with an interval of 4 cm�1 yielding 1557 var-
iables with only 67 samples involved. Such high-dimensional data raises
the “curse of dimensionality” [2,3] that many traditional statistical
mber 2017; Accepted 2 November 20
methods cannot deal with [3,4]. To tackle the potential problems, two
types of methods have been developed: dimension reduction and variable
selection. The dimension reduction methods substitute the original high-
dimensional variable space with relatively low-dimension spaces. The
variable selection methods are dedicated to selecting important vari-
ables. Both types of the methods try to reduce the dimensionality of the
original space and remove redundant variables while keeping the useful
information of the original space as much as possible.

Partial least squares (PLS) [5–8] is a widely-used dimension reduction
method based on latent variables and has gained extensive attention in a
variety of fields such as chemometric, biomedicine, spectroscopy, and so
forth [9,10]. It substitutes the feature space with the relatively low-
dimension projected space, of which the direction is determined by
latent variables consisting of combinations of the original variables.
Despite the enhanced model accuracy, PLS is far from being perfect as its
weak interpretability. Besides, although PLS reduces the model error
caused by redundant and noisy variables, it is unable to cut them out
directly and thoroughly.
17
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Table 1
Results of different methods on the milk dataset. Statistical results with the form mean
value ± standard deviation in 50 runs.

Methods nLV nVAR RMSEP RMSEC

PLS 9.8±0.6 1557.0±0.0 0.0448±0.0146 0.0142±0.0025
iPLS 6.6±2.2 145.6±58.3 0.0457±0.0251 0.0153±0.0135
MWPLS 8.1±1.7 279.1±183.5 0.0411±0.0092 0.0125±0.0053
EN-PLS 4.2±1.3 29.6±16.3 0.0659±0.0245 0.0292±0.0055
SIS-iPLS 7.1±1.7 212.3±62.0 0.0752±0.0253 0.0192±0.0082
FOSS 7.6±2.1 116.1±185.2 0.0436±0.0125 0.0105±0.0040
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Researchers have verified both theoretically and experimentally that
greater improvement of model performance can be achieved by variable
selection [11–13]. In the context of spectroscopy, variable selection re-
fers to identifying informative wavelengths (important regions to explain
the information of the response variable) out of the full spectrum for the
subsequent modeling. With the removal of the irrelevant and uninfor-
mative wavelengths, we can obtain a much simpler model without
compromising its predictive ability [14]. By merits of the wavelength
selection, a range of methods have been developed and can be grouped
into two categories: individual wavelength selection methods and in-
terval selection methods.

The representative individual wavelength selection methods include
classic stepwise methods, e.g. forward selection [15], backward selection
[16] and stepwise selection [17]; variable ranking-based strategy, e.g.
loading weights [18], regression coefficients [19] and variable impor-
tance in projection (VIP) [20]; penalty-based strategy, e.g. least absolute
shrinkage and selection operator (LASSO) [21], smoothly clipped abso-
lute deviation (SCAD) [22,23] and sparse partial least squares (sPLS)
[24]; model population analysis (MPA) [25] based strategy, e.g. random
frog (RF) [26], iteratively retains informative variables (IRIV) [27],
variable iterative space shrinkage approach (VISSA) [28] and boot-
strapping soft shrinkage (BOSS) [29]; heuristic algorithm based strategy,
e.g. simulated annealing (SA) [30], artificial neural networks (ANN)
[31], genetic algorithm (GA) [32]; and some other methods, e.g. suc-
cessive projection algorithm (SPA) [33], uninformative variable elimi-
nation (UVE) [34] and UVE-SPA method [35]. For spectroscopic data,
since functional groups absorb within relatively short wavelength bands,
continuous and adjacent wavelengths are highly correlated. Wavelengths
with high correlation tend to contain shared information and have
identical regression coefficients [36]. Therefore, models established on
any one of the correlated variables are expected to perform similarly
[37]. Thus, in turn, can make it difficult to determine the important
variables and impede the interpretability of models. Studies have shown
that performances of calibration models based on wavelength intervals
tend to be more robust than that based on individual wavelengths [13].
Besides, the vibrational spectral band relating to chemical band generally
has a width of 4–200 cm�1 . So, the selection of spectral intervals not only
can provide reasonable interpretation, but also makes more sense and is
expected for the best performance. Inspired by the advantages of interval
selection, numerous methods have been proposed and developed.

This review highlights the interval selection methods for spectro-
scopic data and is organized as follows. Because we take PLS as the
calibration model method, a commonly used algorithm for PLS is first
presented in Section 2. Section 3 reviews the theories and algorithms for
a selective set of interval selectionmethods, which are organized into five
categories: classic methods including interval PLS (iPLS) [38] and its
variants, moving windows PLS (MWPLS) [39] and its variants;
penalty-based methods including elastic net combined with partial least
squares regression (EN-PLSR) [40], iterative rank PLS regression coeffi-
cient screening (EN-IRRCS) [41], and group PLS (gPLS) [42];
sampling-based methods including iPLS-Bootstrap [43], Bootstrap-VIP
[44], Fisher optimal subspace shrinkage (FOSS) [45], interval random
frog (iRF) [46], and interval variable iterative space shrinkage approach
(iVISSA) [37]; correlation-based method including SIS-iPLS [47] and
projection-based method including interval successive projections
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algorithm (iSPA) [48]. Section 4 describes three near-infrared spectros-
copy datasets and software used for the evaluation of six methods, PLS,
iPLS, MWPLS, EN-PLS, SIS-iPLS, and FOSS. Experimental results are
shown and discussed in Section 5, followed by the summary in Section 6.

2. Partial least squares

Since PLS is used for building the calibration model in this work, a
brief description of PLS is provided in this section.

PLS constructs linear relations between response variables and pre-
dictors using latent variables comprised of combinations of the pre-
dictors. It breaks the high-dimensional data down into scores and
loadings determined by both response variables and predictors. A variety
of PLS algorithms are available, such as PLS1 [49], PLS2 [50], PLS-SB
[51], SIMPLS [52], and GPLS [53]. For simplicity, this section focuses
on the linear model with one single response variable known as the
PLS1 algorithm.

Consider the multiple linear regression model.

y ¼ Xβþ ε ¼ x1β1 þ x2β2 þ…þ xpβp þ ε (1)

where X is an n� p matrix containing p features of the collected data, y
of size n� 1 is the property of interest for a set of n samples, β is a vector
of unknown parameters, ε is an error term with mean zero and variance
σ2I. Variables are centered to have mean zero before any further oper-
ations. In the PLS1 algorithm, X is decomposed into the score vectors
(latent variables):

X ¼ TU 0 þ E (2)

where T is an n� A matrix of A latent variables (also called scores), the
p� A matrix U represents A loading vectors for X, and the n� p matrix E
is the residual. Particularly, latent vectors in T are linear combinations of
the original predictors:

T ¼ ðt1;…; tAÞ ¼ XW ¼
 Xp

j¼1

xjwj1;…;
Xp
j¼1

xjwjA

!
(3)

where the p� A matrix W ¼ ðw1;…;wAÞ represents the weight vectors
for A latent variables. Then the response is projected to the latent vari-
ables space:

y ¼ Tqþ f ¼ TðT 0TÞ�1T 0yþ f (4)

where the A� 1 vector q is loading vector for y, the n� 1 vector f rep-
resents the residual. Particularly, q is the least squares estimation by
regressing y against the score matrix T. Thus,

by ¼ Tq ¼ XWq ¼ XWðT 0TÞ�1T 0y ¼ XbβPLS: (5)

So, the partial least squares estimator can be written as:

bβPLS ¼ WðT 0TÞ�1T 0y ¼ WðW 0X 0XWÞ�1W 0X0y (6)

3. Interval selection methods

This section describes the theories and algorithms of some interval
selection methods. To make it easier to read and understand, we classify
these methods into five categories: classic methods, penalty-based
methods, sampling-based methods, correlation-based methods, and
projection-based methods.
3.1. Classic interval selection methods

3.1.1. Interval PLS (iPLS) and its variants
A representative approach of interval selection is interval partial least



Fig. 1. Frequency of the selected variables by different methods in 50 runs on the milk dataset. (A) PLS; (B) iPLS; (C) MW-PLS; (D) EN-PLS; (E) SIS-iPLS; (F) FOSS.
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squares (iPLS) [38] proposed by Norgaard et al., which splits the full
spectrum into equal-width and non-overlapping sub-intervals and
establish local PLS models of the same dimensionality in each interval. To
find the best interval explaining the information of the response variable,
the predictive performances of both the local models and the model built
on the whole spectrum are compared based on the root mean squared
error of cross-validation (RMSECV). There is not much possibility for this
sub-interval to hit the optimal interval because the widths of the split
231
intervals are equal and they are not overlapping with each other.
Therefore, some simple optimization can be carried out to refine the
interval limits. The optimization mainly comprises two steps, including
(1) interval shift; (2) changes in interval width: two-sided (symmetrical),
one-sided (asymmetrical, left), or one-sided (asymmetrical, right).

iPLS gives a first impression of the information of different sub-
intervals and locates the individual best interval. However, it fails to
take the synergism among intervals into consideration and thus obtain a



Table 2
Results of different methods on the tobacco dataset. Statistical results with the form mean
value ± standard deviation in 50 runs.

Methods nLV nVAR RMSEP RMSEC

PLS 12.0±0.0 1557.0±0.0 0.0067±0.0005 0.0039±0.0001
iPLS 12.0±0.0 208.3±30.1 0.0049±0.0003 0.0025±0.0001
MWPLS 11.8±0.5 179.4±37.6 0.0058±0.0005 0.0032±0.0002
EN-PLS 9.5±1.4 29.1±5.6 0.0081±0.0006 0.0048±0.0002
SIS-iPLS 10.4±2.0 139.2±72.1 0.0072±0.0025 0.0040±0.0016
FOSS 12.0±0.0 177.8±40.6 0.0049±0.0004 0.0026±0.0001
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suboptimal model. So, the combination of multiple intervals may lead to
a PLS model with better performance. Synergy interval partial least
squares (siPLS) [54] and backward (forward) interval partial least
squares (biPLS/fiPLS) [55,56] are three primary extensions of iPLS that
consider different combinations of intervals based on iPLS. SiPLS is a
strategy that searches for a proper combination of intervals among all the
combinations of two, three, and four intervals. And the combination with
the lowest RMSECV is regarded as the optimized intervals. In compari-
son, biPLS and fiPLS couple iPLS with backward and forward selection
procedures, respectively. The general algorithms work in two steps,
including dividing the spectrum into multiple intervals the same way as
iPLS and removing (adding) one interval at a time whose removal
(addition) results in the lowest RMSECV.

3.1.2. Moving window PLS (MWPLS) and its variants
One of the main features of iPLS is that adjacent and non-overlapping

sub-divisions of the whole spectrum are tested using PLS models with
identical dimensionality. This fact may increase the possibility of missing
important intervals and enlarge the influence of the choice of dimen-
sionality. Moving window partial least squares (MWPLS) [39] alleviates
the aforementioned problems by moving along the spectrum with a
fix-sized window and allowing varying dimensionalities for PLS models
in each window. And the informative spectral regions are identified on
the basis of low model complexity and a desired prediction error level. A
final PLS model is built by including all informative intervals or built as
an ensemble of local PLS models on each interval.

It is worth noting that sub-regions of the informative regions selected
by MWPLS may provide better models than the original fixed-size re-
gions. Thus, a further sampling search of the optimal sub-region within
the informative interval seems to be necessary in order to reach a better
model performance. Changeable size moving window partial least
squares (CSMWPLS) [57] is a strategy that collects all possible
sub-intervals within an interval by changeable size windows and then
determines the optimal sub-region as the one with the lowest RMSECV.
Searching combination moving window partial least squares (SCMWPLS)
[57] exploits a new strategy to optimize the combination of intervals
based on CSMWPLS using the forward selection procedure.

3.2. Penalty-based interval selection methods

This group method contains a type of methods that select or leave out
correlated variables together. The examples include the elastic net [58],
group lasso [59], etc. The two methods succeed to choose groups of
variables by implementing the penalty function. Therefore, it is reason-
able to apply the group selection methods in the field of spectroscopy to
pick informative intervals. In this section, we display three penalty-based
interval selectionmethods involving EN-PLSR, EN-IRRCS, and group PLS.

3.2.1. Elastic net combined with partial least squares regression (EN-PLSR)
Lasso [21] is a variable selection method proposed by Tibshirani et al.

which penalizes the loss function with L1 -norm of coefficients. To make
it clear, Lasso is stated as:

bβLasso ¼ argmin
β

ky � Xβk22 þ λ1kβk1 (7)
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where λ1 is tuning parameter. L1 -norm in the latter term of Equation (6)
turns regression coefficients to exact zeros, which leads to the elimina-
tion of variables. However, Lasso treats variables as independent ones,
which contradicts the continuity of spectroscopic data that consecutive
wavelengths are highly correlated. Zou improved Lasso by adding a L2
-penalty of coefficients and designated it as elastic net (EN) [58]:

bβEN ¼ ð1þ λ2Þ
�
argmin

β
ky � Xβk22 þ λ1kβk1 þ λ2kβk22

�
(8)

where λ1 and λ2 are tuning parameters. EN not only remains the ability to
filter unimportant variables out, but also enables to estimate the
regression coefficients of strongly correlated variables with close abso-
lute values. So, linearly correlated variables within an interval are
selected in or left out together, which is known as the grouping effect.

Fu et al. proposed an interval selection technique called elastic net
combined with partial least squares regression (EN-PLSR) [40]. It
generally contains two phases, including identifying important intervals
by elastic net and further screening informative intervals by the recursive
leave-one-group-out strategy. Its ability to select important intervals
comes from two aspects. First, EN provides a way to filter out unnec-
essary variables. The second aspect follows the unique feature of spec-
troscopic data that strong correlations exist among successive
wavelengths. Thus, the grouping effect of EN makes it possible to select
important consecutive wavelengths together. The specific description of
EN-PLSR is demonstrated in four steps.

(1) Apply the elastic net to the whole spectra and suppose the
remaining variable sequence constructs m intervals.

(2) Build PLS models on ðm� 1Þ intervals with one interval left out
sequentially and compute the values of RMSECV.

(3) Delete the interval associated with the lowest RMSECV value.
(4) Repeat step (2)–(3) until the lowest RMSECV in every iteration

starts to increase. The remaining intervals are considered the
selected informative variables.

3.2.2. Elastic net based on iterative rank PLS regression coefficient screening
(EN-IRRCS)

Motivated by the grouping effect of the elastic net, Huang developed a
method for interval selection designated as elastic net based on iterative
rank PLS regression coefficient screening (EN-IRRCS) [41] which couples
the elastic net with the technique of ranking PLS coefficients. EN-IRRCS
first employs the rank of PLS regression coefficients to eliminate a
portion of variables. On this basis, EN is next used to filter more variables
out. And the two-step screening procedure is carried out iteratively to
include more variables and to mitigate the risk of missing important
variables. We give more details about EN-IRRCS in five steps.

(1) Build a PLS model on the variable space and sort the absolute
regression coefficients in decreasing order. Select and record
variables with the top k largest absolute coefficients.

(2) Apply elastic net on the k variables to further extract a subset of
intervals, denoted by M.

(3) Update the response with the residual vector of regressing y
against M. Take all variables but the selected interval subset M as
the new variable space.

(4) Repeat step (1)–(3) till the size of the union of the disjoint interval
subsets obtained in every iteration is less than that of samples. And
consider the union as the optimal intervals.

It is clear that larger coefficients indicate stronger relations with the
response. Thus, it is reasonable to regard the wavelengths with small PLS
regression coefficients as uninformative ones and discard them. There-
fore, EN-IRRCS is able to filter out a proportion of the unimportant
variables using regression coefficients. Moreover, for spectroscopic data,
successive wavelengths tend to behave highly correlated and have close



Fig. 2. Frequency of the selected variables by different methods in 50 runs on the tobacco dataset. (A) PLS; (B) iPLS; (C) MW-PLS; (D) EN-PLS; (E) SIS-iPLS; (F) FOSS.
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regression coefficients in PLS model. So this property guarantees EN-
IRRCS to select consecutive wavelengths. EN-IRRCS filters more unnec-
essary variables out by applying the elastic net. Notably, the elastic net
picks out intervals again owing to its grouping effect. However, the two-
phase variable space shrinkage may exclude some informative wave-
lengths as well. To include relevant wavelengths possibly missed in the
two-phase shrinkage, screening procedures are carried out iteratively to
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gain unions of disjoint important interval sets derived in each iteration.

3.2.3. Group PLS (gPLS)
EN-PLS and EN-IRRCS both generate intervals by the grouping effect

of EN derived from L2 -penalty. Group PLS (gPLS) [42] by comparison,
realizes interval selection under the framework of optimization, where
the group lasso penalty [59] is imposed on the Frobenius-norm loss



Table 3
Results of different methods on the soil SOM dataset. Statistical results with the form mean
value ± standard deviation in 50 runs.

Methods nLV nVAR RMSEP RMSEC

PLS 10.0±0.0 700.0±0.0 0.5050±0.0777 0.2499±0.0130
iPLS 9.1±1.9 137.3±49.4 0.5203±0.2008 0.2615±0.1342
MWPLS 9.9±0.3 158.1±32.7 0.3442±0.0524 0.1742±0.0203
EN-PLS 8.7±1.7 54.8±32.2 0.7995±0.1260 0.4214±0.0471
SIS-iPLS 9.3±0.8 119.7±3.8 0.4600±0.0886 0.2363±0.0224
FOSS 9.7±0.8 110.8±108.7 0.3371±0.0758 0.1436±0.0191

Table 4
Abbreviations used in this paper.

PLS Partial Least Squares
LASSO Least Absolute Shrinkage and Selection Operator
sPLS Sparse Partial Least Squares
iPLS Interval Partial Least Squares
siPLS Synergy Interval Partial Least Squares
biPLS/
fiPLS

Backward/Forward Interval Partial Least Squares

MWPLS Moving Windows Partial Least Squares
CSMWPLS Changeable Size Moving Window Partial Least Squares
SCMWPLS Searching Combination Moving Window Partial Least Squares
EN Elastic Net
EN-PLSR Elastic Net combined with Partial Least Squares Regression
EN-IRRCS Elastic Net based on Iterative Rank PLS Regression Coefficient

Screening
gPLS Group Partial Least Squares
BOSS Bootstrapping Soft Shrinkage
FOSS Fisher Optimal Subspace Shrinkage
WBBS Weighted Block Bootstrap Sampling
FOP Fisher Optimal Partition
RF Random Frog
iRF Interval Random Frog
MPA Model Population Analysis
VISSA Variable Iterative Space Shrinkage Approach
iVISSA Interval Variable Iterative Space Shrinkage Approach
VIP Variable Important in Projection
SIS Sure Independence Screening
SIS-iPLS Sure Independence Screening and Interval Partial Least Squares
SPA Successive Projections Algorithm
iSPA Interval Successive Projections Algorithm
RMSEP Root Mean Squares Error of Prediction
RMSEP Root Mean Squares Error of Calibration
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function. The optimization problem can be written as:

min
ua ;va

(XG
g¼1

XL
l¼1

���Cðg;lÞ
a � uðgÞa vðlÞ

T

a

���2
F
þ λ1

XG
g¼1

ffiffiffiffiffi
pg

p ��uðgÞa

��
2

þ λ2
XL
l¼1

ffiffiffiffi
ql

p ��vðlÞa ��2
)

(9)

where variables (wavelengths) of X ðyÞ are divided into G ðLÞ groups

(intervals) by assembling columns of X ðyÞ, Cðg;lÞ
a ¼ XðgÞT

a yðlÞa , uðgÞa ðvðlÞa Þ is
the PLS loading vector related to variables in the group g ðlÞ, pg ðqlÞ in-
dicates the variable number of group gðlÞ, λ1 and λ2 are tuning parameters
and a represents PLS dimension. In this paper, we focus on the case where
dimðyÞ ¼ 1 and thus L ¼ 1; ql ¼ 1. So, the optimization problem can be
transformed to

min
ua ;va

(XG
g¼1

���CðgÞ
a � uðgÞa va

���2
F
þ λ1

XG
g¼1

ffiffiffiffiffi
pg

p ��uðgÞa

��
2
þ λ2kvak2

)
(10)

The optimization function consists of the loss function and the pen-
alty. The penalization term on the loading vector uðgÞa should be empha-
sized here because it makes gPLS an interval selection method. The
penalty can be seen as the fusion of L1 and L2 penalty. L1 penalty en-
courages sparsity on the G groups (intervals). On the other hand, the L2
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penalty, imposed on the loading vectors associated with different group
variables, encourages the “grouping effect” within groups (intervals),
which enables the method to put together the consecutive and related
wavelengths. Therefore, the overall design of the gPLS penalty can yield
sparsity on the group level, which indicates the selection of spec-
trum intervals.

Sparse PLS (sPLS) [60, 61], gPLS and sparse group PLS (sgPLS) [42]
share the nature that they work on the predictor matrix decomposition
taking into account sparsity in the data structure. So, a comparison of the
three sparsity methods deserves to be mentioned. One remarkable dif-
ference lies in the optimization penalty and the induced sparseness. More
specifically, sparse PLS uses L1 -penalty to achieve sparsity in individual
variables, while sgPLS is able to drop groups of variables and individual
variables within groups simultaneously through the combination of L1
-penalty and the penalty used in gPLS.

3.3. Sampling-based interval selection methods

The sampling techniques also widely appear in the process of devel-
oping interval methods. Commonly used sampling strategies primarily
fall into two classes: sampling in the sample space and sampling in the
variable space. For the two sampling types, a limited number of interval
selection methods have been developed. The representative methods
using bootstrap in the sample space include iPLS-Bootstrap and
Bootstrap-VIP. Besides, FOSS, iRF, and iVISSA employ Monte Carlo,
weighted binary matrix, and weighted block bootstrap as the sampling
strategy in the variable space respectively, to select intervals. Other
sampling methods [62] can also be incorporated for sampling-based in-
terval selection methods.

3.3.1. iPLS-bootstrap
Bootstrap is a sampling technique proposed by Efron and often used

for statistical inference [63]. It draws sub-datasets with replacement for
multiple times. For each bootstrap sample, a sub-model is built and the
statistic value of interest is estimated. Then the statistical analysis is
based on the values of interest derived from all bootstrap samples. Ex-
amples using bootstrap involve the calculations of the mean, distribution,
and confidence interval of concerned statistics.

PLS-Bootstrap [64], a variable selection method, takes advantage of
the bootstrap applied in the confidence interval analysis, to eliminate
unimportant variables. In PLS-Bootstrap, PLS models are first built on
different bootstrap samples. Based on the different models, confidence
intervals can be constructed for the PLS regression coefficients. The
variable is considered uninformative if its confidence interval includes
the value 0.

Considering the continuity of the spectroscopic data, scattered vari-
ables derived from PLS-Bootstrap may be suboptimal. So, interval PLS-
Bootstrap (iPLS-Bootstrap) [43] is developed. It gives a way to trans-
form the discrete variables obtained from PLS-Bootstrap into continuous
and informative bands. More details about the algorithm are presented
as follows.

(1) Apply PLS-Bootstrap on the wavelengths and obtain an important
variable sequence.

(2) Assemble intervals based on the variables derived from PLS-
Bootstrap. Define a wavelength to be the terminator of an inter-
val, if the region between this wavelength and the next wave-
length in the sequence contains more variables than a
predetermined number.

(3) For assembled intervals, cut out those with fewer variables than a
predefined threshold and those with a weak contribution to the
PLS model (See details of the criterion in Ref. [43]).

iPLS-Bootstrap consists of two main steps including the construction
of the preliminary bands and the removal of unnecessary intervals. The
criterion for extending scattered informative variables to continuous



Fig. 3. Frequency of the selected variables by different methods in 50 runs on the soil SOM dataset. (A) PLS; (B) iPLS; (C) MW-PLS; (D) EN-PLS; (E) SIS-iPLS; (F) FOSS.
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intervals in step (2) should be focused. It aims to make the two variables
as the edge of an interval close enough so that the region between them
keeps informative as well. The following screening ensures the selected
intervals to contain sufficient information and great contribution to
the response.

3.3.2. Bootstrap-VIP
PLS regression coefficients reflect the variable importance to some
235
extent. Therefore, it makes sense that PLS-Bootstrap measures variable
significance by applying bootstrap to construct confidence interval of the
PLS regression coefficients. The variable importance on the projection
(VIP) [20] is also a metric for assessing the variable significance. Thus, it
is natural to make use of VIP for selecting variables.

Bootstrap-VIP [44] is a modified and robust version of VIP. It com-
bines the bootstrap technique with VIP. Notably, bootstrap-VIP “is pro-
posed as a simple wavelength selection method, yet having the ability to



Fig. 4. An outline for interval selection methods reviewed in this paper.
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identify relevant spectral intervals.” [44] It works similarly as
PLS-Bootstrap, except for two aspects. First, VIP rather than the regres-
sion coefficient is taken as the measure of variable importance and the
statistic of interest for statistical analysis. The second distinction lies in
the criterion for deciding informative variables. Specifically, a variable is
considered relevant and informative if its average VIP value of all boot-
strap samples is above 1.0. Compared to the VIP, Bootstrap-VIP improves
the predictive accuracy and obtains more grouped intervals [44].

3.3.3. Fisher optimal subspace shrinkage (FOSS)
Interval PLS-Bootstrap and Bootstrap-VIP described above utilize

bootstrap as the sampling strategy in the sample space. Empirical studies
show that compared to the full-spectrum PLS and PLS-Bootstrap, they
exhibit better predictive performance [43,44]. Recently, Deng et al.
extended the bootstrap technique to the variable space and developed an
effective variable selection method designated bootstrapping soft
shrinkage (BOSS) [29]. However, bootstrap only suits the case of the
independent data but not the highly collinear variables in spectroscopy.

To enhance the model performance of BOSS, Lin et al. developed an
approach for wavelength interval selection designated Fisher optimal
subspace shrinkage (FOSS) [45], which employs the weighted block
bootstrap sampling (WBBS) [65] and Fisher optimal partition (FOP) [66]
as the sampling and partition methods, respectively. The FOSS algorithm
is described below.

(1) Build a PLS model over the variable space and compute the value
of RMSECV.

(2) FOP is applied on the regression coefficients to construct sub-
intervals.

(3) Calculate the mean of the absolute regression coefficients of the
variables within every interval. And take it as the sampling weight
for the interval.

(4) Resample the sub-intervals with replacement and use the sam-
pling weights as the probability for intervals to be chosen.

(5) Update the variable space by the combination of drawn intervals.
(6) Repeat step (1)–(5) till only one variable is left to be sampled.
(7) Select the interval combination with the smallest RMSECV among

all iterations as the optimal intervals for the best prediction
performance.

What is worth pointing out is that FOP is applied based on the in-
formation of regression coefficients instead of observations as in con-
ventional cases. Since consecutive wavelengths take close values of PLS
coefficients [36], FOP is capable of dividing the spectra into continuous
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intervals and provide the foundation of the interval selection in following
procedures. The WBBS algorithm applied in the variable space is
particularly suitable for sampling consecutive wavelengths with high
correlation. It provides a proper way to draw varied combinations of
blocks of variables. Besides, WBBS enables the algorithm to shrink the
variable space softly, because variable blocks with larger weights tend to
be chosen with higher probability. Therefore, the seamless integration of
FOP and WBBS makes FOSS a promising interval selection method for
data with highly correlated variables, such as the data from spectroscopy,
quantitative genetics, and metabolomics.

3.3.4. Interval random frog (iRF)
Monte Carlo [67] is also an extensively used technique for sampling.

Similar to Bootstrap, it resamples datasets randomly without replace-
ment for multiple times to generate a large number of sub-datasets. The
random frog (RF) [26] algorithm conducts analysis on a large number of
variable subsets using a reversible jump Markov Chain Monte Carlo
(RJMCMC)-like strategy for single variable selection. Interval random
frog (iRF) [46] modifies the original RF algorithm by using spectra in-
tervals instead of wavelength points as the variables, which makes iRF an
interval selection method. It is worth noting that the random sampling
technique is applied to the variable space to assemble different combi-
nations of intervals for building models. The explicit algorithm is
described as follows.

(1) A moving window with a fixed width splits the whole spectra into
overlapping sub-intervals. A set of m intervals, denoted by M0, is
sampled randomly from the interval pool.

(2) Generate a number m* from the normal distribution Nðm; θmÞ to
specify the number of intervals to be selected into the candidate
set M*, where θ controls the quantitative range of the candidate
set dimension.

(3) The candidate set is determined based on M0 in two ways: (a)
remove a certain number of intervals from M0; (b) combine M0

with some randomly drawn intervals from the interval pool. For
more details, see Ref. [46].

(4) The candidate setM* is accepted as the new interval setM1 with a
certain probability regarding their associated RMSECV values.

(5) Repeat step (2)–(4) N times and record Mi, i ¼ 1; 2;…;N.

(6) Each interval is ranked according to the interval importance in the
sense of its frequency in N iterations.
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The normal distribution in step (2) controls the addition and deletion
of intervals in the candidate set and allows for “great jumps between
differently dimensioned models” and “the refinement of model dimen-
sionality” [46]. The resampling strategy serves as a tool to extract
different interval combinations. Therefore, a chain of interval sets is
defined and subsequently evaluated based on RMSECV.

3.3.5. Interval variable iterative space shrinkage approach (iVISSA)
As described above, iRF adopts the Monte Carlo technique as the

sampling strategy to draw sub-interval sets. Apart from Monte Carlo, the
weighted binary matrix sampling (WBMS) [28] is raised as a sampling
strategy and has been applied in the interval selection. Deng's work
presented a wavelength selection method named variable iterative space
shrinkage approach (VISSA) [28], where WBMS is employed as the
sampling method in the variable space to extract a population of com-
binations of variables for the model population analysis (MPA) [25].

Interval variable iterative space shrinkage approach (iVISSA) [37] is a
modified version of VISSA for selecting spectral intervals. Similar to
VISSA, iVISSA implements the global search procedure by applying
WBMS on the variables to identify the optimal locations and combina-
tions of informative spectral wavelengths. The global search procedure
serves the purpose of finding important individual wavelength points.
The difference between iVISSA and VISSA lies in the additional local
search procedure. It follows to extend the individual points to continuous
intervals. Given the continuous nature of spectroscopic data, it is
reasonable for the local search procedure to seek important variables
near the informative individual wavelengths. Therefore, both of the
procedures enable iVISSA to identify consecutive and informative in-
tervals. The detailed iVISSA algorithm is:

(1) Construct a binary matrix of size N� p representing N sub-
datasets and p variables. The rows reflect the results of sam-
pling, where 1 in a column indicates that the associated variable is
used for modeling, and vice versa. The sampling weight ω ¼
ðω1;…;ωpÞ controls the frequency of 1 in each column.

(2) Build N PLS models on N data sets. Update the sampling weight ωi

using the frequency of the i -th variable in the first 10% models
with the lowest RMSECV.

(3) If the weight turns into 1, the corresponding variable will be
selected for modeling in all datasets in every iteration. Therefore,
it is considered important and will be used for the final calibration
model.

(4) Combine the important variable in step (3) with its adjacent
variable one spectral point at a time. A series of PLS models are
then built and assessed to search for the optimal interval width.

(5) Run step (1)–(4) iteratively until the sampling weight ω stay
constant.

3.4. Correlation-based interval selection method

3.4.1. SIS-iPLS
An interval selection method based on the correlation between the

response variable and predictors was proposed by Xu et al. named sure
independence screening and interval PLS (SIS-iPLS) [47]. It utilizes the
correlation-based SIS [4] algorithm to sort wavelengths, then constructs
preliminary intervals. The variable space is further shrunk by the back-
ward selection for a better predictive performance. Before modeling, X
and y are centered and scaled. We introduce the SIS-iPLS algorithm in the
following five steps.

(1) Calculate the correlations of p predictors with the response. Sort
the p correlations in the decreasing order and extract the first k
variables with the largest correlations.
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(2) Suppose the variable sequence obtained in step (1) constitutes m
intervals. Note that consecutive variables are regarded as an
interval.

(3) Establish m PLS models on the ðm� 1Þ intervals with one interval
removed in turn.

(4) The uninformative interval is defined as the one whose removal
results in the lowest RMSEP.

(5) Repeat step (3)–(4) and eliminate one interval at a time.

As is known, one of the typical features of the spectroscopic data is the
strong correlation among successive wavelengths. The adjacent variables
tend to have close correlations with the response. Therefore, the
threshold k enables to keep consecutive variables together, which allows
for the preliminary construction of intervals. Additionally, SIS has been
proved to enjoy the sure independence screening property, which tells
that selected variables by SIS contain the true model with probability
tending to 1. Therefore, it guarantees that variables surviving SIS tend to
contain all informative variables. However, it is likely that except for the
important variables, some uninformative variables are also included in
the constructed intervals. To solve this problem, SIS-iPLS further employs
a modified version of the stepwise backward variable selection algo-
rithm. This algorithm eliminates one interval instead of a variable at a
time until the optimal model performance is achieved. The preliminary
intervals set retained from SIS and the following interval-wise elimina-
tion procedure allow SIS-iPLS to choose important intervals.
3.5. Projection-based interval selection method

3.5.1. Interval successive projections algorithm (iSPA)
A forward variable selection technique termed successive projections

algorithm (SPA) [33] is proposed. SPA uses projection operations itera-
tively to alleviate the collinearity among variables and achieves good
prediction ability. Based on the idea of SPA, the projection operation is
further developed for interval selection. Interval successive projections
algorithm (iSPA) [48] is proposed using projections to select informative
intervals. The process of iSPA is as follows.

(1) Move the fixed-size window over the spectra and obtain m non-
overlapping and equidistant intervals. Take the variable with
the largest norm in each interval as the representative variable
and denote it as z ¼ ðz1;…; zmÞ.

(2) Define the projection operator in the i -th iteration Pij0 ¼ I � zij0 ðz
i
j0
Þ0

ðzij0 Þ
0zij0

,
with the initialized starting variable zij0 ; j0 2 f1;…;mg.

(3) Compute the projected representative variable vector and take it
as the updated variable in the next iteration, i.e.
ziþ1
j ¼ Pij0z

i
j ; j ¼ 1;…;m.

(4) Update the starting variable with the one that has the largest

norm, i.e. max
j¼1;…;m

���ziþ1
j

���.
(5) Run step (2)–(5) iteratively for N times, N ¼ 1;…; ðm� 1Þ and

obtain a vector of N starting variables.
(6) Run step (2)–(6) for different initialized starting variable j0 ¼

1;…;m and obtain m chains of ðm� 1Þ starting variable vectors.
(7) Substitute the starting variable vectors with the corresponding

intervals. Establish mðm� 1Þ PLS models on the various combi-
nations of intervals. The optimal combination of intervals is
determined in terms of the model prediction performance.

It is worth noting that intervals are represented by individual vari-
ables. The representative variables are then analyzed in a similar way as
SPA. The projection operator aims to reduce the collinearity among
variables and find the variable that contains the largest amount of in-
formation. A chain of variable combinations is recursively searched. The
optimal intervals are thus searched among the corresponding interval
combinations. Empirical evidence shows that iSPA outperforms SPA by



L.-L. Wang et al. Chemometrics and Intelligent Laboratory Systems 172 (2018) 229–240
predictive performance and exhibits a better robustness concerning the
difference between the validation and test set [48]. Such conclusion
enhances the necessity of selecting intervals rather than single variables
in datasets with highly correlated variables.

4. Datasets and software

Three datasets, including milk dataset, tobacco dataset and soil
dataset, were used to validate six of the above approaches: PLS, iPLS,
MWPLS, ENPLS, SIS-iPLS, and FOSS.

4.1. Milk dataset

The milk dataset [46] is acquired directly from the local market in
Changsha, China. The spectrum contains 1557 wavelength points
recorded from 10000 cm�1 to 4000 cm�1 with an interval of 4 cm�1 . The
dataset consists of 67 samples and we consider the protein of milk as the
property of interest. All 67 samples were randomly split into 47 samples
(70% of the dataset) for calibration and 20 samples (30% of the dataset)
for test.

4.2. Tobacco dataset

The tobacco dataset [68] contains 300 samples and 1557 spectral
points from 10000 cm�1 to 4000 cm�1 at 4 cm�1 interval. The total
nicotine of the tobacco samples is employed as the response. 210 samples
(70% of the dataset) were randomly sampled from all samples and used
for training the model. The remaining 90 samples (30% of the dataset)
were used as the independent test set.

4.3. Soil dataset

The soil dataset [69] contains 108 samples and the wavelength ranges
from 400 nm to 2500 nm (visible and near infrared spectrum). In this
paper, the 1100–2500 nm range of NIR is chosen and constitutes 700
spectral points according to [69]. Soil organic matter (SOM) is consid-
ered as the property of interest. The dataset was randomly divided into a
calibration set containing 75 samples (70% of the dataset) and a test set
containing the remaining samples.

4.4. Software

Experiments of PLS, iPLS, EN-PLS, and SIS-iPLS were carried out in R
(Version 3.3.2) on a PC with Intel Core i7 2.7 GHz CPU and 32 GB RAM.
PLS and iPLS models were fitted using the R package pls [70] and
mdatools [71], respectively. For the EN-PLS and SIS-iPLS methods,
in-house R implementations were used. The MWPLS and FOSS models
were implemented and fitted in MATLAB (Version 2015a, The Math-
Works, Inc.).

5. Results and discussion

5.1. Details of experiments

To illustrate performance of PLS, iPLS, MWPLS, EN-PLS, SIS-iPLS, and
FOSS, three datasets were used to benchmark these algorithms. For each
dataset, wavelength intensities were centered to have zero means before
modeling. Calibration sets were employed for variable selection and
establishment of PLS models, while independent test sets were used to
evaluate calibration models. Multiple evaluation measures, such as the
root mean squares error of prediction (RMSEP), root mean squares error
of calibration (RMSEC) were exploited to access the model performance.
Also, the optimal number of latent variables (nLV) for PLSmodels and the
number of selected variables (nVAR) were recorded for a comprehensive
view of model performances. Each method was conducted 50 times to
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guarantee the reproducibility and stability of experiments.
Due to the different information contained in each dataset, it is

necessary to set proper and possibly different number of intervals in iPLS
for varied datasets. Based on the previous work by Refs. [46,69] and our
experience, the number of intervals for milk, tobacco, and soil datasets
are set to 40, 40, and 18, respectively. To ensure fair comparison, we set
the window width in MWPLS to be equal to that in iPLS. In the process of
calibration, parameters in the elastic net and the number of latent vari-
ables were optimized by 10-fold cross validation.

5.2. Milk dataset

Results of the milk dataset are displayed in Table 1 and Fig. 1. As we
can see, MWPLS showed the lowest RMSEP (0.0411), followed by FOSS
(0.0436). The performance of iPLS, EN-PLS, and SIS-iPLS were not
desirable with the RMSEP of 0.0457, 0.0659, and 0.0752. Compared to
the full-spectrum PLS, the RMSEP values of MWPLS and FOSS decreased
by 8.3% and 2.7%, respectively.

The frequency of the selected variables in 50 experiments is demon-
strated in Fig. 1(b)–(f). Fig. 1(a) shows the whole spectrum. The wave-
lengths selected by MWPLS are similar to those selected by FOSS near the
range 4500–4850 cm�1, which correspond to the third overtone of C–H
bending of –CH2 group and C––O carbonyl stretch, second overtone of
primary amide [46]. On the other hand, MWPLS tends to select a few extra
(potentially uninformative) spectral intervals, for example, 6500–7000
cm�1 , which leads to more complex models than FOSS. It is worth noting
that wavelengths near 4000–4040 cm�1 , 4320–4350 cm�1 and
4700–4800 cm�1 were frequently selected by EN-PLS. These regions are
related to the second overtone of secondary amine and C––O carbonyl
stretch, second overtone of primary amide. However, EN-PLS tends to
select a small number of variables and thus may miss some important
informative regions, which could possibly result in a relatively poor pre-
diction performance. As for SIS-iPLS, it obtains regions around 4000–4200
cm�1, 4750–4810 cm�1 as well as 9928–10000 cm�1, which is related to
the second overtone of N–H stretch [46]. But SIS-iPLS also selected some
other regions, such as 4800–5300cm�1 and 8400–8700 cm�1 , which may
be uninformative and cause its relatively high RMSEP value.

5.3. Tobacco dataset

Table 2 and Fig. 2 present experimental results of the tobacco dataset.
FOSS and iPLS showed almost identical performance with the RMSEP of
0.0049 while FOSS has a slightly larger standard deviation. Their per-
formance is followed by MWPLS (0.0058) and PLS (0.0067). The average
RMSEP value of SIS-iPLS and EN-PLS reaches 0.0072 and 0.0081,
respectively. It can be seen that the RMSEP values of iPLS, FOSS, and
MWPLS are lower than the baseline method, which indicates that models
constructed using the interval selection methods exhibit good predictive
performances. It should be pointed out that SIS-iPLS and EN-PLS have
mildly higher RMSEP values than PLS, but they selected a much smaller
number of variables (139.2 and 29.1) on average. This indicates a po-
tential improvement in the model simplicity and interpretability made by
SIS-iPLS and EN-PLS, at the cost of losing some predictive performance.

Fig. 2 shows the results of the selected variables using fivemethods on
the tobacco dataset. The wavelengths around 4389–4474 cm�1 were
commonly selected by the five interval selection methods. This region is
associated to the combination of the fundamental stretching and bending
vibrations of C–H/C–C [72]. It is necessary to point out that SIS-iPLS
selects not only the region 4389–4474 cm�1 , but also 4589–4690 cm�1

, which is assigned to the second overtone of N–H bending [46]. In the
meantime, some additional regions were picked out as well, such as the
region around 9000 cm�1 , which may be redundant and uninformative
wavelengths and result in the undesirable RMSEP value as in Table 2. It is
obvious that only a very small number of variables are selected by
EN-PLS. This may increase the possibility for EN-PLS to omit some
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important and informative wavelengths, thus probably limits the pre-
dictive performance of the model.

5.4. Soil SOM dataset

The results of soil SOM dataset are reported in Table 3 and Fig. 3.
From Table 3, we can see that FOSS outperforms other methods with the
value of RMSEP (0.3371). However, FOSS provides a less stable set of
variables with the standard deviation of 108.7, compared to the other
methods. The RMSEP values of MWPLS (0.3442) and SIS-iPLS (0.4600)
are also lower than PLS (0.5050). As above, EN-PLS selected much fewer
variables (54.8) in the total number of variables (700). This suggests that
EN-PLS could miss some important spectral bands (see Fig. 4)
(see Table 4).

The wavelengths selected by different methods on the soil SOM data
are presented in Fig. 3. SIS-iPLS frequently obtained the region near
1920–1940 nm, 2324–2354 nm and 2440–2460 nm, which were verified
to be informative spectra regions [69]. The regions selected by iPLS are
similar to those selected by FOSS, except that iPLS selected some unknown
spectral bands more frequently, such as 1700–1800 nm, which may result
in a slightly worse RMSEP value compared with FOSS. EN-PLS managed to
select some informative regions, such as 1910–1930 nm, which may
“indicate O–H groups in water or various functional groups present in
cellulose, lignin, glucan, starch, pectin, and humic acid.” [69] In addition,
the range of 2000–2030 nm were frequently selected only by EN-PLS
among all other methods, so this region might be uninformative and
negatively influenced the prediction performance in terms of RMSEP.

5.5. Discussion

According to our benchmarking results, the intervals selection
methods, iPLS, MWPLS, EN-PLS, SIS-iPLS, and FOSS, can improve the
model accuracy with varying degrees when compared to the full spec-
trum PLS regression. The perfect interval selection method does not exist.
Efforts should be made to choose suitable methods for a given dataset.

Based on the analysis of the results, we can draw some preliminary
conclusions. The two classic interval selection methods, iPLS and MWPLS,
select plenty of variables, which could be associated with the value of the
window width. Similarly, SIS-iPLS tends to select many variables, but still
much fewer than the full spectrum of variables. A great many of variables
are successfully screened out. EN-PLS selects the least number of variables
in the three datasets. However, its predictive performance is not
outstanding. The reason is probably that the selected variables lost too
much useful information of the original space, thus weaken the model's
ability to explain the response variable. However, this does not indicate
that models withmore variables are better than those with fewer variables.
The additional variables selected by SIS-iPLS did not contribute to better
predictive performance, and this may come from the inclusion of some
unimportant variables. In the three experiments, FOSS shows a remarkable
performance among all methods, while its computational complexity is
unsatisfactory compared to other methods.

6. Summary

In this paper, we focused on and reviewed five classes of interval
selection methods: classic methods, penalty-based, sampling-based,
correlation-based, and projection-based methods. Classic methods pre-
determine the partition of the spectrum. Thus, many methods, such as
PLS and group lasso, can be plugged-in for calibration. Consequently, the
classic methods are flexible and can work with different regression
techniques. However, the construction of the intervals is subjective
rather than data-driven and could easily fail to include the information of
the response variable, which can be further investigated [73]. Besides,
assessing the predictive performance of a mass of intervals burdens the
computation. In contrast, the penalty-based methods take the response
variable into consideration and construct the intervals adaptively based
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on the properties of the penalty. Nevertheless, since the parameters
usually have a heavy influence on the penalty, the proper tuning of these
parameters can be critical. The improperly tuned parameters can result in
models with bad overall performance. Choosing appropriate values for
the tuning parameters can be tough and compromise the computational
time. The sampling-based methods also enjoy the feature of adaptively
constructed intervals. Although methods based on sampling can produce
models with high performance, the fluctuation of the model performance
can be a major limitation, not to mention the difficulty of achieving
reproducible and consistent conclusions. This is primarily caused by the
uncertainty derived from the sampling procedure, specifically, the
properties of the population, the way of sampling and the methods for
estimation [62]. The correlation-based methods have an outstanding
advantage for being fast, easy to compute as well as being scalable. These
features make such methods more suitable for large-scale data than
methods in other categories in light of the computation. On the other
hand, the correlation criteria employed to rank the variables can reflect
the linear relevance between the variables and the response but could fail
to explore the potential nonlinear relationships. Additionally, the
determination of the threshold is also a major challenge. The
projection-based methods employ the projection operator to ensure the
inclusion of important variables. Moreover, the recursive search for
various combinations of variables increases the possibility of hitting the
optimal variable subset. Unfortunately, the exhaustive search is precisely
the main cause of their high computational cost.

The interval selection methods reviewed in this paper are applicable in
the case where the number of variables is much larger than the number of
samples, and high correlations exist among the variables. The spectro-
scopic data investigated in this paper is a representative example of such
type of data. To provide a comprehensive understanding and profound
insights into different methods, three real datasets were employed to
evaluate the model performances. There are no such perfect methods but
only proper methods for particular datasets. The scope of the methods and
experiments is limited in this review, but we hope it can offer some general
and informative guidelines for spectroscopic data modeling.
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