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Abstract
We propose a new methodology for the analysis of spatial fields of object data distributed over complex domains. Our

approach enables to jointly handle both data and domain complexities, through a divide et impera approach. As a key

element of innovation, we propose to use a random domain decomposition, whose realizations define sets of homogeneous

sub-regions where to perform simple, independent, weak local analyses (divide), eventually aggregated into a final strong

one (impera). In this broad framework, the complexity of the domain (e.g., strong concavities, holes or barriers) can be

accounted for by defining its partitions on the basis of a suitable metric, which allows to properly represent the adjacency

relationships among the complex data (such as scalar, functional or constrained data) over the domain. As an illustration of

the potential of the methodology, we consider the analysis and spatial prediction (Kriging) of the probability density

function of dissolved oxygen in the Chesapeake Bay.

Keywords Object oriented data analysis · Spatial dependence · Local stationarity · Variogram kernel estimator ·

Bayes spaces

1 Introduction

The analysis of complex data distributed over large or

highly textured regions poses new challenges to spatial

statistics. Methods developed so far to deal with spatial

complex data often rely upon global models to capture

variability and spatial dependence (e.g., Menafoglio et al.

2013; Menafoglio and Secchi 2017). A common assump-

tion regards the stationarity of the process generating the

data, i.e., the homogeneity of its distributional properties

over the whole domain. However, in many applications,

observed data are not compatible with a global stationarity

assumption. Moreover, the features of the domain may

even prevent the definition of a globally stationary model.

Several approaches exist to handle non-stationary spatial

fields (see Fouedjio 2017, for a recent review). Of

particular interest for the scope of this work are the

methods based on local models which describe the spatial

dependence only within subregions of the spatial domain,

where stationarity is taken to be a viable assumption (e.

g., Fuentes 2001, 2002; Fouedjio et al. 2016; Heaton et al.

2015; Haas 1990; Harris et al. 2010; Kim et al. 2005). For

instance, Kim et al. (2005) propose a Bayesian hierarchical

model, that identifies an optimal partition of the domain in

disjoint and independent stationary subregions. Other

authors, e.g., Fouedjio et al. (2016), developed estimation

methods for non-stationary covariance models, based on

the key assumption of local stationarity.

All these methods are model-based, they often require

strong assumptions on the distribution generating the data

and provide estimation procedures which can rarely be

extended to high- or infinite-dimensional data, like curves,

surfaces or images. When these are the data at hand,

algorithmic approaches, possibly based on computationally

intensive yet simple techniques, are usually preferred.

In this work we propose a new computational method

for the analysis of spatial data distributed over a possibly

complex domain. The latter may consist in a very large

domain, or in a region with natural or artificial constraints,

such as holes, barriers, irregular boundaries.
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The basic idea is to use simple, local and repeated

analyses instead of an unique global and complex one. Our

line of attack is based on a divide et impera strategy.

During the divide step, the spatial domain is randomly

partitioned into a set of disjoint sub-regions, within which

local geostatistical analyses are performed. These local and

weak analyses are repeated for different realizations of the

random domain decomposition and then aggregated into a

final strong analysis during the impera step.

The non-parametric nature of our approach is open to

handle both the complexity of the data and that of the

domain. We pursue the viewpoint of object oriented spatial

statistics [O2S2, Menafoglio and Secchi (2017)] and rep-

resent data as spatially dependent atoms embedded in a

suitable feature space whose geometry should be founded

on, and should elicit the data characteristics that the

researcher deems to be essential for the goal of the anal-

ysis. Instead, the complexity of the spatial domain will

control the metric upon which it is partitioned. Here, we

will argue in favor of graph-based metrics, and accordingly

evaluate the distance between two sites as the length of the

shortest path linking them on a given undirected graph

representing the actual spatial closeness.

A precursor of our method is the Bagging Voronoi

algorithm of Secchi et al. (2013, 2015); Abramowicz et al.

(2016). The idea founding the Bagging Voronoi approach

to the analysis of spatially dependent data, is to consider a

target statistical method developed for independent data—

say, a method for classification, regression, dimensional

reduction—and to apply it to local representatives built

upon a random partition of the spatial domain—i.e., across

the elements of the partition. In the methodology devel-

oped in this paper, the target statistical method explicitly

incorporates spatial dependence and generates different

local analyses, one within each cell of the random partition

of the spatial domain. Although this work focuses on the

problem of spatial prediction (i.e., Kriging), the novel

strategy is entirely general and can be successfully

employed to tackle several geostatistical problems (e.g.,

classification or spatial regression and smoothing).

As an illustrative case study, we consider the problem of

spatial prediction of dissolved oxygen (DO) in the Chesa-

peake Bay, that is the largest, most productive and bio-

logically diverse estuary in North America (Fig. 1). An

estuarine system develops on a complex, non-convex and

highly irregular domain where the areas of land between

adjacent tributaries act as barriers for many aquatic vari-

ables. Here, the use of the Euclidean distance is inappro-

priate for describing the adjacency relation between

observations in different sites. Moreover, the variable of

interest may not be scalar, as when the data object observed

in each spatial location is the distribution of DO. Although

methods to treat the domain complexity are known (e.

g., Sangalli et al. 2013, and references therein), and have

been inspirational for the domain representation used in

this work, the proposed methodology has the advantage of

being able to handle jointly both data and domain com-

plexities and of being much simpler to implement while

providing accurate predictions.

The remaining part of the paper is organized as follows.

Section 2 describes the key idea of the proposed method-

ology, that is the use of random domain decompositions of

the spatial domain, to allow for local analyses. Section 3

explores via simulations the performance of the method.

Section 4 illustrates the case study, where the goal is the

prediction of the dissolved oxygen in the Chesapeake Bay.

2 Kriging via random domain
decompositions

2.1 A locally-stationary model for object data

Set (X; F ; P) to be a probability space and H—the feature

space—to be a separable Hilbert space, with operations

ðþ; �Þ, inner product h�; �i and induced norm k � k.
Given the spatial domain D � Rd and the sampled

locations s1; . . .; sn in D, we denote by X s1 ; . . .;X sn the

random elements whose realizations are the available data;

they are assumed to be generated by a partial observation

of a random field fX s; s 2 Dg defined on (X; F ; P) and

with values in H. The first and (global) second order

properties of the field can be defined in terms of mean (or

drift) and trace-covariogram. We thus call ms ¼ E½X s� the
mean of the field at s in D, and C : D� D ! R the trace-

covariogram of the field (Menafoglio et al. 2013), defined,

for s1; s2 in D, as

Cðs1; s2Þ ¼ E½hX s1 � ms1 ;X s2 � ms2i�: ð1Þ
The trace-covariogram (1) plays the role of the classical

covariogram, which is widely-used in geostatistics to rep-

resent the second-order properties of the field (e.g., Cressie

1993). The trace-covariogram is a globalmeasure of spatial

dependence, whereas the family of cross-covariance oper-

ators—of which the trace-covariogram represents the trace

—describes the full dependence structure of the data.

Nevertheless, the global viewpoint is sufficient for the

purpose of Kriging prediction with scalar weights (for

further details refer to Menafoglio et al. 2013; Menafoglio

and Petris 2016). As in real-valued geostatistics, one may

also define the trace-variogram,
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2cðs1; s2Þ ¼ E½kX s1 �X s2k2� � kms1 � ms2k2; s1; s2 2 D;

ð2Þ
which is the object-oriented counterpart of the variogram.

On the basis of (1) and (2), (global) second-order sta-

tionarity can be formulated, by requiring that the mean of

the field is spatially constant over D (i.e., ms ¼ m for all the

s in D) and that the trace-covariogram depends only on the

increment between locations [i.e., Cðs1; s2Þ ¼ Cðs1 � s2Þ,
for s1; s2 in D]. Under these assumptions, Ordinary Kriging

methods can be developed (e.g., Menafoglio and Secchi

2017, and references therein).

In this work, we consider a more general setting, which

is the one of local stationarity, also known as quasi-sta-

tionarity. This notion of stationarity is well-known in the

literature on scalar geostatistics and was introduced

by Matheron (1971). In this framework, stationarity is

assumed to hold true only in neighborhoods of a given

radius around any location s in D. That is, an H-valued

random field fX s; s 2 Dg is said to be locally stationary if

it is characterized by a mean ms and a covariance function

Cðs1; s2Þ such that (1) for any location s 2 D, the mean ms

of the field is approximately constant in a neighborhood Vs

of s; and (2) for any location s 2 D, the covariance function

can be approximated via a stationary model in the

neighborhood Vs of s. Although this definition may appear

vague, a number of authors (e.g Fouedjio et al. 2016, and

references therein) have recently embedded it in a formal

modeling framework within which they propose geosta-

tistical methods for the spatial prediction of scalar random

fields. In the context of object data distributed over com-

plex domains these methods cannot be used, as (a) they do

not account for the complexity of the data objects, and

(b) they cannot properly deal with non-Euclidean domains.

In the following subsections, we thus illustrate the com-

putational method we propose to cope with the latter

issues, that employs the quasi-stationary assumption to

perform stationary analyses within each of the neighbor-

hoods identified by a suitable random domain

decomposition.

2.2 Defining partitions of the domain

We now consider the problem of generating a decompo-

sition of the study domain, suitable for generating locally

stationary analyses.

We first note that only in a few applications a unique

optimal domain partition exists, and, among these, very

seldom the information about it is available a priori [see, e.

g., Fuentes (2001, 2002); Kim et al. (2005)]. Moreover, the

Fig. 1 Chesapeake Bay and its main rivers.. Source: (a) KMusser on Wikipedia, (b) modified from http://www.chesapeakebay.net/
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existence of a sharp partition in sub-domains [as in Kim

et al. (2005)] is in contrast with local stationarity as defined

above. This, in turn, needs a system of neighborhoods to be

substantiated; final predictions will strongly depend on this

system, which therefore becomes a crucial issue of the

analysis. We here follow the intuition that, when local

stationarity is assumed, the domain partition implementing

the system of neighborhood defining it is auxiliary to

model estimation, rather than a founding element of the

model. Accordingly, we introduce, in a simple yet effective

way, a system of neighborhoods generated by a random

partition of the domain, driven by the domain features, and

only weakly by the data.

Let us first start by setting P ¼ fD1; . . .;DK � D : D ¼SK
k¼1 Dk andDi \ Dj ¼ ;; 8i; j ¼ 1; . . .;K; i 6¼ jg to be a

partition of the domain D into K � 1 disjoint sub-regions. If

P is sufficiently fine, we will take each element of P to be

representative of a neighborhood in D where one can

approximately assume stationarity. In practice, we will

suppose that the following conditions hold:

1. E½X s� ¼ mk, for all s 2 Dk and for all k ¼ 1; . . .;K;

2. E½hX s1 � mk;X s2 � mki� ¼ Cðs1 � s2; kÞ;
for all s1; s2 inDk and for all k ¼ 1; . . .;K.

Since we do not assume to have a definite prior knowledge

of the system of neighborhoods which provides support to

local stationarity, we will use a random partition P to

generate it. For simplicity and ease of exposition, hereafter

we focus on random Voronoi tessellations of the domain D

induced by a metric d: Like other modeling choices

described below, this is not exclusive and is in part driven

by the characteristics of the case studies we are going to

illustrate in this paper. In fact, one may modify this and

other modeling specifications, to accommodate a different

prior knowledge guiding the analysis.

A Voronoi tessellation is defined by a set of sites (nu-

clei) and a metric function dð�; �Þ. In the following, the set

of nuclei of the Voronoi tessellation is generated by ran-

domly selecting K points among the n sampled locations.

Other more refined sampling schemes—or even different

systems of neighborhoods—can be selected according to

the information available for the case study at hand; for

instance, one could appeal to a non-homogeneous Poisson

process, with intensity related to the prior knowledge on

the stochastic process generating the data. Let UK ¼
fc1; . . .; cKg be the set of locations of the K nuclei in D.

The kth Voronoi cell is defined as

VðckjUKÞ ¼ fs 2 D : dðs; ckÞ	 dðs; cjÞ; for all
cj 2 UK ; j 6¼ kg: ð3Þ

The random partition P is then defined as

P ¼ fVðckjUKÞ; k ¼ 1; . . .;Kg.
Note that no restriction is imposed on the metric d; but

we observe that different metrics produce different parti-

tions of the same domain, even when the set of nuclei is the

same. Although typical Voronoi tessellations are based on

the Euclidean metric, a non-Euclidean metric might be

more suitable to capture closeness between sites when the

domain is complex in terms of boundary shape or for the

presence of holes and barriers. For instance, in the example

of Fig. 1, the distance between two sites lying in the

tributaries should be computed as a ‘water distance’—us-

ing the terminology of Rathbun (1998)—rather than via

Euclidean distance. To formalize this idea, we propose to

map the sampled locations on a neighborhood relational

graph, properly representing the spatial adjacency of the

observed objects. This allows to use a graph-based metric d

to define homogeneous regions within the complex

domain, while accounting for its geometrical properties.

The neighborhood relational graph is generated by a tri-

angulation of the domain D, using as vertices the set of

sampled sites, s1; . . .; sn. Among several possible available

triangulation methods, in this work we consider the

Delaunay triangulation (Hjelle and Dæhlen 2006) which is

closely related to Voronoi tessellations, besides maximiz-

ing the triangles’ angles. In point of fact, to account for

boundaries with complex shape, holes or barriers, we use a

constrained Delaunay triangulation (CD-T), illustrated, e.

g., in Lin et al. (2013). The distance between two sites

belonging to the neighborhood relational graph is then

defined as the (Euclidean) length of the shortest path on the

graph connecting the two sites: this is computed by the

Dijkstra’s algorithm (Dijkstra 1959). More generally, the

distance between a site s0 2 D and a site sj belonging to the

graph is computed by first connecting s0 to the closest

graph vertex, and then by measuring the length of the

shortest path connecting s0 and sj. This is the distance d

that will be used to generate our Voronoi tessellation of the

domain D:

2.3 Estimation and prediction

Given a realization of the random partition

P ¼ fD1; . . .;DKg, we now focus on estimation methods

for the local trace-variogram, and the associated Kriging

prediction. The field being locally stationary, one can

employ stationary methods to estimate the trace-variogram

within the cell Dk 2 P, for k ¼ 1; . . .;K. We recall that in

this case, as in classical geostatistics (Cressie 1993), most

methods for trace-variogram estimation consist of two

stages, namely (a) computing an empirical estimate from

the data, and (b) fitting a parametric valid model via least
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square (LS) or maximum likelihood (ML). Within cell Dk,

one may define an empirical estimator of the corresponding

trace-semivariogram via the method of moments as (Me-

nafoglio and Secchi 2017, and references therein)

ĉðh; kÞ ¼ 1

2jNðhÞj
X
NðhÞ

kX si � X sjk2; ð4Þ

where NðhÞ ¼ fðsi; sjÞ 2 Dk � Dk : h� Dh	 si � sj 	 hþ
Dhg collects the set of pairs in Dk separated approximately

by a vector h, and jNðhÞj is its cardinality.
One should note that estimator (4) suffers from a bias-

variance trade-off. Indeed, to guarantee that stationarity is a

viable assumption within each cell Dk; one should strive

for a fine partition P entailing a low bias for (4). However,

fine partitions inevitably yield cells with very few data,

thus inflating the variance of (4).

To cope with such trade-off, we consider a kernel-

weighted empirical estimator of the local variogram, of

which (4) is a particular case. We here generalize the

approach proposed by Fouedjio et al. (2016) in a scalar

setting. We set K� : R
d � Rd ! Rþ to be a kernel function,

i.e., a non-negative symmetric function, where �[ 0 is its

bandwidth parameter. An instance of such a kernel is the

Gaussian kernel, defined as

K�ðs1; s2Þ ¼ exp � 1

2�2
d2ðs1; s2Þ

� �
: ð5Þ

Here, the distance d is the same distance appearing in the

definition of the Voronoi cells in (3). We remark that the

role of the Gaussian kernel (5) is not essential; one could

use indeed a different kernel, more suitable for the case

under study. For instance, one may give a constant weight

to all the data pairs belonging to Dk and a weight propor-

tional to the distance from the center ck to the others.

Given a kernel K�, we then consider the following

estimator for the local trace-semivariogram

ĉ�ðh; kÞ ¼
P

NðhÞ K�ðck; siÞK�ðck; sjÞkX si � X sjk2
2
P

NðhÞ K�ðck; siÞK�ðck; sjÞ ; ð6Þ

where

NðhÞ ¼ fðsi; sjÞ 2 D� D : h� Dh	 si � sj 	 hþ Dhg.
Intuitively, the kernel appearing in (6) down-weights the

contribution of data “far apart”—according to the metric

d—from the center of the cell, where the range of influence

of neighbour locations is controlled by the bandwidth

parameter �. Unlike estimator (4), estimator (6) allows to

borrow strength from data outside the cell Dk. Whenever

one may assume isotropy, (6) reads

ĉ�ðkhkd; kÞ ¼
P

NðkhkdÞ K�ðck; siÞK�ðck; sjÞkX si � X sjk2
2
P

NðkhkdÞ K�ðck; siÞK�ðck; sjÞ
ð7Þ

with NðkhkdÞ ¼ fðsi; sjÞ 2 D� D : khkd � Dh	ksi�
sjkd 	khkd þ Dhg, and khkd denoting the Euclidean norm

of h.

Note that in (7) two metrics on the domain D are con-

sidered: (1) the metric d embedded in the kernel K� and

generating the random partition P and (2) the Euclidean

metric implied by the norm argument of the trace-semi-

variogram. This apparent ambiguity is needed to guarantee

that the commonly-employed parametric families for var-

iogram estimation (e.g., spherical, Matérn) are valid, and

thus that the geostatistical prediction yields sensible results.

Indeed, this may not be the case when using a non-Eu-

clidean metric (Huang et al. 2011; Jensen et al. 2006;

Rathbun 1998, and references therein).

Having estimated the trace-semivariogram within the

cell Dk according to (6) [or (7)], a parametric model can be

fitted, e.g., via least squares. In the following, we shall

denote by ĉð�; k; �Þ the fitted trace-semivariogram model for

Dk; k ¼ 1; . . .;K: Each of these semivariograms is the

cornerstone for the local object oriented Kriging (OOK).

Call X s0 the random element of the field fX s; s 2 Dg at

an unsampled location s0 2 D. Let Dk be the cell of P
containing s0 and let ĉð�; k; �Þ be the corresponding esti-

mated trace-semivariogram. To predict X s0 we look for the

OOK predictor within the cell Dk; that is the Best Linear

Unbiased Predictor (BLUP)

X

s0
¼

Xn
i¼1

k
i � X si1fsi 2 Dkg; ð8Þ

where 1 is the indicator function and the weights

k
i ; . . .; k


n 2 R minimize

E X s0 �
Xn
i¼1

ki � X si1fsi 2 Dkg
�����

�����
2

2
4

3
5 subject to

E
Xn
i¼1

ki � X si1fsi 2 Dkg
" #

¼ mk;

over k1; . . .; kn 2 R. The OOK problem can be explicitly

solved through a linear system, which is the very coun-

terpart of the classical Kriging system. We refer the reader

to Menafoglio and Secchi (2017) for further details.

We remark that predictor X

s0
is a function of the data

and of the realization of the random partition P: Indeed, in
(8), data observed in sites lying outside the cell Dk get zero

weight. Moreover we also note that, for a given realization

of P; the Kriging prediction of the field fX s; s 2 Dg over

the domain D could be discontinuous, with discontinuities
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located at the boundary of adjacent cells of P. However,
this field prediction is only a weak auxiliary step of the

overall analysis, as we shall explain in the next subsection.

2.4 Bootstrap and aggregation

We now incorporate the elements introduced in the previ-

ous subsections within a bagging algorithm (Breiman

1996) made of two steps: (1) a first bootstrap stage, where

the same analysis is performed several times on different

learning samples, and (2) a final aggregating stage where

the weak analyses generated at step (1) are aggregated into

a final strong analysis.

2.4.1 Bootstrap

At each iteration of this step: (1) the domain D is decom-

posed into K cells according to independent realizations of

the random partition P; (2) K local analyses are performed,

one for each cell in P: That is, for k ¼ 1; . . .;K; the trace-

semivariogram is estimated in Dk as in (6), and the value of

the random element X s0 at a target location s0 2 Dk is

predicted as in (8). At the end of B iterations of the boot-

strap step, one obtains a collection of Kriging predictors

fX
b
s0
gBb¼1 for each target location in D.

2.4.2 Aggregation

The Kriging predictions fX
b
s0
gBb¼1 at the target site s0 need

eventually to be aggregated into a final prediction X

s0
. To

this end, one may employ the average of the predictors

obtained along the bootstrap iterations, X

s0
¼ 1

B

PB
b¼1 X
b

s0
.

Note that the final predictor X

s0
will depend not only on the

data, but also on the B independent realizations of the

random partition P. Indeed X

s0
is the sample version of

EP½X

s0
ðX s1 ; . . .;X sn ;PÞ� ¼

Z
P
X


s0
ðX ; pÞdlPðpÞ

where P is the set of all possible partitions of the domain,

and lP the distribution over P of P. One can readily

envision other types of aggregations, e.g., weighted aver-

aged kernel-based, or based on the Kriging variance. Fig-

ure 2 contains a pseudo-code summarizing our proposal.

As noted in Sect. 2.3, each weak Kriging map may have

discontinuities at the boundary between adjacent cells.

Being randomly generated, at each bootstrap iteration of

the algorithm these boundaries are differently arranged in

the space domain. In the final aggregation step, each weak

map contributes to the strong map with a small weight and

this is also true for the associated discontinuities due to the

cells boundaries. The possible discontinuities of the weak

maps are thus eventually smoothed away during the

aggregation step. We illustrate this point through the sim-

ulation study of Sect. 3.

2.5 On the model parameters

The algorithm summarized in Fig. 2 requires to initialize a

few parameters: the number of auxiliary analyses B, the

number K of cells of the random partition P of D; the

kernel K� and its bandwidth �:

Conditionally on computational time, the parameter

B should be chosen as large as possible to ensure that the

algorithm reaches a desired accuracy. It controls the

robustness of the final result: the higher the number of

B weak analyses performed, the stronger the basis upon

which the final result is obtained.

Fig. 2 Pseudocode scheme of

the algorithm for object oriented

Kriging through random domain

decomposition (RDD-OOK)
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The parameter K should be carefully evaluated since it

has a great influence on the algorithm performances.

Indeed, K affects the Kriging bias-variance trade-off: if

K is small, the predictor at an unsampled location will be

based on large sub-samples. This tends to minimize the

variance of the Kriging predictor, but also to increase its

bias since local stationarity within each of the few cells of

the partition P may not be verified. The limiting case is

K ¼ 1: here we would assume stationarity over the whole

domain, although we might not even be able to formulate a

clear assumption of stationarity due to, e.g., domain com-

plexities, such as holes or irregular boundaries. On the

other hand, if K increases, the partition of the domain will

become more and more refined, being able to accurately

define the boundaries of different homogeneous sub-re-

gions. This tends to minimize bias; at the same time, the

sample size pertaining to each cell of the partition will

decrease with the effect of increasing the variance of the

Kriging predictor. The limiting case is K ¼ n, when the

prediction of X s0 is based on a single observation, the

closest datum to the location s0.

As mentioned before, we can include within the general

RDD methodology, a geographically weighted approach by

using a kernel function. This is an optional choice which

contributes to the flexibility and robustness of our proposal.

However, the use of a kernel function for estimating the

local semivariograms can be unimportant in some cases, e.

g, when large sample sizes in each cell of the partition P
are guaranteed. Using a kernel may become necessary if

one has very few observations, since each local analysis

would be then performed on a subset of the data of very

small size. In the numerical illustrations shown in this

work, we consider Gaussian kernels; nevertheless, other

kernels are possible, and their choice should be driven by

prior knowledge. As regards the bandwidth parameter �, it

controls the range of influence of the observations on the

estimate of the local semivariogram. Once again, a small

value of � implies a variogram estimate based on too few

observations, and therefore highly uncertain, while a large

value of � assigns considerable weights to observations

very far away from the cell of interest, against the

assumption of local stationarity.

To avoid limiting cases in the random generation of the

partitions, one may consider to select only partitions which

guarantee a minimum number of observations within each

cell. For instance, in the simulation study illustrated in the

following section, we set the threshold to nk ¼ 5 data (i.e.,

in case one or more cells of the partition contain less then

nk data, the partition is discarded and a new one is ran-

domly generated). However, it should be noted that all the

data pairs are used to build the kernel-weighted variogram

estimator, allowing for more reliable and robust estimates

even in elements of the partition with a very limited

number of data points. Here, the number of data affects

mostly the uncertainty of the Kriging predictor at a given

iteration of the algorithm. Note that the contribution of

each single weak prediction to the final strong one is small

when compared to the overall weight of the ensemble of

predictions produced by the B bootstrap iterations of the

algorithm. In fact, a site belonging to a cell with a small

number of observations at a given iteration, most likely

will belong to a cell with a higher number of observations

in other iterations.

When a Euclidean domain is concerned, a sensible

working strategy may consist of (1) performing a global

analysis (K ¼ 1) to provide initial evidence of non-sta-

tionarity and anisotropy, and (2) using local models at a

spatial scale compatible with stationarity assumption. The

latter assumption can be assessed—at a given spatial scale

—via standard tools (e.g., variography) or via indices of

heterogeneity, such as the indicator of spatial stratified

heterogeneity proposed by Wang et al. (2016). The latter

working strategy may not be applicable in the general

framework of complex domains, as one should pay close

attention in the interpretation of a possible global model

estimated for spatial dependence. Indeed, valid covariance

models for general non-Euclidean domains are yet to be

developed, and they are likely to be strongly dependent on

the very specific type of domain under study. In all these

cases, one might not be able to assess the assumption of

stationarity on a global scale, since even its definition

becomes somehow problematic. Instead, it is more difficult

to deny the appropriateness of the usual Euclidean

assumptions when stated at the local level and it is them

which drive the local analyses. In this sense, the locality of

the analysis—controlled by the parameters K and �—

should attain a balance between our ability to (1) fairly

represent the domain, (2) assume local stationarity, and (3)

estimate the local model (i.e., enough data). To support the

choice of the parameters, one may also consider data-dri-

ven methods, e.g., cross-validation.

3 Simulation study

In this section, we explore, through a simulated example,

the performances of our random domain decomposition

approach for Kriging object data (hereby named RDD-

OOK) on complex domains. For ease of exposition and

representation of the results, we here focus on the case of

scalar data. In Sect. 4 we will illustrate an application to the

analysis of more complex object data, in the form of dis-

tributional data. An additional simulated example is pro-

vided in the supplementary material.
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3.1 A locally stationary field over a complex
domain

This simulation example concerns a spatial random field

distributed over a C-shaped domain. Figure 3 displays the

test function, which is the same test function used by San-

galli et al. (2013). We observe the test function in n ¼ 250

locations randomly and uniformly selected within the

domain.

Embedding the C-shaped domain into a larger rectan-

gular domain and then assuming global spatial stationarity

defined in terms of the Euclidean metric does not seem to

be a suitable modeling approach, because of the apparent

drift in the data and due to the shape of the domain,

characterized by the presence of the thin space which

separates the two branches of the C. Nonetheless, local

stationarity holds thanks to the smooth variation of the

field. Note however that the Euclidean distance is not

appropriate as a measure of adjacency, because it crosses

over the space separating the two branches of the C. Hence,

as detailed in Sect. 2.2, a constrained Delaunay triangula-

tion was built to represent the domain (Fig. 3) and, on this

basis, a graph-based metric d was defined.

For the simulations, we employed a Gaussian kernel

with bandwidth � ¼ 1. We remark that this kernel is iso-

tropic with respect to d; but anisotropic with respect to the

Euclidean metric. Figure 4 displays an example of kernel

weights for both the Euclidean metric and the graph-based

metric. One can appreciate that points on one branch do not

contribute to the estimate of variograms for the other

branch, when d is used.

At each bootstrap iteration, a realization of a random

Voronoi partition of the domain was generated according

to d; and for each cell of the partition the empirical vari-

ogram was estimated and fitted with an exponential model

with nugget, as detailed in Sect. 2.3. Given the fitted var-

iograms, OOK was performed on a fine grid D0 of points

covering the C.

Figure 5 reports the results obtained for a particular

bootstrap iteration, when the number of Voronoi cells is

K ¼ 16. Figure 5a displays the realization of the RDD,

Fig. 5b–d the estimated variogram parameters for each

Voronoi cell, Fig. 5e the weak Kriging map and Fig. 5f the

map of Kriging variances. Figures 5b–d show that the

variograms estimated within each subregions are indeed

different. The estimated variogram parameters indicate that

the area where the C displays its bend is the one charac-

terized by the most complex spatial structure, as demon-

strated by the high values for the sills and the practical

ranges. All the estimated variograms are characterized by

much lower sills than that estimated from a global Eucli-

dean model, the latter having sill r2 ¼ 385:89, practical

range R ¼ 163:38 and nugget s2 ¼ 0. This preliminary

analysis suggests that the use of a small number of Voronoi

cells might call into question the viability of the local

stationary assumption within the cells. Finally, from the

graphical inspection of Fig. 5b one may notice that, as

expected, the weak Kriging map appears discontinuous at

the boundary between subregions.

The number B of bootstrap iterations was set equal to

100, and the results aggregated through a simple average.

Figure 6a displays RDD-OOK predictions obtained when

the number of Voronoi cells is K ¼ 16. For comparison,

Fig. 6b reports the OOK predictions when the analysis is

performed without the perturbation introduced by the RDD

(i.e., RDD-OOK setting K ¼ 1) and measuring distances in

the C through the Euclidean metric. Figure 6c shows pre-

dictions obtained by using RDD-OOK and a random

Voronoi partition of the domain with K ¼ 16 cells, but

based on the Euclidean metric to measure distances in the

C instead of d: Graphical inspection of Fig. 6 suggests that

the use of a graph-based metric generates better predic-

tions, especially in the central part of the C where the

RDD-OOK is not induced to borrow information from the

wrong branch of the domain, as it happens when the

Euclidean metric is in force. Further, no apparent

Fig. 3 C-shaped domain: smooth test function and Delaunay triangulation
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discontinuities are visible in the RDD-OOK map, as these

are smoothed away during the aggregation step.

To better illustrate the effect of the parameter B over the

final prediction, Fig. 7 displays the prediction error X

s0
�

X s0 of the graph-based RDD-OOK when the parameter B is

set to 1, 10, 100 (Fig. 7a, b, c, respectively). One may

notice that the errors appear overall larger when only one

realization of the RDD is considered (B ¼ 1, SD = 0.04—

Fig. 7a), and they are discontinuous at the boundary

between subdomains. When increasing B to B ¼ 100, the

errors decrease (SD = 0.015—Fig. 7c), as the final Kriging

Fig. 4 C-shaped domain:

example of kernel weights for

different metric dð�; �Þ. For a
fine grid of points s0 in D, the

plots refer to the value of the

kernel K�ðs0; cÞ, where c is the

center (symbol) and � ¼ 1
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Fig. 5 C-shaped domain: example of results obtained at a bootstrap

iteration of the algorithm. In a, e black dots indicate the position of

the Voronoi nuclei ck , k ¼ 1; . . .; 16. In f black dots indicate the data

locations. a Realization of the RDD. b Estimated sill. c Estimated

practical range. d Estimated nugget. e Weak Kriging map. f Weak

Kriging variance map
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map is built upon a larger ensemble of bootstrap

repetitions.

To test the performance of the method, we repeated the

analysis M ¼ 50 times, for different values of K in

f1; 2; 4; 8; 16g, K ¼ 1 meaning object oriented Kriging

with no random domain partition and Euclidean metric for

measuring distances in the C. Note that, in the latter case,

the kernel is not used for the estimation of the only vari-

ogram involved in the analysis. At each of the M repeti-

tions of the analysis, a different set of n ¼ 250 of locations

was uniformly sampled out of the C and the corresponding

value of the field observed. To compare the performances

of the method for different parameter settings and metrics,

for m ¼ 1; . . .;M; we computed the (relative) mean square

prediction error (MSPE), defined as

MSPEm ¼
P

s02G kX

s0
� X s0k2P

s02G kX s0k2
ð9Þ

where G is the set of target points in D0, and k � k denotes

the norm on R (i.e., the absolute value). Results are

reported in Table 1 and Fig. 8 which show the improve-

ments in predictions obtained by increasing the value of

Fig. 6 C-shaped domain: Prediction of the field. a RDD-OOK, graph-based distance (K ¼ 16). b RDD-OOK, Euclidean distance (K ¼ 1).

c RDD-OOK, Euclidean distance (K ¼ 16)
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Fig. 7 C-shaped domain: prediction error X

s0
� X s0 of the RDD-OOK for B = 1, 10, 100, with K = 16. Dots indicate the data locations.

a Prediction error with B = 1. b Prediction error with B = 10. c Prediction error with B = 100
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K and by moving from the Euclidean metric to the graph-

based metric d:

A second simulated example is provided as supple-

mentary material. It is aimed to test the performance of the

method when its hypotheses are not met, based on the

model of Kim et al. (2005). Those simulations suggest that

a major role in evaluating the validity of the model

assumptions—particularly the local-stationarity—is played

by the bootstrap variance, defined, for any grid point s0 in

target set D0, as

r2B ¼ 1

B

XB
b¼1

kX
b
s0
�X


s0
k2; ð10Þ

where X
b
s0

is the prediction at s0 at the bth iteration, X

s0
is

the final prediction obtained by aggregation of the B boot-

strap replicates, and k � k represents the norm on the feature

space. Intuitively, a large value of the bootstrap variance

indicates large deviations of the predictions obtained along

the B repetitions from the final one. Instabilities in the map

of the bootstrap variance may indicate a violation of the

above-mentioned assumptions, and thus serve as a driver,

e.g., in the definition of the RDD (for further details, see

the supplementary material).

4 A case study: analysis of the distribution
of dissolved oxygen in the Chesapeake
Bay

4.1 Problem setting

The Chesapeake Bay is the largest estuary in the United

States and the third largest in the world. This estuarine

ecosystem is approximately 300 km long, from Havre de

Grace, Maryland (on the North) to Virginia Beach, Vir-

ginia (on the South). Its width ranges between 5 km (the

mean width of the mainstream) and 30 km, if one considers

the lateral tributaries. The total shoreline, including tribu-

taries, is 18,804 km long, and circumnavigates a surface

area of 11,601 km2.

The Bay is one of the most productive and complex

ecosystems in the US, besides being a very important

economic resource for the zone. The extreme use of the

land around the estuary and, in particular, the pollution due

to the close farms and cities, changed the Bay over the

years. Human activities caused a drastic reduction of

oxygen, which must be present underwater, in dissolved

form, to guarantee the life of most marine species. The

most critical areas of the Bay—i.e., those with the lowest

values of dissolved oxygen (DO)—are called Dead zones.

These are the areas of the estuary where the presence of

oxygen in the water is below 2 mg/l. In these areas most of

the marine species cannot move quickly enough and,

consequently, they usually suffocate.

Table 1 C-shaped domain.

RDD-OOK predictions with

different distances: average of

the MSPE over the M ¼ 50

repetitions

Distance K

1 2 4 8 16

Euclidean 3.287 9 10−3 3.365 9 10−3 3.307 9 10−3 3.207 9 10−3 3.029 9 10−3

Graph-based 3.287 9 10−3 0.4807 9 10−3 0.1168 9 10−3 0.0603 9 10−3 0.0551 9 10−3

0.000

0.001

0.002

0.003

0.004
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Fig. 8 C-shaped domain: MSE boxplots for different values of K in f1; 2; 4; 8; 16g (K ¼ 1 meaning ordinary Kriging) and for the Euclidean and

graph-based distance
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The Bay’s degradation problem motivated the consti-

tution of the Chesapeake Bay Program (CBP) in 1983,

which is a regional partnership aimed to provide a support

for the restoration and protection activities for the Bay.

Monitoring DO is crucial for the purpose of determining

the areas that deserve more attention. For this reason, the

values of DO are collected at monitoring stations in the

Bay, on a regular basis. Nonetheless, such observations

provide only a partial picture of the distribution of DO in

the Bay. As such, its spatial prediction is of key

importance.

4.2 The data

We consider the DO data at the 110 measurement locations

in the Bay for which data are available along the period

1990–2006 [source: US Environmental Protection Agency

Chesapeake Bay Program (US EPA-CBP)]. Note that the

spatial sample size is relatively small compared to the

covered area, which represents a critical issue when

applying local models. Figure 9 shows the mean of the

summer values of DO, collected at the 110 measurement

locations in the Bay for which data are available along the

period 1990–2006. Figure 9a displays the sampling

scheme, while Fig. 9b represents the average values of DO

recorded during the summer season of each year.

A preliminary analysis of the data showed that no sig-

nificant autocorrelation exists, along the years, for the time

series of DO (level 1%, result obtained through a Durbin-

Watson test on each time series, the p value of single tests

being corrected via Holm’s method). Further, no evident

trend is displayed by the observations (Fig. 9b).

We here consider as data objects the probability density

functions of DO in the sampling locations. Considering the

whole information content provided by the distribution of

DO allows one to provide predictions not only of some

selected data features (e.g., a few moments or quantiles),

but of all the moments and quantiles jointly, as well as the

probability of events of interest (e.g., observing a DO lower

than the attention limit of 2 mg/l). Note that the joint

analysis of multiple quantiles would require the construc-

tion of a model for a vector of ordered components—due to

the ordering of quantiles—which is highly non-trivial. For

the sake of brevity, in the following we limit to show the

results in terms of selected features (mean or median).

Additional plots related with further quantiles of the dis-

tribution are provided in the supplementary material.

4.3 A feature space for PDFs

Probability density functions (PDFs) are an instance of data

objects which can be analyzed in the setting of O2S2

through the embedding within an appropriate feature space.

Several authors (Egozcue et al. 2006; Delicado 2011; Hron

et al. 2016; Menafoglio et al. 2014, 2016a, b) suggested

that PDFs can be considered as the generalization to the

functional setting of multivariate compositional data, i.e.,

vectors whose components represent parts of a given total

(e.g., 1 or 100, if proportion or percentages are considered).

A Bayes Hilbert space (van den Boogaart et al. 2014) is the

natural feature space for PDFs, as it was precisely built as a

generalization to infinite-dimension of the Aitchison

geometry for multivariate compositions (Pawlowsky-Glahn

and Egozcue 2001).

(a) Mean DO values at each 
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Fig. 9 Data at the Chesapeake Bay. a Scheme of the sampling locations. b Average of values of DO recorded during the summer season of each

year between 1990 and 2006. In both panels, colors are given according to the mean of DO values along the years 1990–2006
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The Bayes Hilbert space B2ðIÞ is the space of real val-

ued positive functions on I � R, whose logarithm is

squared-integrable, i.e.,

B2ðIÞ ¼ ff : I ! ð0;þ1Þ;
Z
I

log½f ðsÞ�2ds\1g:

In B2, two functions are equivalent if they are proportional,

i.e., f � g if f ¼ ag for a[ 0, f, g in B2. The theory of the

Bayes space B2 is well developed, and interesting inter-

pretations of its geometric structure are given in the liter-

ature. We here limit to mention the geometric structure of

B2—which shall be used in the present case study—and

refer the interested reader to Egozcue et al. (2013); Hron

et al. (2016) and references therein for further details. The

space B2 can be equipped with a separable Hilbert struc-

ture, when endowed with the appropriate operations and

inner product. The operations ðþ; �Þ in this setting are

named perturbation and powering, and defined respec-

tively as (Egozcue et al. 2006; van den Boogaart et al.

2014):

ðf � gÞðtÞ ¼ f ðtÞgðtÞR
I
f ðsÞgðsÞ ds ; ða
 f ÞðtÞ ¼ f ðtÞaR

I
f ðsÞa ds ; t 2 I:

The inner product is defined as (Egozcue et al. 2006)

hf ; gi2B ¼ 1

2g

Z
I

Z
I

ln
f ðtÞ
f ðsÞ ln

gðtÞ
gðsÞ dt ds; f ; g 2 B2ðIÞ:

ð11Þ
Having embedded a dataset of PDFs in this space, one can

perform the analysis as detailed in Sect. 2. Nonetheless,

observations are rarely given in the form of smoothed

PDFs, hence pre-processing of the data is usually needed.

To estimate the smooth PDFs of DO from available data

we followed the approach proposed by Machalová et al.

(2016). These authors developed a constrained B-spline

basis in B2 (to fulfill the integral constraint), and a

smoothing procedure for histogram data, consistent with

the geometry of B2. At each measurement station, we thus

used the 17 DO values to compute a histogram, which was

built by considering 15 equally spaced classes partitioning

the common domain I ¼ ½0; 11:95�. At each location, the

number of non-empty classes ranged from 3 to 6, in

agreement with the Sturges’ rule. To cope with the problem

of classes with zero frequency—which represent an issue

when using a compositional approach—we followed the

Bayesian-multiplicative strategy advocated by Machalová

et al. (2016); Martı́n-Fernández et al. (2015) and based on a

uniform prior. Each pre-processed histogram was then

smoothed by using a B-spline basis of order 2, with 13

equally spaced knots and smoothing parameter a ¼ 0:98.

In the smoothing procedure we accounted for the pre-

processing of the zero frequency classes by downweighting

their influence to one fifth of the weight of the those with

positive frequency. All the above-mentioned parameters

were set as to guarantee a good fitting to the data, yet

avoiding overfitting. The smoothed data are displayed in

Fig. 10.

We finally remark that one may consider transforma-

tions of DO concentrations (e.g., a log-transformation)

which could better reflect the possible relative scale of the

data while symmetrizing their distributions. However, this

would introduce methodological issues related to the use of

the Bayes space geometry in the presence of (1) unbounded

domains and (2) disjoint PDFs supports (problems of

zeros). Facing these issues would require further technical

arguments that are outside the scope of this work. For these

reasons, in the following we consider the DO values on

their original scale.

4.4 Modeling the domain and its metric

We note that the highly irregular boundaries of the Bay

prevent the use of a globally stationary model, and of the

Euclidean metric on the domain. Indeed, even if few

kilometres separate two points lying on adjacent and par-

allel tributaries, long and narrow areas of land could be

separating them (i.e., a high water distance). These land

areas represent barriers for the distribution of many aquatic

variables, as was also recognized by Jensen et al. (2006),

who analyzed the distribution of blue crab in the Bay.

To model the water distance between points of the

estuary, we thus built a graph-based metric, using a con-

strained Delaunay triangulation of the domain (Fig. 10c).

For illustrative purposes, we employed a simplified

description of the Bay’s border in order to define its tri-

angulation; the use of more refined meshes and its impact

on the prediction could be the scope of future work. The

boundaries were thus defined through straight segments,

able to approximate the real boundary of the estuary, with

particular emphasis on the main tributaries and on the land

areas separating them. The short and tight channels out-

going the tributaries and the central unit of the Bay were

partially neglected. We note that the definition of the

boundary required the addition of vertices appearing only

for the Delaunay triangulation, but not accounted for in the

analysis (red symbols in Fig. 10c). Additional points

(empty symbols in Fig. 10c) were added for the purpose of

refining the quality of the constrained Delaunay

triangulation.

4.5 Prediction results

We applied the procedure detailed in Sect. 2, by setting the

number of bootstrap iterations to B ¼ 150, and the
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bandwidth parameter to � ¼ 0:75. The latter value was

chosen as to balance the trade-off between the locality of

the variogram estimate and its stability along the realiza-

tion of the RDD. The analysis was performed for values of

K in f1; 2; 4; 8; 16g, K ¼ 1 representing the case of object

oriented Kriging under a globally stationary model based

on the Euclidean distance. We here focus on the results

obtained for K ¼ 1 and K ¼ 16.

Figure 11 reports the predicted medians using RDD-

OOK with a Voronoi random domain decomposition with

K ¼ 16 cells (Fig. 11a) and using RDD-OOK when K ¼ 1

(Fig. 11b). Although we recognize a general agreement in

the predicted patterns, the case K ¼ 16 is characterized by

more localized features, compatible with the peculiar

morphology of the domain. This is more evident in the

central part of the main branch of the estuary and in its

main left tributary. Similar patterns are visible from the

maps of other quantiles, provided in the supplementary

material.

With regard to the monitoring program of the Bay, of

particular interest are the Dead zones. Figure 12 represents

the predicted probability p of observing a DO value below

the attention limit of 2 mg/l, i.e., of being a Dead zone.

Figure 12a represents the predictions obtained through

RDD-OOK when K ¼ 16, Figure 12b when K ¼ 1. For

ease of comparison between the probability maps, Fig. 12

also reports the contour line at p ¼ 0:5. The latter may be

used to identify the dead zones as those regions with

probability p[ 0:5 of observing DO\2 mg/l. When K ¼
16 these areas appear larger, and localized not only in the

main branch, but also in the main left tributary. In fact, the

values in the tributaries are likely to suffer from the

smoothing effect of neighboring locations when the

Euclidean distance is in force. Such effect is instead par-

tially mitigated by the use of a random domain decompo-

sition approach. The supplementary material contains a

cross-validation study to support the RDD-OOK results.

The study shows in particular that the predictions obtained

via RDD-OOK in the tributaries tend to be slightly more

accurate as K increases.

Finally, Fig. 13 reports the bootstrap variance [as

defined in (10)], and the aggregated Kriging variance,

defined as the average, along the bootstrap replicates, of the
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Fig. 10 Smoothed data and domain representation. a, b Smoothed

PDFs and mean of DO at the sampled locations; colors given on the

same scale. c Constrained Delaunay triangulation of the domain; red

symbols indicate points defining the domain boundary, black symbols

the measurement locations, empty symbols the additional points used
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OOK with K ¼ 16 or K ¼ 1
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Fig. 12 Probability of observing a DO value below the attention limit

of 2 mg/l. The contour line p ¼ 0:5 is indicated by the thick solid line
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OOK variance, i.e., r2ðs0Þ ¼ 1
B

PB
b¼1 r

2;b
OKðs0Þ, with r2;bOKðs0Þ

being the Kriging variance at the target location s0, at the

bth iteration, when K ¼ 16. For completeness, we also

report the Kriging variance obtained when a global sta-

tionary model is assumed and the Euclidean distance is

used (i.e., for K ¼ 1) (Fig. 14).

We note from Fig. 13 that the highest uncertainty is

associated with the areas in the central left tributary, where

only few observations are available, and at the conjunction

between the latter and the main branch. This latter area

displays a high local variability, and is located in a region

of the domain with a high degree of non-convexity.

Regarding Fig. 13b, we note that the Kriging variances do

not appear to be homogeneous in the region. This suggests

that the local variogram estimated from the data are indeed

different in different locations. As a way of example,

Fig. 15 reports the variogram parameters estimated for an

iteration of the bootstrap step. It can be appreciated that the

estimated variograms appear to be different, with particular

reference to the areas in the Northern part of the Bay and in

its central part. These areas seem to be associated with high

values of sills and nuggets across the bootstrap repetitions,

providing indication of areas of strong spatial variability.

5 Conclusions and discussion

We proposed a methodology for the analysis of spatial

random fields of object data, when the use of a global

model for the observations is not appropriate either because

of data non-stationarities or due to domain complexities.

Our approach is based upon the idea of repeatedly and

randomly partitioning the domain—through a random

domain decomposition (RDD)—and then accordingly

estimating multiple locally stationary models, instead of a

unique and globally non-stationary one.

Although RDD is here considered for the purpose of

performing Kriging predictions (RDD-OOK), the approach

is entirely general and may be employed for different types

of analysis, e.g., classification or estimation of a drift. Here,

the model for the local mean may be extended to account

for possible (scalar or object) covariates. For instance, for

the study of dissolved oxygen one may consider the aux-

iliary information provided by the water temperature,

salinity and dissolved nutrient concentrations [e.g., Prasad

et al. (2011)]. In this context, our method may be inter-

preted as alternative to geographically-weighted regres-

sion, in an object-oriented setting.

Amongst the approaches to the analysis of non-station-

ary spatial fields of scalar data, moving window Kriging

(MWK, Haas 1990; Harris et al. 2010) is particularly
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related with the class of methodologies here proposed. As

in RDD-OOK, MWK is based on multiple, locally esti-

mated variograms and solves multiple Kriging systems

(virtually, one for each point belonging to the grid parti-

tioning the space domain), without providing a global

model for the structure of spatial dependence. However, a

strong plus of the RDD-OOK approach, not shared by

moving window methods, is to provide an ensemble of

simple learning methods (the weak Kriging maps generated

at each bootstrap iteration of the algorithm). The rich

information regarding the data and its spatial dependence is

captured by this ensemble and its (bootstrap) distribution,

of which the strong predictor produced in the aggregation

step of the algorithm is just a further summary. Moreover,

MWK may be associated with discontinuities in the pre-

diction maps, while such discontinuities do not appear in

RDD-OOK maps.

Amongst the critical issues associated with the use of

partitions and local models, we mentioned the problem of

the bias-variance trade-off. To borrow strength from data

outside the cells and lower the variance of the estimates

within the cells, we proposed a geographically-weighted

approach to estimate the trace-variogram. Here, the use of a

kernel greatly enhances the flexibility and robustness of the

analysis, particularly for those sub-regions with few

observations. In this setting, data-driven approaches may

be developed to improve the selection of the parameters

related with the kernel and the tessellation. For instance,

the parameters �—controlling the bandwidth of the kernel

—could be chosen together with K—the number of cells—

and both may be selected locally to accommodate for

possible non-homogeneous sampling designs [see, e.

g., Tavakoli et al. (2016)].

The RDD-OOK method, together with the use of kernel

weighted variogram estimates, open new venues for the use

of directional data to enhance the prediction power in the

presence of complex phenomena. Indeed, even though for

the examples here discussed we always employed a simple

isotropic kernel, one can readily envision more complex

kernel functions (e.g., anisotropic), able to capture and take

advantage of the prior knowledge on the phenomenon

under investigation (e.g., directional dependence). As a

way of example, the problem of DO depletion within the

Chesapeake Bay is known to be influenced by the sum-

mertime wind direction [see, e.g., Scully (2010)] and such

information could be used to enhance its modeling based

on anisotropic kernels. In this context, one may readily

envision extensions of the proposed methodology to

include local anisotropic variographic models [e.

g., Fouedjio et al. (2016)], to be possibly associated with

the use of anisotropic kernels.

The use of anisotropic (possibly locally varying) kernels

may also be considered as a driver for the definition of the

partition. In this work, we considered Voronoi tessellations

that are consistent with the use of an isotropic kernel.

Indeed, assigning a location s0 to the nearest center is

equivalent to its assignment to the center associated with

the highest value for the kernel, i.e., s 2 VðckjUKÞ iff

K�ðck; sÞ[K�ðcj; sÞ for j 6¼ k. However, once a kernel has

been identified, the RDD may be consistently accommo-

dated to account for peculiar non stationarities, as well as

the design of the experiment.

We remark that the use of a non-Euclidean metric as a

measure of the adjacency relations among the locations is

in general incompatible with the valid covariance struc-

tures commonly used in geostatistics. This motivated us to

locally consider an Euclidean metric, even though both the

partitions and the kernel are indeed based on a non-Eu-

clidean metric. An interesting yet challenging future

direction of research will concern the development of a

general theory of Kriging for random field defined on non-

Euclidean spatial domains, possibly represented through an

undirected graph. This is likely to require the development

of novel covariance classes, valid over textured, irregularly

shaped domain. The advantage of such developments

would be relevant, as the existence of a global model for

the phenomenon would allow for Kriging in a unique

neighborhood, which is currently not possible in the pres-

ence of non-Euclidean domains.

On the other hand, the RDD could be used as a support

for the exploration and estimation of global non-stationary

models—when the domain characteristics allow to formu-

late one. Indeed, a relatively large body of literature has

been recently focused on developing globally non-station-

ary and anisotropic models for scalar and vector data over

Euclidean or spherical domains [e.g., Fouedjio (2017) and

references therein]. In this context, RDDs may drive the

selection of neighborhoods where to estimate locally sta-

tionary models [in the same flavor as in Fouedjio et al.

(2016)], or even used to obtain ensembles of variographic

parameters (sill, range, nugget at a set of bootstrap itera-

tions), to be then aggregated in a strong estimate of a

global model.

Finally, a remarkable open issue regards the uncertainty

associated with the final Kriging prediction. Simulation

results suggest that the bootstrap variance may play a major

role in identifying areas of the field in which the local

stationary assumption may not be viable. Further research

will be however needed to combine the latter with the

average Kriging variance. Here, one should decouple the

endogenous and exogenous variability, the former due to

the natural variability of the phenomenon (thus of the

prediction), the latter to the bagging algorithm. To this end,

a general theoretical framework should be established to
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formalize the relation between the model for the field and

the generation scheme of the random partitions.

References

Abramowicz K, Arnqvist P, Secchi P, de Luna SS, Vantini S, Vitelli

V (2016) Clustering misaligned dependent curves applied to

varved lake sediment for climate reconstruction. Stoch Environ

Res Risk Assess 31(1):71–85

Breiman L (1996) Bagging predictors. Mach Learn 24:123–140

Cressie N (1993) Statistics for spatial data. Wiley, New York

Delicado P (2011) Dimensionality reduction when data are density

functions. Comput Stat Data Anal 55(1):401–420

Dijkstra EW (1959) A note on two problems in connexion with

graphs. Numer Math 1:269–271

Egozcue JJ, Dı́az-Barrero JL, Pawlowsky-Glahn V (2006) Hilbert

space of probability density functions based on Aitchison

geometry. Acta Math Sin Engl Ser 22(4):1175–1182

Egozcue J, Pawlowsky-Glahn V, Tolosana-Delgado R, Ortego M,

van den Boogaart K (2013) Bayes spaces: use of improper

distributions and exponential families. Rev Real Acad Cienc

Exactas Fis Nat Ser A Matematicas 107(2):475–486

Fouedjio F (2017) Second-order non-stationary modeling approaches

for univariate geostatistical data. Stoch Environ Res Risk Assess

31(8):1887–1906

Fouedjio F, Desassis N, Rivoirard J (2016) A generalized convolution

model and estimation for non-stationary random functions. Spat

Stat 16:35–52

Fuentes M (2001) A high frequency Kriging approach for non-

stationary environmental processes. Environmetrics 12:469–483

Fuentes M (2002) Interpolation of nonstationary air pollution

processes: a spatial spectral approach. Stat Model 2:281–298

Haas TC (1990) Kriging and automated variogram modeling within a

moving window. Atmos Environ Part A Gen Top 24:1759–1769

Harris P, Charlton M, Fotheringham AS (2010) Moving window

Kriging with geographically weighted variograms. Stoch Envi-

ron Res Risk Assess 24:1193–1209

Heaton MJ, Christensen WF, Terres MA (2015) Nonstationary

Gaussian process models using spatial hierarchical clustering

from finite differences. Technometrics 59:93–101

Hjelle Ø, Dæhlen M (2006) Triangulations and applications. Math-

ematics and visualization. Springer, Berlin

Hron K, Menafoglio A, Templ M, Hru̇zová K, Filzmoser P (2016)
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