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RESEARCH ARTICLE

Spatial association between regionalizations using the
information-theoretical V-measure
J. Nowosad and T. F. Stepinski

Space Informatics Lab, University of Cincinnati, Cincinnati, OH, USA

ABSTRACT
There is a keen interest in calculating spatial associations between
two variables spanning the same study area. Many methods for
calculating such associations have been proposed, but the case
when both variables are categorical is underdeveloped despite
the fact that many datasets of interest are in the form of either
regionalizations or thematic maps. In this paper, we advance this
case by adapting the so-called V-measure method from its original
information-theoretical formulation to the analysis of variance for-
mulation which provides more insight for spatial analysis. We pre-
sent a step-by-step derivation of the V-measure from the
perspective of the analysis of variance. The method produces
three indices of global association and two sets of local association
indicators which could be mapped to indicate spatial distribution of
association strength. The open-source software for calculating all
indices from vector datasets accompanies the paper. To showcase
the utility of the V-measure, we identified three different applica-
tion contexts: comparative, associative, and derivative, and present
an example of each of them. The V-measure method has several
advantages over the widely used Mapcurves method, it has clear
interpretations in terms of mutual information as well as in terms of
analysis of variance, it provides more precise assessment of associa-
tion, it is ready-to-use through the accompanying software, and the
examples given in the paper serves as a guide to the gamut of its
possible applications. Two specific contributions stemming from
our re-analysis of the V-measure are the finding of the conceptual
flaw in the Geographical Detector—a method to quantify associa-
tions between numerical and categorical spatial variables, and a
proposal for the new, cartographically based algorithm for finding
an optimal number of regions in clustering-derived regionalizations.
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1. Introduction

A common task in spatial data analysis is to calculate a degree to which two variables
are spatially associated. Both global measure (a single value assessment of an overall
association) and local measures (association at each observation unit) are the sought-
after indicators. An approach to this task depends on the form of the data.

If both variables are numerical, multivariate spatial correlation methods (Wartenberg
1985, Getis and Ord 1992, Lee 2001) are applied. If one variable is numerical and another
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is categorical, the so-called Geographical Detector frequently referred to as a map
comparison (Foody 2007).

There are two different contexts which call for map comparison. In most cases, the
context is the comparison of thematic maps (for example, land cover maps of the same
area at different times), where map units (often raster cells) are assigned a unique
category from a relatively short list of possible themes. In thematic maps, many dis-
jointed map units are assigned the same category. Another context is a comparison of
regionalizations. A regionalization is a segmentation of the entire spatial domain (an
area of interest) into a set of geographically meaningful single-connected units each
having its unique name. Examples of regionalizations include maps of climate classifica-
tion (Kottek et al. 2006, Peel et al. 2007, Cannon 2012, Zscheischler et al. 2012, Zhang
and Yan 2014, Netzel and Stepinski 2016), maps of ecoregions (Olson et al. 2001, Bailey
2014, Omernik and Griffith 2014), and administrative maps. Note that in practice, the
single-connectedness of all regions is a goal which is rarely achieved. All examples given
above have some regions consisting of disjointed parts (for example, in the regionaliza-
tion of the USA into the states, the state of Michigan consists of two disjointed parts).
Thus, for the purpose of this paper, there is no difference between regionalization and
the thematic map if, in the later, we consider the sets of units assigned to the same
category (sometimes referred to as strata, see, for example in Wang et al. (2010) or
Metzger et al. (2012)) as regions. In the rest of this paper, we will use a term regionaliza-
tion to cover both contexts.

The bulk of the previous work on map comparison (Power et al. 2001, Hagen 2003,
Foody 2004, Visser and DeNijs 2006) was done in the context of raster thematic maps.
Such methods overlay two raster maps and perform a cell-by-cell comparison to assess
the similarity between the two maps. Hargrove et al. (2006) discussed many disadvan-
tages of such approach and proposed a map comparison based on a degree of overlap
between regions in the two maps (the so-called ‘Mapcurves’ method). More recently,
Sadahiro and Oguchi (2015) proposed another overlap method of map comparison.
Here, we propose a different overlap method for assessing a degree of spatial associa-
tion between regionalizations. The proposed method is a reinterpretation of the V-mea-
sure concept (Rosenberg and Hirschberg 2007) from its original information-theoretical
formulation to the analysis of variance formulation. In this form, the V-measure is
directly comparable to the Geographical Detector (Wang et al. 2010) and can be used
to reveal its shortcoming, while its original interpretation, in terms of the mutual
information, gives it a solid theoretical ground. The V-measure can also be used to
determine the optimal number of regions in regionalizations originating from data
clustering.

In addition to re-introducing the V-measure, we also identify and describe three
different contexts in which it could be used: (1) comparative, (2) associative, and (3)
derivative. The comparative context involves comparing two regionalizations created to
depict the same realm. One example of such context is a comparison of the classic,
global map of climate types (Köppen 1936) with more recent global maps of climate
types obtained by clustering global datasets of climatic variables (Metzger et al. 2012,
Zscheischler et al. 2012, Zhang and Yan 2014, Netzel and Stepinski 2016). Another
example of comparative context is ecoregion mapping. For the USA, there are three
widely referenced delineations of ecoregions, one developed by the US Environmental
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Protection Agency (Omernik and Griffith 2014), another developed by the US Forest
Service (Bailey 2014), and the third—the Terrestrial Ecoregions of the World—developed
by Olson et al. (2001). They all depict the same realm but use different methodologies;
our method can quantify a degree of similarity between those maps and identify
locations of largest disagreement.

An associative context involves finding magnitudes of associations between a target
regionalization (response variable), and a number of regionalizations corresponding to
possible predictors of this target. An example of such context is a regionalization of a
domain into ecoregions as a target and categorical maps of land cover, landforms, soils,
and climate covering the same domain as possible predictors for ecoregions (Nowosad
and Stepinski 2018a).

Finally, the derivative context pertains to regionalizations obtained via algorithmic
clustering of the domain. Examples of regionalizations created via clustering include
newer maps of global climate types (see above), a map of land pattern types in the USA
(Niesterowicz and Stepinski 2013) and maps of forest types in Canada (Partington and
Cardille 2013, Niesterowicz and Stepinski 2017. When creating a regionalization via
clustering, it is not immediately clear into how many clusters (regions) divide the
domain. The computer science community has developed several heuristics to deter-
mine an ‘optimal’ number of clusters (Davies and Bouldin 1979, Rousseeuw 1987,
Salvador and Chan 2004); they all aim at minimizing dissimilarities between data
instances within clusters and maximizing dissimilarities between the clusters. Our
method selects the number of clusters in a spatial dataset from a different, cartographic,
perspective by determining the number of regions above which the further change to
regionalization—a spatial manifestation of clustering—does not change the map in a
meaningful way.

2. Methodology

The V-measure originated in the field of computer science as a measure for comparison
of different clusterings of the same domain. Clustering is the task of grouping a set of
objects into clusters in such a way that objects in the same cluster are more similar to
each other than to those in other clusters. The important observation is that comparing
regionalizations is conceptually equivalent to comparing clusterings. There is a rich
literature describing many different measures proposed to quantify comparison
between two clusterings of the same domain (for reviews see Denoeud and Guénoche
(2006) and Wagner and Wagner (2007)). From among possible cluster comparison
measures, we find the V-measure to be particularly well-suited for comparing regiona-
lizations. It can be easily reinterpreted from a discrete domain to a continuous domain
by replacing counting objects with calculating overlap areas between regions. It has an
appealing interpretation in terms of an information theory. It provides both global and
local measures of association. Finally, V-measure’s construction is conceptually similar to
the Geographical Detector, which helps to identify the weakness in the latter.

Let us denote the area of the domain as A. Consider two different regionalizations of
the domain. To make a further discussion more lucid, we will refer to the first one as a
regionalization and to the second one as a partition. The regionalization R divides the
domain into n regions ri j i ¼ 1; . . . ; n. The partition Z divides the domain into m zones
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zj j j ¼ 1; . . . ;m. We use the term zone to denote a region in the second regionalization.
Superposition of regionalization and partition divides the domain into n�m segments
having areas ai; j j i ¼ 1; . . . ; n; j ¼ 1; . . . ;m where ai; j is the area of the segment of the
domain, which belong simultaneously to the region i and to the zone j. The entire area
of a region ri is Ai ¼

Pm
j¼1 ai; j, the entire area of a z one zj is Aj ¼

Pn
i¼1 ai; j, and the area

of the entire domain is A ¼ Pm
j¼1

Pn
i¼1 ai; j. There are two different metrics needed for

evaluation of spatial association between two regionalizations: homogeneity and
completeness.

Consider the following expression:

in homogeneity of partition with
respect to regionalization

� �
¼

Xm
j¼1

Aj

A

� �
variance of regions in zonej

variance of regions in the domain

(1)

A nominator in the fraction on the right side of Equation (1) measures an inhomogeneity
of a given zone in terms of regions. This is measured in terms of the Shannon entropy
(Shannon 1948):

SRj ¼ �
Xn
i¼1

ai; j
Aj

log
ai; j
Aj

(2)

If SRj ¼ 0 then the zone j is homogeneous in terms of regions (it is a part of a single
region). When the value of SRj increases, the zone j is increasingly inhomogeneous in terms

of regions (it overlays an increasing number of regions). Equation (2) quantifies the level of
this inhomogeneity or a variance of regions in zone j. However, we are not so much
interested in the absolute value of the zone inhomogeneity as in its value relative to the
inhomogeneity of the entire domain with respect to regions (a denominator in the
fraction on the right side of Equation (1)). This is because for the partition to be associated
with regionalization, the regions should be colocated with the zones, so the regions within
zones should have less variance than within the entire domain. The dispersion of regions
in the entire domain is also given by the Shannon entropy:

SR ¼ �
Xn
i¼1

Ai

A
log

Ai

A
(3)

An overall inhomogeneity of partition with respect to regionalization is
Pm

j¼1ðAj=AÞ ðSRj =SRÞ,
an area-weighted average of SRj =S

R ratios calculated over all zones (see Equation (1)). The

value of an overall inhomogeneity changes from 0 in the perfectly homogeneous case (each
zone is within a single region) to 1 when each zone has the same composition of regions as
the entire domain. The homogeneity metric suppose to be an increasing function of an
average homogeneity of zones with respect to regions, therefore, it is defined as

h ¼ 1�
Xm
j¼1

ðAj=AÞ ðSRj =SRÞ (4)

and it has a range between 0 and 1.
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Note that the homogeneity metric is not sufficient to assess a degree of association
between regionalization and partitioning. The high value of h assures that zones are
homogeneous with respect to regions, but it does not assure that regions are homoge-
neous with respect to zones. For example, when a single region extends over multiple
zones, each zone will be homogeneous but there will be no association between the
regionalization and partitioning. Therefore, we need to calculate a homogeneity of regions
with respect to zones. This metric—called completeness and denoted by c—is calculated
analogously to homogeneity but with the roles of regions and zones reversed.

in homogeneity of regionalization
with respect to partition

� �
¼

Xn
i¼1

Ai

A

� �
variance of zones in regioni

variance of zones in the domain

(5)

SZi ¼ �
Xm
j¼1

ai; j
Ai

log
ai; j
Ai

(6)

SZ ¼ �
Xm
j¼1

Aj

A
log

Aj

A
(7)

c ¼ 1�
Xn
i¼1

ðAi=AÞ ðSZi =SZÞ (8)

Completeness, like the homogeneity, has the range between 0 and 1 and is an increasing
function of average homogeneity of regions with respect to zones. The single, overall
measure of spatial association between regionalization and partition is called the V-measure
(Rosenberg and Hirschberg 2007) and is given by the (optionally weighted) harmonic mean
of homogeneity and completeness:

Vβ ¼ ð1þ βÞhc
ðβhÞ þ c

; (9)

where β is a weight given to c relative to h; Vβ ! h if β ! 0, and Vβ ! c if β ! 1. By
default, β ¼ 1 and V1 is the harmonic mean of h and c. The V-measure has a range
between 0 (no spatial association) and 1 (a perfect association). Note that if we change the
roles of regionalization and partitioning, then the regionalization provides the zones and
partitioning provides the regions; we do not need to recalculate the measures h and c as
the hnew ¼ c, cnew ¼ h, and the value of V1 remains the same:

Figure 1 illustrates the procedure of calculating h, c, and V1 using a simple example.
These three quantities are the global measures of association between the two regio-
nalizations. V1 is an overall global measure to be used when a single number assessment
of association is required. As a pair, the values of h and c provide more information than
V1 alone. Ratios SRj =S

R, j ¼ 1; . . . ;m and SZi =S
Z, i ¼ 1; . . . ; n are the local measures of

association between the two regionalization. They could be used to map a degree of
local correspondence between the two regionalizations.
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2.1. Software

We wrote an open-source R package (Nowosad and Stepinski 2018b) implementing the
V-measure SABRE2018. The package, called SABRE (Spatial Association Between
REgionalizations), is designed to work with vector (shapefile) input data. Given two
vector maps, SABRE calculates values of Vβ, h, and c to be used as the global assessment
of association between the two maps. It also returns maps of local associations utilizing
the values SRj =S

R, j ¼ 1; . . . ;m, and SZi =S
Z, i ¼ 1; . . . ; n. SABRE also implements the

Mapcurves method (Hargrove et al. 2006) for vector maps.

3. Applications

In this section, we present examples of how the V-measure may be used in each of the
three contexts identified in the Introduction: to compare two regionalization, to calcu-
late a degree of associative between response map and maps of factor variables, and to
decide on the number of regions in regionalization obtained by means of a clustering
algorithm.

3.1. Comparing ecoregionalizations of the United States

Ecoregions are the result of a division of land into areal units of a homogeneous
ecosystem, which contrast from surroundings. The US Environmental Protection
Agency (EPA) delineated ecoregions in the conterminous US at four hierarchical levels

Figure 1. An example illustrating an assessment of the association between two regionalizations. The
red regionalization segments a rectangular domain into four regions. The blue regionalization (partition)
segments the same domain into three regions (zones). The variance of red regions in the three zones
and the variance of blue zones in four regions are shown. Values of ai; j (in arbitrary units) are given in
the part of the table enclosed by the thick-edged rectangle.
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of precision (Omernik 1987, Omernik and Griffith 2014). We use EPA Level III map as the
first regionalization; it delineates the US into n ¼ 85 regions (see Figure 2(a)). For
comparison, we use the Terrestrial Ecoregions of the World (TEW) map (Olson et al.
2001) restricted to boundaries of the conterminous USA as the second regionalization; it
delineates the USA into m ¼ 72 zones (see Figure 2(b)). Both maps suppose to reflect
the same realm but were constructed using different methodologies. The EPA map was
constructed by analyzing the patterns and composition of biotic and abiotic phenomena
that affect or reflect differences in ecosystems. The TEW map is based on the synthesis of
previous biogeographical studies. Visual comparison of Figure 2(a,b) reveals the overall
similarity between the two maps, but also local differences between them. The V-mea-
sure method can quantify the similarity and depict the locations of greatest differences
between the two maps.

Using SABRE, we calculatedh ¼ 0:79, c ¼ 0:87, and V1 ¼ 0:83 as global measures of
association between EPA and TEW maps. Recall from Section 2 that h measures an
average homogeneity of TEW zones with respect to EPA regions (Equation 4 and
Figure 2(d)) and c measures a homogeneity of EPA regions with respect to TEW zones
(Equation 8 and Figure 2(c)). Visually, the map in Figure 2(c) appears to be more homo-
geneous than the map in Figure 2(d) in agreement with quantitative assessment c > h.
This is because, there are more EPA ecoregions than TEW ecoregions, so it is more likely
that TEW ecoregions cross through multiple EPA ecoregions than the vice versa. However,
overall, the two maps are highly associated as indicated by the high value of V1. The two
inhomogeneity maps (Figure 2(c,d)) identify locations where the two maps differ. The

Figure 2. Spatial association between two ecoregionalizations of the conterminous U.S. The top row
shows the EPA Level III map of ecoregions (a) and the TEW map of ecoregions (b). In both maps,
different ecoregions are shown by random colors. The bottom row shows a map of inhomogeneity
of EPA ecoregions in terms of TEW ecoregions (c) and a map of inhomogeneity of TEW ecoregions in
terms of EPA ecoregions. Inhomogeneity (variance) is measured by normalized Shannon entropy.
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biggest difference between the two maps is in the middle of the country where a single
TEW ecoregion (named ‘Central forest-grassland transition’) intersect 12 different EPA
ecoregions.

3.2. Associations between a map of ecoregions and its factors

As we mentioned in the previous subsection, EPA regionalization of the conterminous
USA is based on the analysis of patterns and composition of biotic and abiotic factors
including geology, landforms, soils, vegetation, climate, land cover, wildlife, and hydrol-
ogy. Here, we demonstrate the utility of the V-measure to assess a degree of correspon-
dence between the EPA Level III map of ecoregions and maps of four such factors: land
cover, soils, landforms, and climate. For clarity, we restrict this demonstration to a
territory of a single state—New Mexico.

The factors are all in the form of thematic (categorical) maps. We use the European
Space Agency’s (ESA) Climate Change Initiative (CCI) 300 m resolution global land cover
map (CCI-LC 2015), which classifies land cover worldwide into 22 classes. Soil data are
provided by the 250 m resolution global SoilGrids (Hengl et al. 2017) reclassified to 12
orders. Landforms data are 250 m resolution classification of landforms into 17 classes
(Karagulle et al. 2017). Finally, the climate data are provided by clustering a set of
bioclimatic variables at worldwide climatic grid into 37 classes (Metzger et al. 2012).

Figure 3 shows a map of EPA level III ecoregions and the maps of the four factors
within the state of New Mexico. We use SABRE to calculate values of h, c, and V1 to
assess a spatial association between EPA ecoregionalization (eight ecoregions within the
state of New Mexico) and a thematic map of each factor. The ‘Thematic maps’ section of
Table 1 shows the results. The first column (denoted by m) in this section lists the
number of categories in a given map present within the state of New Mexico; this is also
a number of zones in the factor map. The values of h measure average homogeneity of
factors’ zones with respect to ecoregions and the values of c measure homogeneity of
ecoregions with respect to factors’ zones. Note that values of c tend to be higher than
the values of h (except for landforms) indicating that ecoregions are more homogeneous
with respect to land cover, soils, and, in particular, the climate, than categories of factors
are homogeneous with respect to ecoregions (for example, multiple ecoregions are
found within a climate category ‘cool, semi-dry’). Overall, associations between the
map of ecoregions and thematic maps of individual factors are low as indicated by
small values of V1.

However, it is important to note that EPA ecoregions were not constructed on the
basis of homogeneity of factor categories, but rather on the basis of homogeneity of
patterns of factor categories. We used a method for pattern-based segmentation of
thematic maps (Jasiewicz et al. 2018, Nowosad and Stepinski 2018a) to calculate
segmentations of the area of New Mexico with respect to homogeneity of patterns
of land cover categories, soil classes, and landforms categories. The climate zones
have too large spatial extent for calculation of pattern at the scale of the state of New
Mexico. Figure 4 (top row) shows segmentations. Note that there are much more
segments than ecoregions. This is because segments are the results of machine
delineation, which painstakingly kept track of all changes in a pattern, whereas
ecoregions are the result of manual mapping which is much more generalized. The
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middle row of Figure 4 shows inhomogeneity maps of ecoregions with respect to
segments and the bottom row of Figure 4 shows inhomogeneity maps of segments
with respect to ecoregions.

We calculated values of h, c, and V1 to assess a spatial association between EPA
ecoregionalization and the three segmentations. The ‘Segmentations’ section of Table 1
shows the results with m indicating the number of segments. Note that the values of h
are high because small segments usually are contained within a single ecoregion, but
the values of c are lower because larger ecoregions usually contain several segments.
Overall, associations between the map of ecoregions and maps delineating homoge-
neous patterns of factors are relatively high (as indicated by values of V1), and, in any
case, significantly higher than associations between the map of ecoregions and thematic
maps of individual factors.

Figure 3. EPA Level III ecoregions in the state of New Mexico and the maps of four factors
influencing a delineation of these ecoregions. Legends for the maps of the factors show only
dominant categories.

Table 1. Spatial associations between the EPA map of ecoregions in the state of New Mexico and its
biotic and abiotic factors.

Thematic maps Segmentations

Factor m h c V1 m h c V1
Land cover 17 0.25 0.37 0.30 188 0.72 0.35 0.47
Soils 11 0.20 0.31 0.24 219 0.75 0.34 0.47
Landforms 15 0.20 0.18 0.19 775 0.87 0.27 0.41
Bioclimates 11 0.24 0.43 0.31 N/A N/A N/A N/A

m – number of zones or segments, h – homogeneity, c – completeness, V1 – V-measure
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3.3. Selecting a number of clusters in regionalizations stemming from clustering

A number of studies had proposed algorithmic regionalization by means of clustering a
large number of small local areal units (elements) into a small number of larger regions
(clusters of elements) based on similarity of features. This includes clustering local
climates (Metzger et al. 2012, Zhang and Yan 2014, Netzel and Stepinski 2016) to obtain
climatic zones, clustering local environmental conditions to obtain ecoregions (Hargrove
and Hoffman 2005), and clustering local landscapes to obtain regions of the uniform
pattern of land cover (Niesterowicz and Stepinski 2013, Partington and Cardille 2013,
Niesterowicz et al. 2016). All these studies encounter the problem of selecting a number
of clusters and thus the number of regions in the resultant map. The number of regions
is estimated using the methods developed for non-spatial clustering (Davies and Bouldin
1979, Rousseeuw 1987, Salvador and Chan 2004). The V-measure offers a different,
distinctly spatial method for estimating the number of regions resulting from clustering.

In the proposedmethod, a sequence of clusteringswith a consecutively increasing number
of clusters is calculated. Next, for each clustering, a value of V-measure between this clustering
and the subsequent clustering is calculated. This value indicates a degree of similarity
between maps stemming from the two clusterings. For clusterings with a small number of
clusters, the maps are different and V1(map1, map2) is relatively small. As the number of
clusters increases, the two consecutive maps are becomingmore similar and V1(map1, map2)

Figure 4. (Top row) Segmentations of influencing factors for delineation of ecoregions with respect to
homogeneity of patterns of their categories. Segments are indicated by random colors. (Middle row)
Inhomogeneity maps of ecoregions with respect to segments. (Bottom row) Inhomogeneity maps of
segments with respect to ecoregions.
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increases. The map with an optimal number of regions (clusters) is the one for which the V1
achieves the maximum value.

To demonstrate the proposed method, we consider a problem of regionalization of
land cover patterns. We start with 210 km� 210 km study area located around Atlanta,
Georgia, with land cover represented by the 30 m resolution National Land Cover
Dataset 2011 (NLCD 2011)(NLCD 2011). We tessellate this area into 4,900 square-sized
local landscapes (each consisting of 100� 100 NLCD cells) as shown in Figure 5(a). Next,
we cluster local landscapes using a method described by Niesterowicz et al. (2016) but
using a non-hierarchical partitioning around medoids (PAM) clustering algorithm
(Kaufman and Rousseeuw 1987). We performed 19 clustering assuming number of
clusters from N ¼ 2 to N ¼ 20. Figure 5(b) shows dependence of V1(map1, map2),
where map1 is a regionalization with N regions and map2 is a regionalization with Nþ
1 regions. The value V1 achieves maximum at N ¼ 11, thus we selected a map with 11
regions as the optimal regionalization.

The top row of Figure 6 shows 3 out of 19 regionalizations of the Atlanta study area,
using N ¼ 4, N ¼ 6, and N ¼ 11 regions, respectively. Middle row of Figure 6 shows
corresponding subsequent regionalizations (N ¼ 5, N ¼ 7, and N ¼ 12). The bottom row
of Figure 6 shows inhomogeneity maps of N regions in the top map in terms of Nþ 1
regions in the middle map. Changing the number of regions from N= 4 to N= 5 results in a
separation of the blue region from the light-green region, thus the light-green region is
relatively inhomogeneous with respect to other three regions in the N= 4 regionalization
(see the rightmost column in Figure 6). Because the light-green region occupies a large
portion of the study area, its inhomogeneity enters the calculation of the V-measure with
the high weight resulting in a relatively low value of V1. Changing the number of regions
from N= 11 to N= 12 results in dividing the blue region into two different regions (see the
leftmost column in Figure 6). However, because the blue region in N= 11 regionalization
occupies a small portion of the study area, its inhomogeneity enters into the calculation of
the V-measure with a small weigh resulting in a relatively high value of V1.

Figure 5. NLCD 2011 over the study area located around Atlanta, Georgia tessellated into 4,900 local
landscapes, each having size of 3 km� 3 km. Different colors indicate different land cover categories
as described by the legend. (Right) Results of V-measure analysis using consecutive regionalizations
with increasing number of regions, (b) V1, (b) homogeneity, (d) completeness.
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4. Discussion and conclusions

In this paper, we have re-introduced the V-measure to the geographic community. This
measure, popular in the part of computer science community dealing with evaluation of
clustering algorithms but rarely used in geographical research (for an exception see
Netzel and Stepinski (2016)), is a valuable addition to GIS analyses aimed at quantifying
the spatial association between two variables.

We re-derived the V-measure from the perspective of variance analysis (section 2)
instead of from the original perspective of information theory, making it more relevant
to the spatial analysis. In its variance analysis formulation, V-measure (intended for
quantifying the spatial association between two regionalizations) has the same form
as the Geographical Detector method (Wang et al. 2010) (intended for quantifying the
spatial association between a regionalization and a numerical variable). In the

Figure 6. Examples of regionalizations of the Atlanta study area. Each column consists of a
regionalization with a given number of regions (top) and a regionalization with one additional
region (middle). The inhomogeneity map of regions in the top map with respect to regions in the
middle map is given at the bottom of the column. Colors in the top and middle rows indicate
different regions.
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Geographical Detector, the numerical variable is a response variable (G), whereas the
categorical variable is a potential determinant (D). The spatial association index is called
the power of determinant PðD;GÞ and is given as

PðD;GÞ ¼ 1�
XK
k¼1

ðnk=nÞ ðσk=σÞ (10)

where K is the number of zones formed by the categorical variable D, nk is the number

of measurements of G within a zone k, n ¼ PK
k¼1 nk is the number of all measurements

of G in the entire domain, σk is a variance of variable G within a zone k, and σ is a
variance of variable G in the entire domain. Note that the mathematical form of PðD;GÞ
(Equation 10) is identical to mathematical forms of h (Equation 4) and c (Equation 8). The
only difference is that in h and c the variance is calculated using the Shannon entropy
because the variable is categorical.

Our derivation in Section 2 reveals a problem with the Geographical Detector
method. It calculates a relative homogeneity of variable G with respect to D, but no
relative homogeneity of D with respect to G. This is because the variable G is numerical
and does not naturally form zones. However, this leaves open the possibility that the
assessment of the spatial association between G and D may be inaccurate if similar
values of G extend over multiple zones of D. In such case, the Geographical Detector
method will incorrectly indicate the high spatial association. If there is a large number of
G measurements, we suggest first to segment the domain with respect to homogeneity
of G values and then to perform the assessment of the spatial association between D
and segmentation of G using the V-measure.

The V-measure has several advantages over the widely used Mapcurves method. First,
the V-measure has a clear interpretation in terms of the information theory (as a mutual
information between two variables representing the two regionalizations, see
Rosenberg2007) as well as in terms of variance analysis. Second, the V-measure provides
more precise information than Mapcurves. Vβ ¼ 1 only if the two regionalizations are
identical, whereas Mapcurves score equals to 1 every time one regionalization is a subdivi-
sion of the second regionalization. This is because although Mapcurves considers two
goodness-of-fit scores (which are conceptually rough equivalents of our h and c), it only
uses the larger one as an overall score. Third, we provide the R package SABRE, which
calculates the V-measure between two regionalizations given in the vector (shapefile)
format which makes an immediate calculation of the V-measure for real-world datasets
possible.

We identified three broad contexts for application of the V-measure. In Section 3, we
gave a specific example for each context. These examples are intended as a guide to using
the V-measure. The context of finding an optimal number of regions for clustering-based
regionalization is perhaps the most novel application of the method as it uses a series of
increasingly specific regionalizations to determine an optimal number of regions.

The reason why the V-measure works for determining an optimal number of regions
is as follows. If the number of regions is too small, then the regions are strongly
inhomogeneous and an additional region is likely to significantly change the config-
uration of regionalization to improve the homogeneity of the regions. This results in
the small value of V1 (left part of Figure 5(b)). If the number of regions is too large, then
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the regions are almost homogeneous and an additional region is artificially imposed
resulting in decreased spatial association and a relatively small value of V1 (right part of
Figure 5(b)). If the number of regions is close to being optimal, an additional region
causes only a small adjustment to the configuration of regionalization resulting in a
high value of V1.

Overall, we have contributed to a better understanding of the V-measure in the
context of spatial analysis including its connection to the Geographical Detector. We
have also demonstrated its utility to a number of different spatial analyses and provided
its software implementation. One direction for the future development is to combine an
algorithm for regionalization of a numerical variable with the V-measure algorithm to
address the shortcoming of the Geographical Detector method.
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