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Abstract
Surface water quality is a matter of serious concern in China. This study quantitatively analyzes the spatial–temporal

characteristics of surface water quality among 100 monitoring stations in China during 2015. A geographical detector was

used to detect the influential annual and seasonal factors. Surface water quality is primarily controlled by the content of

nutrient pollutants and organic pollutants. Natural factors (precipitation, temperature, soil erosion, and terrain) and

anthropogenic factors [land use type, population density, and per capita gross domestic product (GDP-per-capita)] were

selected as geographical proxies to be tested for their explanatory power for surface water quality. Results indicated that

the top three factors influencing the annual mean of nutrient pollutants were the population density, terrain, and precip-

itation, the explanatory power of which was 0.82, 0.35, and 0.24, respectively. The interactive explanatory power for

population density and terrain was 0.88 and for population density and precipitation was 0.87, both exhibiting enhanced

interaction relationships. The top three factors influencing the annual mean of organic pollutants were population density,

temperature, and basin, the explanatory power of which was 0.46, 0.29, and 0.27, respectively. The interactive explanatory

power for population density and basin was 0.80 and for terrain and precipitation was 0.82, both demonstrating a nonlinear

enhanced interaction relationship. For seasonal changes, the nutrient pollutants and organic pollutants were both affected

by agricultural runoff due to seasonal farming. This study revealed that anthropogenic factors influenced surface water

quality two to three times more than natural factors.
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1 Introduction

Surface water is an important resource for agricultural,

drinking, environmental, and industrial uses. However,

surface water quality is a matter of serious concern in many

countries, including China (Varol et al. 2012). According

to the 2015 China Environmental Status Bulletin, 35.5

percent of surface water quality were polluted to differ-

ent degrees (Ministry of Environmental Protection 2016).

Both anthropogenic influences and natural processes

degrade surface waters (Phung et al. 2015; Zhou et al.

2017) and impair their use for drinking, industrial, agri-

cultural, recreation, or other purposes (Varol et al. 2012;

Simeonov et al. 2003). To effectively protect water

resources, prevent water pollution, and improve water

quality, it is urgent to explore the factors influencing water

quality in China quantitatively.
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Many parameters are surrogates for water quality (Su-

sanna and Wenli 2002; Nazeer et al. 2014; Seeboonruang

2012; Terrado et al. 2010; Zhao et al. 2015). Ha and

Stenstrom (2003) selected 42 candidate variables among 90

water quality variables, which were detected in more than

25 percent of monitoring samples. Later, machine learning

was used to assess the classification of the water quality by

training the water quality parameters (Li et al. 2013).

Discriminant analysis was used to reduce the number of

sampling parameters, which allowed a reduction in the

dimensionality of the large data set and indicated a few

significant parameters were responsible for large variations

in water quality (Huang et al. 2011; Varol et al. 2012;

Phung et al. 2015; Shrestha and Kazama 2007). Recently,

researchers combined a series of water quality parameters

into a single index with a simple formula to evaluate water

quality (Akkoyunlu and Akiner 2012; Misaghi et al. 2017).

The Canadian Council of Ministers of the Environment

Water Quality Index (CCME WQI) is widely used because

of the advantage of flexibility (Terrado et al. 2010; Liu and

Wu 2016).

The factors affecting surface water quality include nat-

ural and anthropogenic sources (Simeonov et al. 2003). In

nature, changes in temperature and precipitation can affect

the flow of water and thus affect the movement and dif-

fusion of pollutants; the increase of temperature can

influence chemical reactions in the water, affecting water

quality and aquatic ecology (Wang et al. 2013; Dyer et al.

2014; Whitehead et al. 2009). Moreover, water quality

varies significantly with the seasons (Varol et al. 2012;

Ouyang et al. 2006; Sundaray et al. 2006; Nienie et al.

2017), soil erosion (Phung et al. 2015), terrain (Sun et al.

2013) and so on. Anthropogenic factors include pollutant

emissions from agriculture, industry and urban wastewater

(Zhou et al. 2017; Ha and Stenstrom 2003; Seeboonruang

2012; Zhao et al. 2015; Chen et al. 2016; Shen et al. 2014;

Wilson 2015). It was found that in the Fuji river basin of

Japan, the effects of meteorological factors on water

quality are minor, agricultural factors are secondary, and

industrial pollution effects are the most serious (Shrestha

and Kazama 2007). However, the dominant factor might

vary in different countries and regions. In summary, the

primary factors influencing water quality include the nat-

ural factors of temperature, precipitation, soil erosion and

terrain, and the anthropogenic factors of land use type,

landscape pattern, agricultural runoff, agricultural activi-

ties, domestic sewage, and industrial effluents. Of course,

natural and anthropogenic factors cannot be separated

completely. Some factor, like soil erosion, belongs to both

natural and anthropogenic factors.

Recent researches focused mainly on the micro-scale of

small watersheds and rarely involved the macro-scale dis-

tribution of surface water at the national level. Most studies

statistically analyzed the correlation between water

parameters, and lack direct quantitative exploration of the

relationships between parameters and influential factors.

The effect of interactions between factors was also not

considered in most researches. In this study, real-time

monitoring data of 100 stations around China in 2015 was

used as published by the surface water quality automatic

monitoring network (http://online.watertest.com.cn/),

including pH, dissolved oxygen (DO), chemical oxygen

demand (COD), and ammonium (NH4
?-N), to analyze the

spatial and temporal distribution and variations of surface

water quality from season to season. Several proxy vari-

ables were selected to represent the influential factors,

including natural (temperature, precipitation, soil erosion

and terrain) and anthropogenic factors (land use type,

population density, and per capita gross domestic product

(GDP-per-capita) and quantitate seasonal variations. The

geographical detector method (Wang et al. 2010) was used

to quantitatively analyze relationships between surface

water quality and environmental risk factors in China. The

results would be helpful to find the specific contribution of

each important factor and their interactions in China, which

can guide measures to be taken according to different

conditions.

2 Materials and methods

2.1 Determinants of surface water quality
and their proxies

Surface water quality is interactively determined by the

content of organic pollutants (such as carbohydrates and

proteins), nutrient pollutants (such as NH4
?-N and P),

activities of aquatic organisms, and pH levels, indicated by

COD, NH4
?-N, DO and pH values, respectively (Simeonov

et al. 2003; Zheng 2012). Due to the mobility of water, the

surface water quality is similar within a basin. Basin was

chosen as a proxy variable to reflect the water mobility.

Activities of aquatic organisms and pH levels are related to

the content of organic pollutants and nutrient pollutants.

The main sources of organic pollutants and nutrient pol-

lutants are the surface runoff, domestic sewage, and

industrial effluents. The surface runoff brings humus,

pesticides, and chemical fertilizers into the surface water; it

is the driving force for soil erosion, and its direction is

related to the terrain, and its size is related to the precipi-

tation. Soil erosion, terrain and precipitation were selected

as proxy variables. Land use type, population density, and

GDP-per-capita were chosen as proxy variables to repre-

sent domestic sewage and industrial effluents. In addition,

temperature affects activities of the aquatic organisms. The
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proxy variable associations of potential factors that could

affect the surface water quality are illustrated in Fig. 1.

2.2 Data

2.2.1 Surface water quality indicators

The Ministry of Environmental Protection in China has

built 100 automatic water quality monitoring stations on 63

rivers and 13 large lakes, which are belong to the top seven

river basins in China (Haihe River, Liaohe River, Huaihe

River, Huanghe River, Songhua River, Yangtze River, and

Pearl River) (Fig. 2). The stations on Amur River, Tumen

River were merged into Songhua River, and the stations on

Yalu River were merged into Liaohe River. The monitoring

indicators include pH, DO, total organic carbon (TOC),

COD, and NH4
?-N. The water quality categories of sta-

tions were identified according to the National Standard of

Environmental Quality for Surface Water (GB3838—

2002) (Table 1),1 with the exception that TOC has no

established standard.

The monitoring indicators data for pH, DO, TOC, COD,

and NH4
?-N were released every 4 h in 2015. The monthly

average for each indicator was calculated for every station

and was used for the spatial and seasonal analysis of sur-

face water quality and detection of geographical factors in

China.

2.2.2 Geographical proxies

The data sets of geographical proxies were provided by the

Data Center for Resources and Environmental Sciences,

Chinese Academy of Sciences (RESDC) (http://www.

resdc.cn). The temperature and precipitation data were

interpolated using the inverse distance weighted method

based on the annual mean data from 1915 weather stations

in China (Fig. 3a, b). Data for the terrain were derived

from the Landscape Atlas of the People’s Republic of

China (1:1,000,000) (Fig. 3c). Soil erosion was categorized

according to the general requirements of the Classification

and Grading Standards for Soil Erosion (SL 190-96), the

industry standard of the People Republic of China

(Fig. 3d). Land use types were derived from the remote

sensing monitoring database of land use in 2010 (Fig. 3e).

Seeboonruang (2012) determined that nonpoint source

pollution resulting from land use is defined as a diffuse

source of contamination from a wide area, and it is often

difficult to attribute this contamination to a single location.

Cao and Sun (2012) discussed the influence of the spatial

pattern of the dominant types of landscape on water qual-

ity. The dominant types of landscapes in the subbasins

were calculated as the basin land use type to evaluate the

influence on surface water quality (Fig. 3f). For the basin,

it was generated using the digital elevation model (DEM)

for watershed analysis in ArcGIS 10.2. The DEM was

created from the Shuttle Radar Topography Mission data

collected in 2000 (Fig. 3g). For the population density and

GDP-per-capita information, the raw raster data in 2010

was transferred into vector data at the province level

(Fig. 3h, i).

Fig. 1 Determinants and their proxies

1 http://online.watertest.com.cn/help.aspx.
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2.3 Method and Model

2.3.1 CCME WQI

The CCME WQI method was used to integrate the

parameters into a single index to evaluate the surface water

quality. The index yields a number between 0 (worst water

quality) and 100 (best water quality), divided into five

descriptive categories. The range of categories can be

modified for every particular case of study (Terrado et al.

2010). The mathematical formulation is shown in Eq. (1)

(Akkoyunlu and Akiner 2012; Terrado et al. 2010):

WQI ¼ 100 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

F2
1 þ F2

2 þ F2
3

p

1:732
ð1Þ

where F1 is the percentage of indicators that depart from

their standard limits at least once in the monitoring sam-

ples, named as failed indicators, relative to the total num-

ber of indicators measured (Eq. 2). P is the number of

failed indicators. N represents the total number of

indicators.

F1 ¼ P

N

� �

� 100 ð2Þ

F2 represents the percentage of monitoring samples that

depart from the standard limits, named as failed samples

(Eq. 3). Q is the number of failed samples. M represents

the total number of samples.

F2 ¼ Q

M

� �

� 100 ð3Þ

F3 represents the times by which failed samples values

exceed their standard limits, using asymptotic function in

order to yield a range between 0 and 100 (Eq. 4).

F3 ¼ q

0:01 � qþ 0:01

� �

ð4Þ

The value of q is calculated by the formulation in Eq. (5).

Si is the number of times by which an sample concentration

Fig. 2 The distribution of 100

automatic water quality

monitoring stations

Table 1 Standard limits of

indicators in the National

Standard (GB3838-2002)

Indicators Categories

Level I Level II Level III Level IV Level V

pH (unitless) 6–9

DO (mg/L)C Saturation 90%

(or 7.5)

6 5 3 2

COD (mg/L) B 2 4 6 10 15

NH4
?-N (mg/L)B 0.15 0.5 1 1.5 2
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is greater than (or less than, when the standard limits are

minimum).

q ¼
Pn

i¼1 Si

M
ð5Þ

When the samples value must not exceed the standard

limits (such as for COD and NH4
?-N), Si is calculated by

the formulation in Eq. (6), where ci is the failed samples

value and cs is the standard limits.

Si ¼
ci

cs
� 1 ð6Þ

When the samples value must not fall below the standard

limits (such as DO), Si is calculated by the formulation in

Eq. (7).

Si ¼
cs

ci
� 1 ð7Þ

Fig. 3 The spatial distribution of geographic proxies. a Annual mean temperature, b annual mean precipitation, c terrain, d soil erosion, e land

use type in 2010, f dominant type in sub-basin, g basin based on DEM, h population density in 2010, i GDP-per-capita in 2010
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2.3.2 Geographical detector

The geographical detector method proposed by Wang et al.

(2010) was used to compare the spatial consistency of

surface water quality versus the geographical layers (e.g.,

temperature, precipitation, terrain, land use, land type, etc.)

in which potential influence factors exist. Each geograph-

ical factor was divided into different strata; different strata

have different attribute values. If one factor dominates the

cause of surface water quality, the surface water quality

will exhibit a spatial distribution similar to that of the

geographical factor (Wang et al. 2010) and the variance of

surface water quality within the strata of the geographical

factor is less than that between the strata (Wang et al.

2016), that is, spatially stratified heterogeneity exists.

The q-statistic in the geographical detector can explore

the spatially stratified heterogeneity of surface water

quality in the stratum of a geographical factor and detect

the extent to which the geographical factor explains the

spatially stratified heterogeneity of surface water quality

(Wang and Xu 2017). The mathematical formulation is

shown in Eq. (8) (Wang et al. 2016; Wang and Xu 2017).

q ¼ 1 �
PL

h¼1 Nhr2
h

Nr2
ð8Þ

The surface water quality was composed of N units and

was stratified into h = 1, 2, …, L strata; stratum h is

composed of Nh units; r2 and r2
h express the variance of the

population and the stratum, respectively.

The value of the q-statistic is within [0, 1]. When the q

value approaches 1, the value of r2
h is close to 0, which

means that this factor has the same distribution as the

surface water quality (Huang et al. 2014).

The interactive detector in the geographical detector

software can be used to analyze the effect of the interaction

of two or multiple factors on surface water quality. Table 2

shows the interactive results of two factors.2

The value of q X1 \ X2ð Þ represents the explanatory

power of the interaction of the two factors, X1 and X2, on

surface water quality. The interactions between two factors

are categorized as nonlinear weaken, weaken, binary

enhance, independent, and nonlinear enhance, which

depends on the relationship between q X1 \ X2ð Þ and

q X1ð Þ; q X2ð Þ.

Fig. 3 continued

2 http://www.geodetector.org/.
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3 Results

3.1 Spatial–temporal variations in surface water
quality

Surface water quality varies in different basins. Table 3

shows the variations of different indicators in different

basins, including the maximum, minimum, and mean val-

ues of the indicators and water quality level in the basin

which had the highest ratio in the monitoring stations. The

surface water quality varies among basins, the water

quality of Haihe River was serious, which was worse than

level V; that of the Dianchi Lake was heavy, reaching level

V; that of Huai River, Liaohe River, Songhua River and

Taihu Lake was middle, reaching level IV; that of Chaohu

Lake was mild, reaching level III; that of Huanghe River,

South-east Rivers, South-west Rivers, Yangtze River, and

Pearl River was good, ranked at level II. Figure 4 shows

the annual spatial water quality level for stations and basins

in this study.

Figure 5 is a histogram of the mean of the CCME-WQI

grouped by watershed changing across seasons. Obviously,

the value varies with season. The surface water quality was

determined as follows: for the Chaohu Lake, Yangtze

River, and Southeast Rivers, it was best in winter and worst

in summer; for the Haihe River and Southwest Rivers, it

was best in summer and worst in autumn; for the Yellow

River and Liao River, it was better in summer and autumn

and worse in winter and spring; for the Taihu Lake and

Pearl River, it was better in spring and autumn and worst in

summer; for the Dianchi Lake, Huai River, and Songhua

River, it was best in spring and varied with season.

The annual mean values for COD, NH4
?-N, DO, and pH

in each station were contrasted with the standard limits of

indicators in Table 1. The surface water quality was divi-

ded by different indicators into categories. Statistical

analysis signified that the number of stations in which the

surface water quality was determined by NH4
?-N, COD,

DO, and pH was 67, 73, 14, and 4, respectively. In addi-

tion, in 46 stations, the NH4
?-N and COD categories were

the same. Clearly, NH4
?-N and COD were the key indi-

cators determining the surface water quality.

3.2 q-statistic of geographical factors

The risk detector was used to analyze the effects of 8

different influential factors by season, including tempera-

ture, precipitation, terrain, soil erosion, land use type,

GDP—per-capita, population density, and basin, on NH4
?-

N, COD, and CCME-WQI. The value of the q-statistic—

reflecting the proportion of each geographical factor

explained by the three indicators—is listed in Table 4.

Evaluation of the risk detector disclosed that the primary

geographical factors are ranked by the value of the q-

statistic for the annual means of the indicators as NH4
?-N:

population density (0.82)[ precipitation (0.35)[ terrain

(0.24); COD: population density (0.46)[ temperature

(0.29)[ basin (0.27); and the CCME-WQI: basin

(0.49)[ terrain (0.47)[ dominant land use type (0.24).

Season had variable influence on the geographical factors

explaining the three indicators.

3.3 Interactive q-statistic of geographical factors

The interactive detector was used to disclose the interactive

influence of geographical factors on the three indicators.

The results for NH4
?-N, COD, and the CCME-WQI,

respectively, are designated in Tables 5, 6, and 7.

For the annual mean of the NH4
?-N indicator, the

q values for terrain, precipitation, and population density

were 0.24, 0.08, and 0.82 respectively; however, the

interactive value of population density and terrain was

0.88, and that of population density and precipitation was

0.87. For the annual mean of the COD indicator, q the

values for terrain, precipitation, population density, and

basin were 0.25, 0.21, 0.46, and 0.27, respectively; how-

ever, the interactive value of precipitation and terrain was

0.82, and that of population density and the basin was 0.80.

For the annual mean of the CCME-WQI indicator, the

q values for terrain, precipitation, and basin were 0.51,

0.14, and 0.49, respectively; however, the interactive value

of precipitation and terrain was 0.73, and that of terrain and

the basin was 0.75. These interactive values of the q-

statistic appeared to be higher than any value for the q-

statistic of solo factors. Most of the interactive results

belonged to the types of binary enhancement and nonlinear

enhancement.

Table 2 Redefined interaction

relationships
Description Interaction

q X1 \ X2ð Þ\Min q X1ð Þ; q X2ð Þð Þ Weaken, nonlinear

Min q X1ð Þ;q X2ð Þð Þ\q X1 \ X2ð Þ\Max q X1ð Þ;q X2ð Þð Þ Weaken, uni-

q X1 \ X2ð Þ[Max q X1ð Þ;q X2ð Þð Þ Enhance, bi-

q X1 \ X2ð Þ ¼ q X1ð Þ þ q X2ð Þ Independent

q X1 \ X2ð Þ[q X1ð Þ þ q X2ð Þ Enhance, nonlinear
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4 Discussion

The main purpose of this study was to exhibit the spatial

and temporal distribution and variations of surface water

quality, and to quantitatively analyze the influence factors

of the surface water quality in China. The NH4
?-N, COD

and CCME-WQI are chosen as the commonly used indices

in evaluating the surface water quality (Bouza-Deano et al.

2008; Jin et al. 2014; Alexakis et al. 2016; Zhao et al.

2016). Geographical detectors-based risk assessment and

its application in the water quality study could be used to

explore the power of influence factors to the water quality

(Wang et al. 2016). The geographical detector method was

used to identified that precipitation, fertilizer and elevation

was the significant and powerful variables controlling the

groundwater nitrate contamination (Gao et al. 2015; Nolan

et al. 2015; Shrestha and Luo 2017).

The NH4
?-N indicator reflects the contents of nutritional

pollutants (Simeonov et al. 2003). The top three factors for

NH4
?-N concentration are population density, terrain, and

precipitation. The explanatory power of them are 0.82,

0.35, and 0.24, respectively (Table 4). A research on the

water quality in the Great Lakes coastal wetlands also

reported that with human population related stress, these

wetlands had higher ammonium concentration (Morrice

et al. 2008). Population density reflects the discharge of

domestic sewage and industrial effluents (Samal et al.

2012). Besides, agricultural and urban expansion were

related to NH4
?-N concentration because of leachate from

intensive animal agriculture (Burkholder et al. 2006;

Rothenberger et al. 2006). Terrain and precipitation rep-

resent surface runoff, and surface runoff affects the

simultaneous diffusion of agricultural pesticides and

chemical fertilizers (Wang et al. 2013). Moreover, soil

erosion processes have a powerful relationship with nutri-

ent losses in catchments (Panagopoulos et al. 2011). Linear

correlation between the nutrient load of Miyun reservoir in

Beijing and the density of people of the basin was also

found to be statistically significant (Jiao et al. 2015). Pre-

cipitation can also speed up atmospheric deposition and

affect surface water quality (Simeonov et al. 2003). The

main source of NH4
? in the precipitation, which is influ-

enced by climate and human activities, is NH3 volatilized

from agricultural fertilizer, animal and human excreta.

Table 3 Descriptive statistics of indicators in 12 basins (unit: mg/L)

Basin Indicators Max Min Mean Level Basin Indicators Max Min Mean Level

Chaohu Lake DO 8.86 7.32 8.09 III Liaohe River DO 10.04 6.92 9.14 IV

pH 7.83 7.60 7.71 pH 7.59 7.00 7.41

NH4
?-N 0.53 0.32 0.42 NH4

?-N 1.01 0.01 0.43

COD 4.56 4.27 4.41 COD 6.13 1.33 3.28

Dianchi Lake DO 8.57 6.13 7.35 V Songhua River DO 9.30 7.32 8.38 IV

pH 8.76 7.95 8.35 pH 7.50 6.55 7.00

NH4
?-N 0.52 0.42 0.47 NH4

?-N 0.45 0.17 0.32

COD 10.48 9.09 9.78 COD 7.04 3.79 5.44

South-east Rivers DO 8.58 7.63 8.10 II Taihu Lake DO 8.83 4.05 7.39 IV

pH 7.60 7.07 7.33 pH 7.88 7.08 7.57

NH4
?-N 0.17 0.11 0.14 NH4

?-N 1.29 0.20 0.54

COD 2.46 2.13 2.29 COD 7.30 3.19 4.72

Haihe River DO 10.95 2.66 7.91 Worse than V South-west Rivers DO 7.59 6.24 6.91 II

pH 8.37 7.16 7.92 pH 8.01 7.67 7.84

NH4
?-N 3.06 0.05 0.79 NH4

?-N 0.33 0.18 0.25

COD 6.51 1.97 4.04 COD 2.71 1.64 2.17

Huai River DO 11.07 3.59 8.15 IV Yangtze River DO 10.50 6.04 8.30 II

pH 8.33 7.16 7.70 pH 8.14 6.62 7.58

NH4
?-N 1.37 0.19 0.57 NH4

?-N 0.48 0.11 0.23

COD 8.86 0.95 4.78 COD 3.51 1.19 2.38

Huanghe River DO 10.34 3.17 8.20 II Pearl River DO 8.83 2.73 7.32 II

pH 8.40 6.67 7.67 pH 7.79 7.00 7.41

NH4
?-N 5.78 0.20 0.98 NH4

?-N 1.20 0.14 0.34

COD 16.56 2.03 4.84 COD 3.17 1.23 1.73
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Pina-Ochoa and Alvarez-Cobelas (2009) demonstrated that

NH4
?-N might be desorbed with the infiltration, leak into

the soil, enter the river and affect the surface water quality.

In conclusion, domestic sewage, industrial effluents, agri-

cultural pesticides, and chemical fertilizers contribute to

the nutritional pollutants. The anthropogenic factors play

more important roles in the surface water quality than

natural factors.

The COD indicator reflects the contents of organic

pollutants (Rahaman et al. 2015; Barakat et al. 2016).

Hernandez-Romero et al. (2004) reported that high COD

values in a tropical coastal wetland in southern Mexico

were associated with mangrove- enriched organic matter.

In this study, the top three factors influencing the COD are

population density, temperature and basin. The explanatory

power of them are 0.46, 0.29, and 0.27, respectively

(Table 4). Population density is, to some degree, an indi-

cator of integrative human activity influence, and is asso-

ciated with urban areas, nutritional and organic pollutant

loads. However, there was study finding that compared to

population, water discharge is relatively correlated with

water quality indices in the Adige basin (Diamantini et al.

2017). The reason might be that the high COD value is

mostly attributed to the point pollution sources, such as,

Fig. 4 Annual water quality level in 2015 for stations and basins in this study
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industrial waste and sewage discharge (Fucik et al. 2014),

which is related to the basin area. In general, the larger the

basin area was, the higher the discharge was. Additionally,

urban land use was the important factor influencing COD

in highly urbanized areas (Kannel et al. 2007). The urban

land use is a factor associating with population. Addi-

tionally, it is noticed that temperature has impact on COD,

because physio-chemical and microbial processes in sur-

face water play essential roles in organic matter and

nutrient distribution and transport (Zhai et al. 2014;

Rahaman et al. 2015; Wu et al. 2018).

The result showed that the explanatory power of popu-

lation density to COD is lower than that to NH4
?-N,

because of the greater content of NH4
?-N in domestic

sewage coming from human and animal excreta. Besides,

this study demonstrated that the q-statistic value of the

basin for COD is higher than that for NH4
?-N. It means

that the distribution of organic pollutants in the same sub-

basin is more homogeneous than nutritional pollutants,

which may be related to the activities of aquatic organisms.

The content of nutritional pollutants in algal regions is

different from that having no algae, while the organic

Table 4 The q-statistic of

geographical factors by season
Indicators Season A B C D E F G H

NH4
?-N Spring 0.05 0.08 0.23 0.38 0.19 0.10 0.84 0.15

Summer 0.11 0.07 0.21 0.14 0.14 0.03 0.43 0.19

Autumn 0.11 0.08 0.23 0.13 0.10 0.01 0.43 0.21

Winter 0.08 0.09 0.23 0.39 0.20 0.10 0.87 0.15

Annual mean 0.08 0.35 0.24 0.08 0.19 0.08 0.82 0.16

COD Spring 0.19 0.14 0.18 0.26 0.13 0.04 0.67 0.19

Summer 0.35 0.26 0.27 0.08 0.06 0.03 0.24 0.38

Autumn 0.32 0.21 0.23 0.06 0.03 0.04 0.28 0.33

Winter 0.22 0.17 0.28 0.19 0.10 0.01 0.55 0.20

Annual mean 0.29 0.14 0.25 0.21 0.07 0.02 0.46 0.27

CCME-WQI Spring 0.10 0.10 0.40 0.05 0.17 0.03 0.14 0.41

Summer 0.18 0.11 0.47 0.07 0.25 0.02 0.24 0.42

Autumn 0.12 0.15 0.34 0.08 0.15 0.04 0.24 0.44

Winter 0.20 0.14 0.51 0.13 0.25 0.13 0.21 0.49

Annual mean 0.16 0.08 0.47 0.14 0.24 0.05 0.23 0.49

A temperature, B precipitation, C terrain, D soil erosion, E dominant land use type, F GDP-per-capita,

G population density, H basin, \ = interaction

Table 5 Interactive seasonal q-statistic values of geographical factors

for NH4 ? -N

Season A B C A \ C B \ C

Spring 0.23 0.08 0.84 0.88 0.87

Summer 0.21 0.07 0.43 0.57 0.55

Autumn 0.23 0.08 0.43 0.59 0.58

Winter 0.23 0.09 0.87 0.90 0.91

Annual mean 0.24 0.08 0.82 0.88 0.87

A terrain, B precipitation, C population density, \ interaction

Table 6 Interactive seasonal q-statistic values of geographical factors

for COD

Season A B A \ B C D C \ D

Spring 0.18 0.14 0.86 0.67 0.19 0.87

Winter 0.28 0.17 0.83 0.55 0.20 0.81

Annual mean 0.25 0.21 0.82 0.46 0.27 0.80

A B A \ B D A \ D

Summer 0.27 0.26 0.74 0.38 0.80

Autumn 0.23 0.21 0.72 0.33 0.73

A terrain, B precipitation, C population density, D basin,

\ = interaction

Table 7 Interactive seasonal q-statistic values of geographical factors

for the CCME-WQI

Season A B D A \ B A \ D

Spring 0.40 0.10 0.41 0.66 0.69

Summer 0.47 0.11 0.42 0.70 0.79

Autumn 0.34 0.15 0.44 0.61 0.73

Winter 0.51 0.14 0.49 0.79 0.76

Annual mean 0.51 0.14 0.49 0.73 0.75

A terrain, B precipitation, D Basin, \ = interaction
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pollutants have no constraint because bacteria are

everywhere.

For seasonal variations, the population density and soil

erosion have more explanatory power in winter and spring

than in summer and autumn for the NH4
?-N and COD

indicators (Table 4). In winter and spring, relatively less

precipitation lead to lower water discharge or runoff, which

enhancing the role of human activity play in regulating

pollutant (i.e. NH4
?-N and COD). The pollutant source

mainly derived from point source and low surface water

discharge (McKee et al. 2001). Therefore, population

density is more powerful for NH4
?-N and COD in winter

and spring. On one hand, the pollutant concentration may

be diluted due to precipitation. On the other hand, precip-

itation causes the serious soil erosion and the increase of

pollutant content. The soil erosion also reflects the state of

surface runoff, which can carry agricultural pesticides and

chemical fertilizers into the surface water. There are sea-

sonal differences in the agricultural pesticide and chemical

fertilizer use due to seasonal farming. In the summer and

autumn, the entire country is engaged in crop management

and harvesting activities, which means large amounts of

pesticides and chemical fertilizers are added to farmland,

diffusing along the surface runoff. Similar to our study, the

research by Shiddamallayya and Pratima (2008) also pre-

sent that the maximum concentrations of chemical oxygen

demand were found during summer season when the

nutrient load was high due to precipitation. In the winter

and spring, farmland is left fallow in the north, causing

surface runoff to carry fewer nutritional pollutants and

organic pollutants, which is similar in the south during the

summer and autumn. This is in accordance with the work

done by Mckee et al. (2001), which also indicated that

nutritional pollutant concentrations were significantly

related to population density and agricultural activities.

The differences in the distribution of pesticides and

chemical fertilizers used in the winter and spring were

more similar to the distribution of soil erosion than in

summer and autumn according to the q-statistic results

(Table 4). Therefore, the seasonal variations of pesticides

and chemical fertilizers caused the seasonal distribution of

NH4
?-N and COD, thereby influencing the surface water

quality. These results reflect the same seasonal variation

pattern of agricultural activities and the seasonal pattern of

the natural and human factors influence on the pollutant.

For the CCME-WQI, the annual and seasonal changes

were both smaller than that of other indicators, because it

integrated the variation of other parameters, and elucidate

the overall water quality (CCME 2001, 2003; Hong et al.

2008; Alexakis et al. 2016; Sethy et al. 2017). The top two

influencing factors on the season were the basin and terrain.

The data indicated that the distribution of the CCME-WQI

was more homogeneous in the basin than that of other

indicators. The CCME-WQI can be used to compare the

differences in water quality at the macro-scale, while the

single indicator destroys the limit of basin and reflects the

difference at the micro-scale. Moreover, recent reports

suggest that the CCME-WQI with modified categorization

scheme is believed to support water managers to integrate

and know well the picture of overall water quality (Boya-

cioglu 2010).

5 Conclusions

Quantitatively understanding the relationship between

water quality and influential factors should be helpful for

the management of water quality. Geographical Detector

can be used to detect influential factors of surface water

quality at national scale. In China, the top three factors

influencing the nutrient pollutants are the population den-

sity, terrain, and precipitation, whose explanatory powers

are 0.82, 0.35, and 0.24, respectively. They are of enhanced

interaction relationships. The top three factors influencing

the organic pollutants are population density, temperature,

and basin, whose explanatory powers are 0.46, 0.29, and

0.27, respectively. The relationship among the factors is a

nonlinear enhanced interaction. Taken together, anthro-

pogenic factors influence surface water quality two to three

times more than natural factors. Consequently, water

quality management should predominantly focus on con-

trolling human activity related pollution emission.
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Terrado M, Barceló D, Tauler R, Borrell E, Campos SD, Barceló D
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