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Heavy metal contamination has become a serious and widespread problem in urban environment. Under-
standing its controlling factors is vital for the identification, prevention, and remediation of pollution
sources. This study aimed to identify the factors controlling heavy metal accumulation in urban topsoil
using the geodetector method and multiple data sources. Environmental factors including geology, relief
(elevation, slope, and aspect), and organism (land-use and vegetation) were extracted from a geological
thematic map, digital elevation model, and time-series of Landsat images, respectively. Then, the power
of determinant (q) was calculated using geodetector to measure the affinity between the environmental
factors and arsenic (As) and lead (Pb). Geology was the dominant factor for As distribution in the this
study area; it explained 38% of the spatial variation in As, and nonlinear enhancements were observed
for the interactions between geology and elevation (q = 0.50) and slope (q = 0.49). Land-use and vegeta-
tion bi-enhanced each other and explained 39% of the spatial variation in Pb. These results indicated that
geology and relief were the factors controlling the spatial distribution of As, and organism factors, espe-
cially anthropogenic activities, were the factors controlling the spatial distribution of Pb in the study
area. As was derived from weathering transportation, and deposition processes of original bedrock and
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subsequent pedogenesis, and anthropogenic activity was the most likely source of Pb contamination in
urban topsoil in Shenzhen. Moreover, geodetector provided evidence to explore the factors controlling
spatial patterns of heavy metals in soils.

© 2018 Elsevier B.V. All rights reserved.
1. Introduction

Urban regions are one of themost important places for human soci-
ety and economic activities. According to the projections of the United
Nations Population Division, the number of urban inhabitants in the de-
veloping world is likely to increase to 3.90 billion by 2030 and to 5.26
billion by 2050 (Montgomery, 2008). The growing population will in-
troduce extreme pressures on urban ecological environments because
some intensive human activities which involve industrial wastes, vehi-
cle emissions, and household garbage generate a large number of con-
taminants, including heavy metals, polycyclic aromatic hydrocarbons,
and polychlorinated biphenyls (Luo et al., 2012; Tang et al., 2005).
These contaminants are mainly concentrated in urban topsoil
(0–20 cm), especially heavymetals (Wang, 2009). For example,mineral
and energy consumption by industries and transportation is accompa-
nied by the release of heavy metals in fossils; these heavy metals
enter the atmosphere through engine exhaust and factory emissions
and fall to the ground under the influence of gravity or rainfall, and fi-
nally accumulate in urban topsoil. Therefore, heavy metals in topsoil
have been shown to be useful tracers of environmental contamination
in urban area (Manta et al., 2002).

Urban soil, a type of anthrosol, is frequently characterized by strong
spatiotemporal heterogeneity because it mixes various inputs of exoge-
nousmaterials fromhuman activitieswith original soilmaterials (Morel
andHeinrich, 2008). Soil surveys and research have been focused on ag-
ricultural and forest regions in order to adapt to the increasing demands
for food and fiber of the growing global population, and urban soil has
been neglected (Lu et al., 2012). Since the 1990s, the important and
complex influences of urban soil on the ecological environment have
been gradually recognized, and strong interests in urban and suburban
soils have appeared. In 1998, theworking group of Soils in Urban, Indus-
trial, Traffic andMining Areaswas launched at the 16thWorld Congress
of Soil Science in Montpellier, France. It aimed to advance the study of
functions, status and restoration of urban soil, as well as its role in the
evolution of urban ecosystems (Dickinson et al., 2013). Recently, given
its threats to urban ecosystems, heavy metal contamination in urban
soil has received increasing attention from soil and environment
scientists.

Heavy metals threaten the heath of humans and urban ecosystems
through wind, water, or plant trajectories. For instance, heavy metals
can be carried by dust under the impact of wind, and can further enter
and pose risks to humans through inhalation (Wang, 2009). Further-
more, heavy metals in polluted soils tend to be more mobile than
those in unpolluted soils, therefore, heavy metals in urban soil may
cause surface- and ground-water contamination (Wilcke et al., 1998).
Approximately 65% of all Chinese cities exhibit high or extremely high
levels of heavy metal contamination (Wei and Yang, 2010). Thus,
there is an urgent need to understand their spatial patterns and control-
ling factors, which are vital for the identification, prevention, and reme-
diation of pollution sources.

The CLORPT model is widely employed to explore the spatial pat-
terns and controlling factors of soil properties. It regards soil as the
product of the joint action of multiple environmental factors, including
climate (cl), organisms (o), relief (r), parent material (p), and time (t)
(Jenny, 1941), namely S= f(cl, o, r, p, t). Climate factors include rainfall,
temperature, and solar radiation; organisms include vegetation cover
and types, land-use, and anthropological activities; relief refers to to-
pography, such as slope, aspect, elevation, and slop angle; parent mate-
rial, like rock type, is the original supply of soil mineral elements; and
time is often a theoretical or hypothetical span for soil development.
Natural and anthropogenic factors all play important roles in the forma-
tion of topsoil; therefore, the spatial patterns of soil heavy metals in
urban topsoil are affected by not only parent material and soil forming
processes, but also anthropogenic activities (Zhang, 2006). Many stud-
ies have confirmed that heavy metal contamination in soil is closely
linked withmultiple environmental factors, such as parentmaterial, re-
lief, and organisms (Bou Kheir et al., 2014; Liu et al., 2016; Qiu et al.,
2015; Wilford et al., 2016).

Historical surveying data are usually adopted to extract environ-
mental factors for the spatial analysis of soil heavy metals. For exam-
ple, Bagheri et al. (2015) derived relief factors, including slope,
aspect, and elevation, from a digital elevation model (DEM) at 10 m
spatial resolution. Bou Kheir et al. (2014) and Wilford et al. (2016)
employed geological maps to extract parent material factors to fur-
ther explore their spatial association with soil heavy metals. More-
over, remotely sensed data, such as MODIS (Moderate Resolution
Imaging Spectroradiometer), SPOT (satellite for observation of
Earth), and IKONOS satellite images, are frequently applied to obtain
vegetation indexes, land-use, and other organism factors (Huo et al.,
2010; Wilford et al., 2016). ASTER (Advanced Space-borne Thermal
Emission and Reflectance Radiometer), with an adopted optical
stereo-technique, offers DEM data with a spatial resolution of 30 m.
Based on ASTER data, Wilford et al. (2016) obtained multiple relief
factors using digital terrain analysis techniques. Compared with his-
torical surveying data, remotely sensed data are easier to access,
cheaper, and timelier.

Remotely sensed images are often used to generate vegetation in-
dexes and land-use information (Huo et al., 2010; Wilford et al.,
2016); however, the time-varying traits of these environmental factors
are not considered. Moreover, land-use and vegetation indexes change
over time, especially in rapidly changingurban environments. Using im-
ages from a specific time may not reflect the effects of temporal varia-
tion in these factors on the accumulation of soil heavy metals. The
Landsat series provides image records of the Earth's surface for more
than four decades, and these images are suitable for extracting long
term vegetation indexes and land-use information.

Principal component analysis (PCA) and cluster analysis (CA) are ap-
plied to assist in the identification of environmental factors controlling
heavy metal accumulation (Chen et al., 1997; Guo et al., 2012; Lee
et al., 2006; Li et al., 2004; Ordonez et al., 2003; Sun et al., 2013). PCA
and CA classify heavy metals into different categories, and the most
likely pollutant sources, such as parent materials or anthropogenic ac-
tivities, are concluded by experience for each category. Anothermethod
to analyze controlling factors is based on the statistical relationship be-
tween environmental factors and heavy metals (Lin et al., 2002; Navas
and Machin, 2002). However, the relationships among the spatial pat-
terns of heavymetals and environmental factors are not taken into con-
sideration in PCA, CA, or correlation analysis.

A geographical detector method, namely geodetector, may be a bet-
ter choice for exploring the factors controlling heavy metal accumula-
tion in urban topsoil. Geodetector is based on the spatial stratified
heterogeneity of geographical phenomena; its key underlying assump-
tion is that if a geographical factor A is controlled by another geograph-
ical factor B, then B will exhibit a spatial distribution similar to that of A
(Luo et al., 2015;Wang et al., 2010;Wang et al., 2016). Geodetector has
been applied to analyze the factors controlling the spatial patterns of
various geographical phenomena. For instance, Luo et al. (2015)
employed geodetector to identify the dominant factors of dissection



Fig. 1. Study area and sampling locations.
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density over the entire conterminous United States, and Li et al. (2013)
applied geodetector to investigate the spatial relationship between
planting patterns and residual fluoroquinolones in soil.

Given the importance of heavy metal contamination in urban top-
soil, this study aimed to identify the factors controlling heavy metal ac-
cumulation using geodetector and multiple data sources, especially
time-series remotely sensed data. The results of this study are expected
to reveal the internal regularities affecting the spatial pattern of heavy
metals in urban topsoil, and to provide a geo-statistical way to explore
their factors controlling these spatial patterns by combining geographi-
cal information science and remote sensing methods.

2. Materials and methods

2.1. Study area

Shenzhen (113°46′E to 114°37′E, 22°27′N to 22°52′N), which is lo-
cated in the south of Guangdong Province, China, has a subtropical mar-
itime climatewith an average annual temperature of 22.4 °C and amean
annual precipitation of 1993.3 mm. Shenzhen holds various landform
types, including plateaus, hills, and flood plains. Until 2016, four natural
reserves have been established to protect mangroves, wetlands, and
rare species. According to the Shenzhen Statistical Yearbook, there
were approximately 11.37 million inhabitants in Shenzhen in 2016.
Monitoring the heavy metal contamination in Shenzhen topsoil is vital
Table 1
Environmental factors for analyzing controlling factors of soil heavy metals.

Environmental factors Data source links

Organism Vegetation Landsat images https://glovis.
usgs.govLand-use

Relief Elevation, slope, and
aspect

ASTER DEM http://www.
gscloud.cn

Parent material,
time

Geology Geological
thematic map

http://www.szpl.
gov.cn
for the sustainable development of the city ecosystem and the health
of local citizens. Moreover, due to its low intensity of human activities
before the Chinese economic reform, Shenzhen is a suitable representa-
tion of Chinese cities to explore environmental stress caused by rapid
urbanization and industrialization since 1980.

2.2. Soil sampling

This study concentrated on the Baoan, Guangming, Nanshan,
Futian, Luohu, Longhua, and Longgang districts of Shenzhen, in
which most inhabitants live. The study area was divided into regular
grids of 2 × 2 km for sampling, and a sampling site was randomly se-
lected in each grid. The geographical coordinates of sampling sites
were recorded using a global positioning system receiver, and infor-
mation on land-use, vegetation cover, and landform were also re-
corded. A total of 221 topsoil samples were collected in November
2016 (Fig. 1), and artificial deposits, such as rubbles, concrete
debris, and wastes, were avoided. Approximately 1.5 kg of topsoil
(0–20 cm) were collected during five sampling campaigns (Shi et al.,
2013) after removing plant residues, roots, and stones. The collected
soil samples were kept in polyethylene bags and brought to a labora-
tory for heavy metal content analysis.

2.3. Soil heavy metal measurement

After air-drying at 20–26 °C for three days, the collected soil samples
were ground with an agate mortar and sieved through a 100-mesh grid
sieve (0.15 mm) to remove stones and coarse materials. In this study,
Table 2
Descriptive statistics of arsenic (As) and lead (Pb) of soil samples (mg kg−1)a.

Minimum. Maximum Mean Median Skewness S.D.

As 0.67 173.09 12.25 6.57 5.12 19.26
Pb 6.63 290.35 62.09 51.62 2.36 41.17

a S.D. is standard deviation.



Fig. 2. Frequency distributions of logarithmically transformed soil As (a) and Pb (b) contents; S.D. is standard deviation.
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arsenic (As) and lead (Pb) were selected to explore the application of
geodetector for identifying controlling factors frommultiple environmen-
tal factors. The soil As content was determined using hydride generation
atomic fluorescence spectrometry, and the Pb content was measured
using an atomic absorption flame spectrometer (Guo et al., 2009).
2.4. Environmental factors

Landsat images covering the study area in 1988, 1994, 1999, 2004,
2008, 2013 and 2016 (Table S1, downloaded from https://glovis.usgs.
gov) were used to extract time-series information on organism factors,
including land-use and vegetation. All images were captured in winter
to keep the images cloud-free and to ensure a similar growing status
of vegetation among different years. The images were geometrically
and radiometrically corrected, and then further converted into reflec-
tance values (Fig. S1) using the fast line-of-sight atmospheric analysis
of spectral hypercube (Adler-Golden et al., 1990). Time-series normal-
ized difference vegetation index (NDVI) values were calculated from
the image reflectance. Images were classified into three land features,
namely water body, artificial object, and terrestrial vegetation, using
an object-oriented support vector machine classifier (Hu et al., 2016).
The training datasets for image classification were determined by visu-
ally interpreting the imagery.
Fig. 3.Major geological types of study area. The Unknown typ
We hypothesized that soil heavy metal accumulation might be af-
fected by organism factors at a specific spatial scale. Therefore, the
buffers of sampling locations with different radii (100, 200, 300, 400,
and 500 m) were generated. In these buffers, the average values of
NDVI (BNDVI) and the artificial objects' areas (BArea) were calculated. Fi-
nally, the averages of time series BNDVI and BAreawere calculated for veg-
etation and land-use factors, respectively.

The 1:50,000 geological map of Shenzhen (Fig. S2a) was acquired
from the Urban Planning Land and Resources Commission of
Shenzhen Municipality (http://www.szpl.gov.cn), and it was geo-
referenced and clipped to fit the study area (Fig. S2b). In order to
digitize this geological map for computer processing, the object-
oriented support vector machine classifier for images classification
was adopted to distinguish geological types (Hu et al., 2016). Relief
information on surface topography, including elevation, slope, and
aspect, was derived from DEM data (30 m) of ASTER (http://www.
gscloud.cn). The environmental factors employed for controlling
factor analysis are listed in Table 1.
2.5. Geographical detector method

The geographical detector method was developed to measure the
spatially stratified heterogeneity of geographic variable Y (for example,
e was caused by no investigations due to water coverage.

wjf
高亮



Fig. 4. Relief factors of surface topography, including elevation (a), slope (b) and
aspect (c).
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heavy metals in this study) and to explore how factor X explains the
spatial pattern of Y. Formally, Y is composed ofN samples, and X is strat-
ified into L strata; stratum h∈[1, 2,…, L] is composed ofNh samples; yi is
the value of sample i in the whole sample population; and yhi denotes
the value of sample i in stratum h. The concept of spatially stratified
heterogeneity is the q-statistic, which is defined as follows (Wang
et al., 2016):

q ¼ 1−
∑L

h¼1∑
Nh
i¼1 yhi−yhð Þ2

∑N
i¼1 yi−yð Þ2

¼ 1−
∑L

h¼1Nhσ2
h

Nσ2 ¼ 1−
SSW
SST

ð1Þ

where yh ¼ ð1=NhÞ∑Nh
i¼1yhi is the mean value of stratum h; y ¼ ð1=NÞ

∑N
i¼1yi is the mean value of the population; σh

2 ¼ ð1=NhÞ∑Nh
i¼1

ðyhi−yhÞ2 is the variance in stratum h; and σ2 ¼ ð1=NÞ∑N
i¼1ðyi−yÞ2 is

the variance in the population. SSW and SST denote the within sum of
squares and total sum of squares, respectively (Wang et al., 2016;
Wang and Xu, 2017).

For q∈[0, 1], a higher value of q indicates a stronger spatially strat-
ified heterogeneity of Y. When the strata are defined by factor X, q in-
dicates that factor X can explain 100 × q% of the spatial pattern of Y.
The factor X must be a categorical variable in calculating the q value.
If factor X is a continuous variable, it needs to be categorized using
expert knowledge or a categorization algorithm, such as equal inter-
val, quantile, and k-means (Wang and Xu, 2017). The categorized
levels depend on the improvement of the q value (Wang and Xu,
2017). In this study, the relief factors (elevation, slope, and aspect)
and organism factors (vegetation and land-use factors) were catego-
rized using the k-means method. Moreover, the number of catego-
rized types and optimal buffers were determined by the maximum
q value, and p value was used for the significance test (Wang et al.,
2016).

Furthermore, an “interaction detector”was defined to assess the in-
teraction between two different factors, namely X1 and X2, by compar-
ing q(X1∩X2) with q(X1) and q(X2). X1∩X2 indicates a new stratum
created by overlaying factors X1 and X2 (Luo et al., 2015; Wang and
Xu, 2017). If q(X1∩X2) N q(X1) or q(X2), then the two factors enhance
each other; if q(X1∩X2) N q(X1) and q(X2), then the factors bi-enhance
each other; and if q(X1∩X2) N q(X1) + q(X2), then the two factors
nonlinearly enhance each other. If the opposite of these formulas is
true (e.g., q(X1∩X2) b q(X1) or q(X2)), then the two factors weaken, bi-
weaken, or nonlinearly weaken each other, respectively. If q(X1∩X2) =
q(X1) + q(X2), then the factors are independent of each other (Luo
et al., 2015; Wang et al., 2010; Wang and Xu, 2017). The free software
for executing this geographical detector method was downloaded
from http://www.geodetector.org.

3. Results

3.1. Heavy metals

The descriptive statistics for As and Pb are shown in Table 2. As and Pb
contents varied in the ranges of 0.67–173.09 and 6.63–290.35 mg kg−1

with average values of 12.25 and 62.09 mg kg−1, respectively, and
showed positive skew distributions with skewness values of 5.12 and
2.36. Therefore, these content values were logarithmically (log(10))
transformed (Fig. 2) to improve their normal distributions. According to
the Chinese Environmental Quality Standard for Soils (GB 15618–1995)
(Chen et al., 2016), 27% and 74% of these soil samples exceeded back-
ground levels for As and Pb, respectively. This suggests high As and Pb
pollution risks in the study area in terms of soil environmental quality.

3.2. Environmental factors

Tenmajor geological types were diagnosed from thematic geolog-
ical maps (Fig. 3), including Middle Devonian, Late Triassic, Late Ju-
rassic, Mesoproterozoic, Early Ordovician, Early Carboniferous, Late
Pleistocene, Middle Jurassic, Holocene and Early Cretaceous. The re-
lief factors, including elevation, slope and aspect, are shown in
Fig. 4. The elevation of this area ranges from 0 to 936 m, and the
slope ranges from 0° to 58°.
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Fig. 5. Time-series normalized difference vegetation index (NDVI) of study area.
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The time-series of NDVI and land features are shown in Figs. 5 and 6,
respectively. Vegetation coverage decreased and artificial construction
land increased continuously during 1988 to 2016. Considering that the
optimal buffers for vegetation and land-use factors were 200m, the cor-
relation coefficients of log(Pb) against vegetation and land-use factors
were 0.56 and −0.46, respectively (Fig. 7). This demonstrated that the
Pb contents in urban soil generally increased with the intensification
of human activities and decreased with increasing vegetation coverage.
3.3. q statistics

All environmental factors in Table 1 and their interactionswere con-
sidered in q statistics for As and Pb. For As, environmental factors, in-
cluding aspect, land-use, and vegetation did not pass the significance
test at a significance level of 0.05. The q statistic results indicated that
the geological factor was the dominant factor for As distribution in the
study area, and it explained 38% of the spatial variation in As



Fig. 6. Land features change from 1988 to 2016 in study area.
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(Table 3). The elevation and slopewere classified intofive and three cat-
egories by k-means, respectively. Nonlinear enhancements were ob-
served for the interactions between geology and elevation (q = 0.50)
and slope (q = 0.49), which indicated that geology and relief were the
factors controlling the spatial pattern of As.

For Pb, geological and relief factors (elevation, slope, and aspect) did
not pass the significance test at a significance level of 0.05. The vegeta-
tion and land-use were categorized into five and eight types using k-
means, and they explained 31% and 26% of the spatial pattern of Pb in
urban topsoil, respectively (Table 3). Moreover, the vegetation and
land-use bi-enhanced each other and explained 39% of the spatial vari-
ation in Pb, which indicated that organism factors, especially anthropo-
genic activities, were the factors controlling for the spatial pattern of Pb
in the study area.

4. Discussion

In this study, geodetector was employed to explore the factors con-
trolling heavy metal accumulation in urban topsoils. Compared with
PCA and CA, geodetector providedmore convincing evidence to explain



Fig. 7. Pearson correlation between logarithmically (log(10)) transformed lead (Pb) contents with vegetation and land-use factors.

458 T. Shi et al. / Science of the Total Environment 643 (2018) 451–459
controlling factors by measuring the consistency of their spatially strat-
ified heterogeneity with heavy metals. Wang and Xu (2017) declared
that the consistency of spatial distribution between two geographic var-
iableswasmore difficult to obtain than linear correlation of the two var-
iables. Therefore, compared with Pearson correlation analysis,
geodetector offered stronger statistics to reveal the causal relationship
between independent and dependent variables (Wang and Xu, 2017).
Moreover, geodetector is designed for processing categorical variables,
such as the geological type in this study, whereas Pearson correlation
analysis is not suitable for processing this kind of data.

Multi-source data (geological thematic map, ASTER DEM, and
Landsat images), remote sensing, and geographical information tech-
niques were adopted to derive various environmental factors in this
study. These data are usually free and available for most urban areas
globally. Based on this fact, we believe that the technical approach
proposed in this study could be applied to other urban regions to ex-
tract environmental factors and further to analyze the factors control-
ling the spatial distribution of heavy metal.

The spatial scale of environmental factors has not received full
comprehension and emphasis in most studies (Huo et al., 2010;
Wilford et al., 2016). We believe that the spatial scale of environ-
mental factors is important in affecting heavy metal accumulation,
and should be taken into account in calculating human activity fac-
tors. This point was supported by the result that the q values for
land-use (Table S2) and vegetation factors (Table S3) increased
Table 3
Environmental factors and factor interactions with q values.

Heavy metals Environmental factors and interactions q statistics

As Geology 0.38
Elevation 0.05
Slope 0.05
Aspect 0.01
Vegetation 0.00
Land-use 0.00
Geology∩Elevation 0.50
Geology∩Slope 0.49

Pb Geology 0.02
Elevation 0.00
Slope 0.00
Aspect 0.00
Vegetation 0.26
Land-use 0.31
Vegetation∩Land-use 0.39
with increasing buffer values up to 200 m. Moreover, there were sig-
nificant correlations between land-use (Table S4) and vegetation
factors (Table S5) employing different buffers, which might have
been attributed to the spatial correlation of artificial object's area
and NDVI. Therefore, we considered that the q value would be stabi-
lized even when adopting larger buffer values (Tables S2 and S3).
This result indicated that the spatial influence of heavy metal accu-
mulations might be at a specific scale, such as about 200 m in this
study.

Li et al. (2001) demonstrated that heavy metal concentrations in
urban park soils were significantly related to the age of the parks,
which might reflect the accumulation time of heavy metals. There-
fore, in this study, a time series of Landsat images were used to reveal
the dynamic change characteristics of land features and vegetation
coverage. The changes might reflect the duration and intensity of
human activities and their effects on the long-term accumulation of
heavy metals in urban areas. Because of the lack of archive images
or cloud cover of existed images, only Landsat images from 1988,
1994, 1999, 2004, 2008, 2013 and 2016 were chosen to extract the
time series of organism factors. Due to the temporal correlation of ar-
tificial object's area and NDVI, there were significant correlations be-
tween neighboring annual BArea (Fig. S3) and BNDVI (Fig. S4) in the
200m buffers derived from the time-series Landsat images. However,
if data are available, then Landsat images with higher temporal reso-
lution are preferred to reflect the detailed changes in land feature and
NDVI.

Analyzing the controlling factors of heavy metals helps to differ-
entiate the pollution sources for various heavy metals and to assess
their risks. In this study, climate factors were not considered as
potential controlling factors because the climate was generally
the same for the whole Shenzhen. Therefore, geology (parent
material and time), relief, and organism factors were employed for
q analysis.

We found that geology and relief factors played major roles in the
spatially stratified heterogeneity of As in the study area, which demon-
strated that the As in urban soilswas derived fromweathering transpor-
tation, and deposition processes of original bedrock and subsequent
pedogenesis. This result was consistent with the finding by Guo et al.
(2012), who indicated that spatial distribution of As in urban soils is
mainly controlled by soil parent materials. Moreover, Navas and
Machin (2002) also supported the finding that soil As originated from
parent materials because they found that the soils developed on sedi-
mentary rocks had the lowest As contents, while the soils overlying
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metamorphic and igneous rocks had the highest As contents. In this
study, residents living in regions with soils from the Late Pleistocene
(Table S6, mean = 1.31, standard deviation = 0.28) face higher risks
of As contamination.

This study also demonstrated that anthropogenic activity was a
significant source of Pb pollution in topsoils. Therefore, anthropo-
genic sources, such as industrial wastes, vehicle emissions, and
household garbage, were the most likely sources of Pb contamination
in urban topsoil in Shenzhen. This result was consistent with the
widely accepted point that high contents of Pb in urban topsoil are as-
sociated with the atmospheric deposition of vehicle emissions
resulting from the use of leaded gasoline (Imperato et al., 2003;
Saby et al., 2006). Despite the ban on Pb additives in gasoline in
China, followed by a rapid decrease in Pb levels in the atmosphere,
the contents of Pb accumulated in urban topsoils will remain high
(Guo et al., 2012), and may poison children via a soil hand mouth
pathway (Imperato et al., 2003).

5. Conclusions

This study explored the factors controlling heavy metal accumula-
tion in urban topsoil using a geographical detector method and
multiple data sources. Themost important conclusions were as follows.

(1) Geodetector provided evidence to explore the factors controlling
the spatial patterns of heavy metals in soils.

(2) As in urban topsoil within Shenzhen was derived from
weathering transportation, and deposition processes of original
bedrock and subsequent pedogenesis.

(3) Anthropogenic pollutants, such as industrial wastes, vehicle
emissions, and household garbage, were the most likely source
of Pb contamination in urban topsoil in Shenzhen.
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