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RESEARCH ARTICLE

Spatial association detector (SPADE)
Xuezhi Cang and Wei Luo

Department of Geographic and Atmospheric Sciences, Northern Illinois University, DeKalb, IL, USA

ABSTRACT
The geographical detector model can be applied to either spatial or
non-spatial data for discovering associations between a dependent
variable and potential discrete controlling factors. It can also be
applied to continuous factors after they are discretized. However,
the power of determinant (PD), measuring data association based on
the variance of the dependent variable within zones of a potential
controlling factor, does not explicitly consider the spatial character-
istics of the data and is also influenced by the number of levels into
which each continuous factor is discretized. Here, we propose an
improved spatial data association estimator (termed as SPatial
Association DEtector, SPADE) to measure the spatial data association
by the power of spatial and multilevel discretization determinant
(PSMD), which explicitly considers the spatial variance by assigning
the weight of the influence based on spatial distribution and also
minimizes the influence of the number of levels on PD values by
using the multilevel discretization and considering information loss
due to discretization. We illustrate our new method by applying it to
simulated data with known benchmark association and to dissection
density data in the United States to assess its potential controlling
factors. Our results show that PSMD is a better measure of association
between spatially distributed data than the original PD.
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1. Introduction

1.1. Introduction of geographical detector

The geographical detector (Geo-detector) is a relatively new spatial analysis method (Wang
et al. 2010) that explores the association between variables. It was first developed inmedical
geography to estimate the associations between a health outcome, such as mortality rate,
and risk factors, such as water pollution and social economic factors, based on their spatial
distribution. The premise is that if the dependent variable is controlled by an independent
variable (or potential factor), their spatial distribution will be identical or very similar and the
similarity can be measured in terms of the variance of the dependent variable within zones
of the independent variable (Wang et al. 2010). Specifically, if dependent variable Y is
controlled by factor X, then the spatial distribution of the two should be identical or very
similar, and the similarity in spatial distribution can bemeasured by dividing the dependent
variable into zones (levels) of each independent variable and by comparing the local zonal
variance and the global variance. For example, let us assume the dependent variable (such
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as a health outcome or a quantitative geographical phenomenon) is sampled by a grid
system Y ¼ Yiji ¼ 1; 2; 3; . . . nf gð Þ (see Figure 1). A potential controlling factor (indepen-
dent variable) is represented by a Geographic Information Science (GIS) data layer X; it is
either already a categorical variable or can be discretized into a finite number of zones or
levels (e.g. in Figure 1, X has three zones, Xhjh ¼ 1; 2; 3f g). The PD, which measures the
similarity in spatial distribution between the dependent variable Y and a potential factor X, is
defined as follows,

PD ¼ q ¼ 1� SSW
SST

¼ SSB
SST

(1)

SSW ¼
X1
h¼1

XNh

i¼1

Yhi � Yh
� �2 ¼ Nhσ

2
h (2)

SSB ¼
XL
h¼1

Nh Yh � �Y
� �2

(3)

SST ¼ SSWþ SSB ¼
XN
i¼1

Yi � �Yð Þ2 ¼ Nσ2 (4)

where SSW is the sum of squares within zones; SSB is the sum of squares between zones;
SST is the total sum of squares; L is the total number of zones of X; Nh is the count of
samples of the hth zone; Yhi is the ith sample of dependent variable within hth zone of X;

Yh is the mean of Y within the hth zone of X; �Y is the global mean of Y (i.e. mean of Y
over the entire study area); Yi is the ith sample of the entire study area and N is the total
count of samples.

Figure 1. Method of the geographical detector.
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1.2. Analysis of Geo-detector

The main advantage of the Geo-detector is that it makes fewer assumptions than other
methods such as the regression (Wang and Xu 2017). Geo-detector has been applied tomany
different fields, including physical geography (Du et al. 2016, Luo et al. 2016) and urban
geography (Ren et al. 2014, Zhu et al. 2015). A complete list of applications and software can
be found on the website of the geographical detector (http://geodetector.org/). However,
there are a number of drawbacks to the original Geo-detector method. First, PD neglects the
characteristics of spatial data by utilizing the sum of squares (within zones or between zones)
to describe the similarity of a data set. The sum of squares, although it is used widely in
statistics, cannot describe the similarity of spatial data properly, because it cannot represent
the most important characteristics of spatial data, that is, spatial dependence. The only thing
that is ‘spatial’ or ‘geographic’ about the Geo-detector is the implied overlay of GIS data layers
in the data preparation, but the method itself never explicitly considers spatial distribution
and can be applied to either spatial or non-spatial data; thus, ‘Geo-detector’ is really a
misnomer. Spatial dependence plays two types of roles in spatial data association: within a
GIS layer or between GIS layers. Within a GIS layer, spatial dependence refers to the spatial
autocorrelation. Spatial autocorrelation, also commonly called spatial association in the
literature, describes the association between nearby observations and can be measured by
Moran’s I, Geary’s C or Local Indicators of Spatial Association (Anselin 1995). Between GIS
layers, spatial dependence is described by geographically weighted regression (GWR)
(Brunsdon et al. 1996). The purpose of the Geo-detector and our method is to measure the
association between GIS layers. To distinguish the concept of spatial autocorrelation, we will
refer to the association between GIS layers as spatial data association or simply spatial
association. Spatial data association can be measured by GWR. GWR is suitable for assessing
the association between continuous variables or between continuous variable and dummy
variable transformed from discrete variable. For the association between variables, GWR takes
advantage of the linear model in the assessing and assumes the correlations between
variables are linear relationship (Brunsdon et al. 1996). However, the association measured
by the Geo-detector is not limited by the linear relationship, because the Geo-detector
measures the association by stratified heterogeneity (Wang et al. 2016, Wang and Xu 2017).
The stratified heterogeneity is measured by comparing the difference between strata (zones)
of a data layer. Therefore, when estimating association between two continuous variables,
one of them needs to be discretized into zones first. The scope of application of the Geo-
detector is wider than GWR; however, the Geo-detector neglects the spatial dependence as
mentioned above. In a spatial data set, the associations between locations vary with distance.
Normally, based on the first law of geography, attribute values at closer locations are more
similar and have stronger relations. The drawback of the sum of squares is that it treats every
value equally in the same data set. To address the drawback of the sumof squares, we present
a solution to this problemby using spatial variance. Besides the problemof similaritymeasure,
the second drawback of the Geo-detector is that the selection of the number of discretization
zones of continuous variables is arbitrary and may cause underestimation of the association
between two continuous variables. As outlined above, the Geo-detector method works with
categorical (or discrete) variables. Continuous variables must first be discretized into a finite
number of zones (or levels). How a continuous variable is discretized and howmany zones it is
discretized into can influence the resultant PD values. Cao et al. (2013) discretized continuous
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variables into two to eight zones using a number of different discretization methods (e.g.
equal interval, natural breaks, quantile, geometrical interval, and standard deviation) and
compared the resultant PD values. Their results suggest that the quantile method generally
produced the highest PD value and is thus better than other methods. However, they only
examined a small number of zones (two to eight) and did not examine in detail the impact of
number of zones on PD value. In traditional cartography, the mapping of quantitative
variables as different levels of gray is usually limited to less than eight (e.g. Brewer and
Pickle 2002, Cauvin et al. 2010), because human eyes are only capable of seeing 30 shades
of grays (Kreit et al. 2013) and a small number of classes is easier for humans to distinguish and
understand than a large number of classes. So the rule of thumb in cartography is to use three
to seven classes for grayscale representation (Harvey 2015). With the development of geo-
computation, advanced spatial analysis methods can take advantage of more classes than the
limited number of grayscales designed for easy distinguishing and interpretation by humans
(Kwan 2004). Conceptually, if a continuous variable is discretized into a large number of zones,
each zonewill be small and the variance within each zonewill also likely be smaller, leading to
a larger PD value. This appears to be the case based on existing publications using the Geo-
detector method. For example, Wang et al. (2010) used both continuous factors (distance to
fault, distance to buffer, elevation) and categorical or nominal factors (soil type, watershed and
lithozone). The continuous factors were discretized to five categories. All the categorical
variables have more than five categories: soil type has nine categories, watershed has nine
categories and lithozone has seven categories. The Geo-detector showed that the top three
variables are the three nominal variables. Cao et al. (2014) presented a spatial data discretiza-
tion method which utilized local spatial autocorrelation indices to discretize continuous
variables and suggested that the variables need to be discretized into more than 40 classes.
They also found that the PD value increases with the increasing number of categories. Luo
et al. (2016) applied the Geo-detector method to evaluate the factors controlling the surface
dissection density in the conterminous United States by physiographic regions. In that study,
all the continuous factors are discretized to 6 categories and the categorical variable lithology
has 21 categories, much more than 6. The results showed that for four of eight physiographic
regions, the dominant factor (withmaximumPD value) is lithology. To further confirm this, we
discretize the continuous factor elevation into a range of categories (4–22) and calculate their
corresponding PD values in Region 3 (Interior Highlands) of the United States. The result is
shown in Figure 2. It is clear that there is a general trend of the PD value increasing as the
number of discretization zones increases. We will refer to the number of discretization zones
as the discretization level hereafter.

Conceptually, one can imagine two extreme cases: if the discretization level is one (i.e.
the whole study area is one zone), the zonal variance and global variance are the same,
then the PD would be 0; if the discretization level is the same as the total number of
samples of a continuous variable (i.e. each sample is its own zone), the zonal variance will
be 0 and the PD value will be 1 (see Equation (1)). Thus, the effect of the discretization level
on the PD value in the Geo-detector method must be controlled in order for PD values to
be more comparable, meaningful and interpretable across different situations. Here we
present a solution to this problem using multilevel discretization and considering infor-
mation loss due to discretization.
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2. Spatial association detector (SPADE) considering spatial variance,
multilevel discretization and information loss

2.1. Spatial variance

Spatial dependence, as the most important characteristics of spatial data, is ignored
by the Geo-detector (Wang et al. 2010). The spatial dependence can be represented
as spatial autocorrelation measured by Moran’s I, Geary’s C, Semivariogram, spatial
interaction models, etc. The common point of these models is that they all take
advantage of the spatial weighted cross-product statistic (Getis 1991). The general
form of the mean of spatial weighted cross-product is shown as below:

Γ ¼
P

i

P
j�iwijcijP

i

P
j�iwij

(5)

where wij is the weight between ith location and jth location. Here, we set the
inverse of distance as the weight (see more discussion in Section 5). cij measures

the attribute similarity, such as semi-squared difference
yi�yjð Þ2

2 or absolute

difference yi � yj
�� ��. Here we will use semi-squared difference (because doing so

will make the original Geo-detector a special case of the new method, as will be
shown next):

cij ¼
yi � yj
� �2

2
(6)

In the extreme case that the weight matrix is a matrix of ones, which means that
all weights between locations are equal to 1, the mean spatial weighted cross-
product becomes the variance equation (Bachmaier and Backes 2008):

Figure 2. PD values of elevation under different discretization level (from 4 to 22).
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Γ¼
P

i

P
j�i wij

ðyi�yjÞ2
2P

i

P
j�i wij

¼
P

i

P
j�i

ðyi�yjÞ2
2

NðN� 1Þ ¼ 1
2

1
NðN� 1Þ

X
all i�j

ðyi � yjÞ2

¼
PN

i¼1 ðyi � �yÞ2
N� 1

(7)

For N samples, there are N(N-1) pairs of cross-product. As Equation (7) showed,
Equation (2) is a special case of Equation (5) when the weights are equal to 1. Based on
the equation transformation (Wang et al. 2016), the sum of squares can be represented by
the product of counts of variable and variance (Equations (2) and (4)). Here, the spatial sum
of squares is represented by the product of variable counts and spatial variance. We define
the ratio of local spatial sum of squares and the global counterpart as power of spatial
determinant (PSD) or qs:

qs ¼ 1�
PL

h¼1 Nh � Γh
N � Γ (8)

where Nh is the total count of samples in hth category; Γh is the spatial variance within level
h; L is the total number of levels; N is the total count of samples and Γ is the total spatial
variance. To give a specific example, let us assume X and Y are two spatial variables which
cover the same area. Y is a continuous dependent variable. X is an independent categorical
variable and has h levels, so we do not need to consider the discretization process in this
example. The spatial data association (qs) or PSD between Y and X is:

qs ¼ 1�
PL

h¼1 Nh � Γh
N � Γt ¼ 1�

PL
h¼1 Nh

PNh
h¼1

PNh
j�i

whi;hj
ðyhi�yhjÞ2

2PNh
i¼1

PNh
j�i

whi;hj

N

PN

i¼1

PN

j�1
wi;j

ðyi�yjÞ2
2PN

i¼1

PN

j�i
wi;j

(9)

where wi;j is the weight between the ith location and the jth location, which is taken as
the inverse of distance in our calculation; subscript hi and hj are the ith and jth samples in
the hth category.

2.2. Multilevel discretization and information loss

Discretization level corresponds to the minimum perception of measurement. The discretiza-
tion makes a variable easier to be understood by humans. In essence, discretization keeps the
main information of the variable and ignores the finer details. The smaller the discretization
level (i.e. fewer categories), the more the information loss. Too few levels cannot represent
variation within the original variable well, but too many levels may result in redundant
information and could thus hinder the analysis and interpretation. However, it is always
difficult to find the best discretization level, because the best discretization level is related
to the characteristics of the data and the specific research questions (e.g. Liao et al. 2010).
Because the study fields are different, the best discretization levels are not even the same for
similar research works (Wang et al. 2010, Cao et al. 2014). Thus, it is desirable to conduct the
analysis at multiple discretization levels and compensate information loss due to
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discretization. As shown in Figure 3, we discretize the continuous independent variable into
different levels and apply spatial variance to each discretization level.

In this article, we select the quantile discretization for three reasons. First, a previous
comparative research suggested that the quantile method is better than others discretiza-
tion methods (e.g. equal interval, natural breaks, geometrical interval and standard
deviation) (Cao et al. 2013). Second, the example of this article is from a previous research
project (Luo et al. 2016). In that article, Luo et al. (2016) utilized the quantile discretization.
Selecting the same discretization method will greatly facilitate the comparison. Third, the
quantile method can minimize the information loss as measured by information entropy,
which is defined as Equation (10) (Quinlan 1986, Baez et al. 2011):

F ¼ �
XN
i¼1

p ið Þlog2 p ið Þ � �
XL
h¼1

p hð Þlog2 p hð Þ
 !

(10)

where N is the total count of samples; p ið Þ is the probability of finding sample i; h is the hth
level and p hð Þ is the probability of a data point or sample belonging to the hth level. The first
term of Equation (10) is the information contained in the original un-discretized data; the
second term is the information contained after discretization; F is the information lost due to
discretization. To minimize Equation (10), the second term should be maximized and this is
achieved when all the p hð Þs are equal (MacKay 2003, p 43–44), that is, quantile discretization.
For example, if we have 100 samples (of a continuous variable) and discretize them to four
levels (L = 4), F will be minimized (second term maximized) if p hð Þ ¼ 0:25. There are two
extreme examples, which will not be used in practice but can help understand the concept.
One is that if L ¼ N (i.e. there is no discretization), then F = 0 which means that there is no
information loss; the other is that if L = 1 (i.e. all samples are grouped in one level), then F
reaches themaximum (first item of this equation), whichmeans that all the information is lost.
As described in Figure 3, the SPADE uses levels of the independent variable to stratify (or
divide) the dependent variable and to compare the zonal spatial variance and global spatial
variance as a way to measure the spatial association between them. It only measures the
relationship between the continuous dependent variable and the discretized independent
variable, but omits the information loss as a result of the discretization. The information
remaining after discretization can be measured by examining the spatial data association

Figure 3. Discretizing continuous independent variable using different discretization levels (zones).
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between the original continuous independent variable and its discretized counterpart. If all
information is kept (i.e. loss = 0), the spatial data association between the original continuous
independent variable and its discretized counterpart should be 1. Following this line of
reasoning, we can calculate the spatial data association between the original continuous
independent variable and its discretized counterpart as a measure of the information still
remaining after discretization (we will call this qs infokept to distinguish it from the qs as defined
in Equation (8)). The information kept can be expressed as:

qs infokept ¼ 1�
PL

h¼1 Nh � Γh ind

N � Γtotal ind
(11)

where the subscript h_ind represents the hth level of independent variable; Γ represents
the spatial variance. We define the new compensated power of spatial discretization
determinant (Qs) as the ratio of the above two quantities (i.e. relative to the information
kept, thus compensating for the information loss due to discretization):

Qs ¼ qs=qs infokept ¼
1�

PL

h¼1
Nh�Γk dep

N�Γtotal dep

1�
PL

h¼1
Nh�Γh ind

N�Γtotal ind

(12)

For reasons that will become clear later, we define the power of spatial and multilevel
discretization determinant as follows:

PSMD Qs ¼ MEAN Qsð Þ (13)

where MEAN represents the mean of Qs at all discretization levels.

2.3. Test of significance

After some transformations (Wang et al. 2016), the probability density function (PDF) of PDs
is a noncentral F-distribution with the first degree of freedom (d.f.)L-1, the second d.f. N-L,
and noncentrality λ. The null hypothesis (two variables have no association) can be tested by
critical value test. The PDF of PSMD is unknowable because it is influenced by the spatial
pattern of locations which varies in each case. If all the weights are equal to 1, the PD is a
noncentral F-distribution, just as the Geo-detector article showed (Wang et al. 2016).
Although the PDF of PSMD cannot be known, the null hypothesis (two variables have no
association) can still be tested. Following the idea of current spatial analysis software (such
as ArcGIS, PySAL and GeoDa) (Anselin et al. 2006, Rey and Anselin 2010), the null hypothesis
can be tested by a Z-test, which assumes that the PDF of PSMD under null hypothesis is a
normal distribution; or it can be tested by the pseudo p-value approach, which has a
broader constraint of distribution than traditional significance test. For an observed
PSMD, if the Z-score (see Equation (14)) is greater than 1.96 or if pseudo p-value (see
Equation (15)) is smaller than 0.05, the confidence level is above 95%. We select the pseudo
p-value approach. The reason will be explained in Section 5.

Z ¼ PSMDobv �Mean PSMDrandomð Þ
SE PSMDrandomð Þ (14)
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where PSMDobv is the observed PSMD; Mean PSMDrandomð Þ is the mean of PSMDrandom;
SE PSMDrandomð Þ is the standard error of the mean of PSMDrandom and PSMDrandom is an
array including M 99; 999; etc:ð Þ PSMDs which are calculated from randomization null
hypothesis.

pseudo p ¼ Rþ 1
Mþ 1

(15)

where R is the number of times a computed statistic from the randomdata sets is equal to or
more extreme than the observed PSMD andM is the number of permutations (99, 999, etc.).
For a given spatial data set, the critical value can be calculated by the following steps. We
calculate the PSMD under the situation that all the dependent and independent values are
rearranged randomly. When we select 0.05 as the critical p-value, the R-th
(R ¼ 0:05 � Mþ 1ð Þ � 1) highest PSMD from null hypothesis is the critical PSMD value. If
the observed PSMD value is less than the critical PSMD, the association between dependent
and independent variable is not significant.

3. Simulation test of PSMD

3.1. Simulation scheme

To compare the result of our newmethod with Wang et al. (2010), we design simulations to
test the performances of our method. The simulation includes two parts: spatial data
generation and spatial data association assessment. The basic idea is to create simulated
variables Y and Xwith perfect spatial association (=1); we then randomly shuffle the variable
X with known shuffling rate and use PSMD to measure the spatial association and compare
that with the benchmark association, which is 1 minus the shuffling rate. To generate the
variables with perfect spatial association, we first create an area with 30 × 30 small lattices.
Then, we select 50 positions within this area (the locations of points are random, so probably
are not at the centers of lattices) and assign 50 randomnumbers from a randomdistribution
(e.g. Gaussian~N 0; 10ð Þ) to these points. To obtain a spatial surface data, we select the radial
basis function to interpolate the values at the centers of all lattices using the 50 random
distributed points. The set of center point values and their locations is the spatial dependent
variable (Y). After we created the spatial dependent variable, we produce the independent
variable (X) as follows. We generate 900 (30 × 30) randomly distributed (e.g.
Gaussian~N 0; 10ð Þ) random values, rank them and assign them to the center points of
lattices based on the ranking of the dependent variable. After this step, the rankings of
dependent and independent variable are matched perfectly. In this case, the ranking of
dependent values and their corresponding independent values are the same. The associa-
tion between two data reaches maximum which is 100% or 1. After we created the
maximum association spatial data set, we use the controlled parameter (shuffling rate) to
decrease the maximum association to generate benchmark association for testing the
measures of spatial association. We switch some independent values with each other
randomly (i.e. shuffling) to wane the association between dependent and independent
variables. The shuffling rate is the ratio between the counts of rearranged independent
values and the total counts of independent values (so the range of shuffling rate is from 0 to
1). If the shuffling rate is 0, all the independent values are not rearranged; the association
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between spatial dependent and independent variables is maximum, in other words, it is 1.
Conversely, if the shuffling rate is 1, all the independent values are rearranged randomly; the
association between the spatial dependent and independent variable is 0 (random).

3.2. Estimated spatial data association comparison by simulations

To evaluate our SPADE, we compare the PD (from Wang et al. 2010) with PSMD (proposed
by this article) under the controlled shuffling rates. First, under some fixed shuffling rates, we
compare the PD, compensated PD (PD compensated by the information loss, or CPD), PSD
(PD using spatial variance, Equation (9)) and compensated PSD (PSD compensated by the
information loss, or CPSD Equation (12)). We also calculate the critical value by the pseudo
p-value method to test whether the estimated associations are significant. The aims of
comparison are as follows: (1) to illustrate which estimator is stable across different dis-
cretization levels and (2) to test if the estimated values follow the general trend of different
benchmark associations. The results under different shuffling rates (0.0, 0.2, 0.4, 0.6, 0.8, 1.0)
are shown in Figure 4. Each point represents the mean of 100 simulations. Figure 5 showed
the comparisons between the estimated associations and critical values. Following pseudo
p-value, we repeated 99 times of the calculation of the spatial association under the full
shuffling rate (1.0) and obtained 4th largest value of simulation results (p ¼ 0:05) as the
critical value (R ¼ 0:05 � Mþ 1ð Þ � 1 ¼ 0:05 � 99þ 1ð Þ � 1 ¼ 4Þ.

The results showed that (1) the compensated estimators (CPD and CPSD) are generally
stable throughout the discretization levels; (2) the stabilities of CPD and CPSD only have
subtle difference; (3) when the shuffling rate is 100%, all the estimators are not significant
(shown in Figure 5); (4) when the shuffling rate is 0%, the compensated estimators (CPD and
CPSD) reach 1 (shown in Figure 4) and (5) overall, our CPSD more closely follow the trend of
different benchmark associations.

4. Application to US surface dissection density data

We applied the new approach to derive PSMD as described above to better capture spatial
associations between dissection density and environmental factors and compared them
with the results from Luo et al. (2016). Dissection density describes the degree of land
surface dissection by erosional processes and is defined as the total length of valleys per unit
area (Luo et al. 2016). On a continental scale, dissection density (a geomorphology concept
not requiring identification of channels) is highly correlated with drainage density (a
hydrology concept requiring identification of channels). Previous research projects have
shown that factors controlling dissection density include climate (Melton 1957,
Montgomery and Dietrich 1989, Tucker and Bras 1998), slope and relief (Schumm 1956,
Strahler 1964, Oguchi 1997), lithology (Gardiner 1995, Tucker and Slingerland 1996, Xiong
et al. 2014) and soil properties (Montgomery and Dietrich 1989, Dietrich et al. 1992). The
understanding of which factors play dominant roles in controlling dissection density is an
important theme in geomorphology and hydrology because of its scientific and practical
values. The latter relates to assessing the risk of soil loss and to designing measures to
reduce such loss. Unlike most previous studies, which were at local scales and lacked an
analytical framework designed especially for comparing controlling factors over a regional
or continental scale, Luo et al. (2016) utilized the Geo-detector as a general framework to
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assess the associations between dissection density and environmental factors in each
physiographic region (Fenneman 1928, Figure 6) and tested the hypothesis that the
dominant controlling factor, or the interactions between factors, vary from region to region
due to differences in each region’s local characteristics and geologic history. The dissection
density data were derived using geomorphons method (Jasiewicz and Stepinski 2013) and
aggregated to the basic units of watersheds based on the 12-digit hydrologic unit bound-
aries (Federal standards and procedures for the national Watershed Boundary Dataset
(WBD) 2013). The 13 controlling factors are shown in Table 1, which include 3 main groups:
geology, climate and terrain, and are aggregated to the same basic units of watersheds. The
terrain factors are derived fromDigital ElevationModel (DEM) data. The geology and climate
factors are downloaded from open source database: the precipitation factor is from the
website of PRISM climate Group (http://www.prism.oregonstate.edu/), the glaciation and

Figure 4. Comparison of PD, compensated PD (CPD), PSD and compensated PSD (CPSD), under
different shuffling rates.
The benchmark association equals 1 minus the shuffling rate. The suffix _mean represents the mean
of simulation results. X-axis is the discretization level which is from 5 to 30 and Y-axis is estimated
spatial association between two variables.
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Figure 5. Comparison of estimated spatial association and critical value under different shuffling rates.
X-axis is the discretization level and Y-axis is estimated spatial association between two variables.

Figure 6. Dissection density in the US.
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the lithology factors are from United States Geological Survey (USGS), the permeability
factor is from Gleeson et al. (2014) (http://crustalpermeability.weebly.com/glhymps.html)
and the porosity factor is from the STATSGO2 database.

To illustrate the PSMD, we use Region 3 (Interior Highlands), Region 6 (Laurentian
Upland), Region 7 (Pacific Mountain System) and Region 8 (Rocky Mountain System) as
examples. In the calculation, the discretization levels in themultilevel discretization are from
4 to 20. Table 2 shows the PSMD values and their rankings in those regions in comparison
with those of the original PD. The spatial association for most continuous variables
increased. The ranking order of the spatial associations between dependent and indepen-
dent variables also changed slightly. The ranking of discrete variables, such as the Litho,
decreased. However, the dominant factors (high ranked factors in PD) still retain their
statuses. To illustrate the physical meaning of the PSMD, we map the three controlling
factors, which are high, medium and low ranking, to compare the spatial distribution of
dissection density (Figure 7). It is clear that the controlling factors with higher PSMD have a
more similar spatial distribution with the dependent variable.

The results (Table 2 and Figure 7) show that (1) the associations between dependent and
independent continuous variables are underestimated by the original PD in most cases,
because the original Geo-detector omits the spatial dependence resulting from dynamical
geographical processes and the information loss due to discretization; (2) The information
loss from discretizing different continuous independent variables is different, because their
distributions are different. Thus, the ranking of the continuous independent variables also
changed.

5. Discussion

5.1. Selection of model parameters

The major parameters of SPADE include the range of discretization level and the weighting
method. The range of discretization level is a robust parameter because the information loss is
compensated. From Figure 4, the compensated PSDs are stable across different discretization
levels; most of the differences of the compensated PSDs between different discretization
levels are smaller than 0.1. Here, we apply the different discretization level ranges on Region 3
as an example to illustrate the effect of discretization level ranges. The results are shown in

Table 1. Controlling factors.
Category Factor Factor code Resolution

Geology or soil property Glaciation Glaci Resampled shapefile data to 4 km
Lithology Litho 1 km resolution, resampled to 4 km
Permeability logK Resampled shapefile data to 4 km
Porosity poro Resampled shapefile data to 4 km

Climate Precipitation precip 4 km resolution
Topography Elevation elev ETOPO1 DEM resampled to 4 km resolution

Aspect asp Derived from DEM, 4 km resolution
Slope slp Derived from DEM, 4 km resolution
difference in elevation (relief) difelev Derived from DEM, 4 km resolution
distance to erosional base distb Derived from DEM, 4 km resolution
Elevation to erosional base elevb Derived from DEM, 4 km resolution
Planar Curvature planc Derived from DEM, 4 km resolution
Tangential Curvature tanc Derived from DEM, 4 km resolution
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Table 3. We apply three groups of discretization level ranges (5–10, 10–15 and 15–20) to
calculate PSMDs. The results showed that the rankings of variables are the same and thatmost
of differences between different range are smaller than 0.05. The weighting method includes
contiguity-basedweights or distance-basedweights. The selection ofmethod depends on the
nature of the research. In this research, the distance-basedweights aremore suitable, because
the scale of dynamic geography processes (erosion, sedimentation and tectonic processes) is
much larger than the statistics unit (watershed), whichmeans that noncontiguouswatersheds
can be influenced by the same process and the intensity of influence decays through the
distance (Taylor and Openshaw 1975). The distance decay can be measured by different
functions (summarized by Martínez and Viegas 2013) quantitatively. In this article, we choose
the power law because the gravity model, a form of power law, has been used in different
geography research fields, both in human geography and in physical geography. The general
form of weight based on the power law of distance decay is shown in Equation (16):

w ¼ 1
dβ

(16)

Table 2. PSMD results in Regions 3, 6, 7 and 8.

Region 3 (Interior Highlands) N = 1955 Region 6 (Laurentian Upland) N = 1215

Ranking Variable PSMD Variable PD Variable PSMD Variable PD

1 logk 0.389 logk 0.309 distb 0.214 litho 0.231
2 poro 0.363 precip 0.262 litho 0.202 tanc 0.139
3 precip 0.348 poro 0.219 elev 0.167 asp 0.130
4 distb 0.336 litho 0.185 poro 0.164 planc 0.128
5 difelev 0.280 elevb 0.175 logk 0.148 logk 0.128
6 elevb 0.258 distb 0.163 elevb 0.138 poro 0.119
7 elev 0.235 slp 0.154 precip 0.136 slp 0.110
8 litho 0.235 difelev 0.127 difelev 0.131 elevb 0.109
9 slp 0.166 elev 0.122 asp 0.125 elev 0.105
10 planc 0.123 planc 0.107 slp 0.104 difelev 0.088
11 tanc 0.118 tanc 0.094 planc 0.100 distb 0.081
12 asp 0.042 glaci 0.057 tanc 0.099 precip 0.075
13 glaci^ 0.001 asp 0.049 glaci 0.017 glaci 0.071

Region 7 (Pacific Mountain System) N = 5134 Region 8 (Rocky Mountain System) N = 6598

Ranking Variable PSMD Variable PD variable PSMD Variable PD

1 elev 0.469 elev 0.280 precip 0.150 litho 0.104
2 difelev 0.431 litho 0.243 difelev 0.146 slp 0.086
3 logk 0.386 difelev 0.228 slp 0.144 planc 0.083
4 slp 0.383 logk 0.215 elev 0.131 tanc 0.079
5 tanc 0.326 slp 0.189 planc 0.124 precip 0.065
6 planc 0.323 tanc 0.170 distb 0.120 logk 0.057
7 litho 0.299 planc 0.153 tanc 0.116 poro 0.046
8 poro 0.266 poro 0.121 litho 0.104 difelev 0.043
9 distb 0.203 precip 0.098 logk 0.093 elev 0.042
10 elevb 0.194 elevb 0.085 poro 0.080 elevb 0.040
11 precip 0.174 distb 0.064 elevb 0.072 distb 0.035
12 asp 0.006 asp 0.062 asp 0.019 asp 0.033
13 glaci^ 0.000 glaci 0.048 glaci^ 0.000 glaci 0.031

N is the number of watersheds in the region.
All the PSMD estimated associations are significant, except that the values with the symbol ^, representing that the
values are not significant. The PSMD is the mean of PD using spatial variance under different discretization levels. The
original PDs are from Luo et al. (2016).
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where w is the weight between two locations; d is the Euclidean distance between two
locations and β is the exponent of distance, representing the decay rate. The β, with a typical
range from 0 to 3 (Chen 2015), is the intensity of influence between neighbors. A larger β in
Equation (16) means that the closer values have higher weights in the calculation. The
selection of β is usually research dependent and often determined empirically; or can be

Figure 7. Dissection density and its controlling factors in Region 3. (a) Dissection density (dependent
variable); (b) logk (highest PSMD); (c) elevation (7th controlling factor); (d) tanc (11th controlling
factor).

Table 3. PSMD of continuous variables under different discretization levels in Region 3.
5_to_10 10_to_15 15_to_20

logk 0.396 logk 0.354 logk 0.422
poro 0.367 poro 0.335 poro 0.389
precip 0.362 precip 0.324 precip 0.364
distb 0.341 distb 0.319 distb 0.350
difelev 0.288 difelev 0.262 difelev 0.295
elevb 0.259 elevb 0.251 elevb 0.265
elev 0.245 elev 0.206 elev 0.258
slp 0.168 slp 0.158 slp 0.174
planc 0.125 planc 0.118 planc 0.126
tanc 0.121 tanc 0.109 tanc 0.125
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estimated by the product of the Zipf’s exponent of size distributions and the fractal
dimension of spatial distributions (Chen and Huang 2018). In producing Table 2, we used
inverse distance decay, that is, β ¼ 1. Here, we test the robustness of β by applying two β

values (1, 2) on the same region (Table 4). The dominant factors of Regions 3 and 6 changed
subtly, andmost of ranking only changed one or two positions. The results showed that the
ranking of variables may change with different weighting methods, but they are not very
sensitive to different weighting methods.

5.2. Assumption of the probability distributions

Normally, the assumption of association estimator is that the PDF of variables are normal
distribution; however, in the geography research field, the symmetrical distribution and
asymmetrical distribution are both very common. For this reason, we create random
variables which follow different PDF to test the influence of different PDFs on SPADE.
First, we investigate the PSMD under different distributions. We select the normal
distribution to represent the symmetrical distribution and select Pareto distribution to
represent the asymmetrical distribution. We create four groups of data sets whose
dependent and independent variables are normal distribution (N 0; 10ð Þ) or Pareto dis-
tribution (P 3ð Þ). Then, we analyze the influence of variables’ distribution on the associa-
tion estimation. Based on simulation test described in Section 3, we average the
compensated PSDs from 5 to 30 discretization levels as the result of multilevel associa-
tions to compare the association to the shuffling rates. The results are compared with
the spatial association benchmark line (y ¼ �x þ 1; x 2 0; 1½ �) (see Figure 8). The bench-
mark values of spatial association are from 0 to1, whose interval is 0.2. The results
showed that the compensated estimators (PMD_Q and PSMD_Q) can cover the full
range of benchmarks and are less sensitive to the changes of variables’ distributions
than PMD_q and PSMD_q.

5.3. Selection of significant test

As mentioned above, the PDF of PSMD is unknowable. The current spatial analysis software
(such as ArcGIS, PySAL and GeoDa) (Anselin et al. 2006, Rey and Anselin 2010) test the

Table 4. PSMDs under different distance decay methods.
Region 3 Region 6

β ¼ 2 β ¼ 1 β ¼ 2 β ¼ 1

distb 0.406 logk 0.389 distb 0.406 distb 0.214
logk 0.402 poro 0.363 logk 0.402 litho 0.202
difelev 0.393 precip 0.348 difelev 0.393 elev 0.167
poro 0.391 distb 0.336 poro 0.391 poro 0.164
elevb 0.355 difelev 0.280 elevb 0.355 logk 0.148
precip 0.338 elevb 0.258 precip 0.338 elevb 0.138
elev 0.322 elev 0.235 elev 0.322 precip 0.136
slp 0.225 litho 0.235 slp 0.225 difelev 0.131
tanc 0.187 slp 0.166 tanc 0.187 asp 0.125
planc 0.147 planc 0.123 asp 0.230 slp 0.104
litho 0.133 tanc 0.118 litho 0.150 planc 0.100
asp 0.106 asp 0.042 planc 0.147 tanc 0.099
glaci 0.053 glaci^ 0.001 glaci 0.128 glaci 0.017
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significance of spatial estimator by Z-test or pseudo p-value approach. We use the simulations
to discuss the difference between the Z-test and pseudo p-value approach and explain why
we choose p-value approach. We repeat 99 times of the calculation of PSMDs under the 100%
shuffling rate. In each simulation, first, we create four pairs of possible combinations from the
two PDFs (normal distribution (N 0; 10ð Þ) or Pareto distribution (P 3ð Þ)) in one time of simula-
tion; next, shuffle one variable of every pair with 100% shuffling rate; then, calculate the
PSMDs. Based on the four groups of PSMDs, the QQ-plot (Figure 9) shows the similarity
between null hypothesis distribution and normal distribution. At the right end of each line, the
actual values are a little bit greater than the expected value. The shape represents that the tail
of distribution from null hypothesis is heavier than the normal distribution. In this situation,

Figure 8. Comparison spatial estimators form different distributed variables.
X-axis is the shuffling rate and Y-axis is estimated spatial association between two variables. The suffix _q
represents the estimator without compensation and the suffix _Q represents the compensated estimator.
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the pseudo p-value approach has a higher critical value than the normal distribution sig-
nificance test for a given spatial estimator. For this reason, we select pseudo p-value approach
because it is more conservative.

6. Conclusion

The purpose of this article is to improve the measure of spatial association between depen-
dent variable and potential controlling factors within the Geo-detector framework by expli-
citly utilizing the spatial information and minimizing the influence of discretization levels. We
solved the problem that the original Geo-detector lacks measure of spatial dependence by
utilizing spatial variance, which is derived from general spatial weighted cross-product, to
replace the traditional variance. We also addressed the problem that the Geo-detector
measured association (PD) was influenced by the number of levels into which continuous
variables are discretized by compensating the information loss due to discretization. The
information kept was measured by PSD value between the continuous variable and its
discretized counterpart. Using simulated datawith knownbenchmark association, we demon-
strated that (1) the compensated association can cover the whole range of benchmark
association; (2) the compensated association is stable across different discretization levels
and (3) the significance of null hypothesis (association between variables not significant) can
be tested by pseudo p-value approach, whose result is more conservative than Z-test which
assumes that the distribution from null hypothesis is a Gaussian distribution. When applying

Figure 9. QQ-plot of null hypothesis under varied distributions.
The red rectangle shows the critical values (fourth point).
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the new method to measure the spatial association between dissection density and control-
ling factors in United States, the ranking of PSMD values of some variables changed, but most
dominant factors still remain the same. So the general conclusion of Luo et al. (2016) that the
dominant factor for each physiographical region reflects that region’s geological history and
character still holds. The exception happened in Regions 6 and 8, both with low original PD
value. The dominant factors of the two regionswere litho, whichmeans that a higher category
number can cause a higher estimated spatial association and that the previous discretization
level in Luo et al. (2016) underestimated the associations between dependent and indepen-
dent variables. Through our simulated data with known benchmark association and case
study of dissection density in United States, we have demonstrated that the PSMD value is a
stable and more accurate measure than original PD because PSMD explicitly considers spatial
variation and minimizes the influence of discretization levels. Thus, in practice, we have more
confidence in using PSMD to measure the association between spatial data and do not need
to discretize the continuous variables into a large number of levels.
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