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Abstract

High-accuracy spatial distribution estimation is crucial for cancer prevention and control. Due to their complicated

pathogenic factors, the distributions of many cancers’ mortalities appear blocky, and spatial heterogeneity is common.

However, most of the commonly used cancer mapping methods are based on spatial autocorrelation theory. Sandwich

estimation is a new method based on spatial heterogeneity theory. A modified sandwich estimation method suitable for

the estimation of cancer mortality distribution is proposed in this study. The variances of cancer mortality data are used

to fuse sandwich estimation results from various auxiliary variables, the feasibility of which in estimating cancer mortality

distributions is explained theoretically. The breast cancer (BC) mortality of the Chinese mainland in 2005 was taken as a

case, and the accuracy of the modified sandwich estimation method was compared with that of the Hierarchical Bayesian

(HB), the Co-Kriging (CK) and the Ordinary Kriging (OK) methods. The accuracy of the modified sandwich estimation

method was better than the HB, the CK and the OK methods, and the estimation result from the modified sandwich

estimation method was more likely to be acceptable. Therefore, this study represents an attempt to apply the sandwich

estimation method to the estimation of cancer mortality distributions with strong spatial heterogeneity, which holds

great potential for further application.
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1 Introduction

Cancer has become a major global public health problem,1,2 and its healthcare and financial burden will
continue to increase in the coming decades.1,3 In total, cancer caused 8.2 million deaths in 2012,1 with the most
commonly diagnosed cancers being lung cancer, accounting for 1.6 million deaths; liver cancer, accounting
for 745,000 deaths; and stomach cancer, accounting for 723,000 deaths. Cancer is now the leading
cause of death in China,4 with both increasing incidence and increasing mortality. In general, cancer data
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in China are collected by the National Central Cancer Registry of China (NCCR), and diagnoses are reported in
administrative subdivisions from multiple sources, including local hospitals, community health centres, medical
insurance providers and vital statistics.4 However, the collected data are not geographically exhaustive, so accurate
estimations of the spatial distribution of cancer mortality are important in understanding the complex pathogenic
factors of cancer incidence and developing reasonable prevention and control policies.

Various methods of estimating the distribution of cancer mortality have been proposed,5–8 including methods
that only consider the spatial characteristics of cancer mortality surveillance data6,9 and methods that consider the
spatial association of relevant factors and cancer mortality.7,8,10 Most methods only focus on spatial
autocorrelation and rarely consider the heterogeneity of independent variables. However, spatial heterogeneity
within samples is common in cancer distributions, especially over large areas of study.11 Due to social economies,
living habits and other factors, there are regional differences in the distribution of cancer mortality in China.12,13

Therefore, methods that consider both spatial heterogeneity and various relevant factors of cancer mortality
should be used to estimate the distribution of cancer mortality.

The sandwich estimation method, proposed by Wang,14 is intended to be used on spatial stratified
heterogeneous surfaces. Sandwich estimation can fully consider the spatial heterogeneity of cancer mortality by
partitioning the study area into homogeneous subareas.14,15 The sandwich estimation method can achieve high-
precision estimation. Typically, one auxiliary variable or a couple variables cross-overlapping is sufficient for the
sandwich estimation method. However, because of its complex geographical and pathogenic factors, more than 10
auxiliary variables strongly influence on cancer mortality. A single cross-overlap according to these auxiliary
variables will result in over-zoning and is insufficient. Therefore, this study proposes a modified sandwich
estimation method for estimating the distribution of cancer mortality.

Breast cancer (BC) is prevalent in China and is the most common malignant disease among women in
developing countries.2,16 The BC mortality rate is significantly spatially heterogeneous across China.12,13 This
paper considers spatial heterogeneity and the complex factors of cancer mortality, introducing a modified
sandwich estimation method and using it to estimate the distribution of BC mortality in Chinese mainland in
2005. The ultimate purpose is to create an efficiency estimation method for mapping the distribution of cancer
mortality in heterogeneous areas of study. At first, a set of factors (geographical factors, socioeconomic factors,
physical conditions, living habits, etc.) were assumed to be the most likely to influence the distribution of cancer
mortality. After a correlation analysis was applied to eliminate insignificant factors, several zoning layers were
created and used in the sandwich estimation. The results were fused according to degrees of variance. A leave-one-
out cross-validation (LOOCV) method was applied to validate the estimation method. The results showed that the
modified sandwich estimation method could more fully consider spatial heterogeneity and the influences of factors
on cancer mortality, performing better than the Hierarchical Bayesian (HB), the Co-Kriging (CK) and Ordinary
Kriging (OK) methods.

2 Interpolation of cancer mortality

Estimating the distribution of cancer mortality is a type of disease mapping and, in practice, is a spatial
interpolation problem. One of the most famous cases of disease mapping is John Snow’s study of the
nineteenth-century cholera epidemic in London,17 but this study was not a full-coverage mapping. Spatial
interpolation has been proposed as a solution to this problem. It predicts the values of unknown points or
administrative units based on the known values of surveillance points or administrative units.18 Many spatial
interpolation methods have been used to estimate the distribution of cancer mortality. Although different
interpolation methods have different basic principles, the common goal of these methods is representing the
distribution of cancer mortality as accurately as possible.19

Some interpolation methods, such as inverse distance weighting (IDW) and the OK method, interpolate the
distribution of cancer mortality based only on the spatial characteristics of surveillance data.20,21 These methods
adequately consider the spatial autocorrelation of cancer mortality surveillance data, which denotes the
interdependence of data between locations, based on basic properties of geography.11,22 Most spatial
interpolation methods are based on spatial autocorrelation. However, spatial heterogeneity is another feature
of geography,11,23,24 especially for sampling across large areas.11,14,25 Due to cancer’s complex pathogenesis,
regional differences are common in cancer mortality surveillance data. For example, there is a strong
correlation between gastric cancer and diet,26 and there is a significant difference in diet between southern and
northern China; in addition, BC is strongly correlated with urbanization levels,13,27 which vary greatly between
urban and rural areas in China. Chien et al.6 identified geographic variations in BC mortality across the USA.
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While estimating the distribution of cancer mortality, some important pieces of information are easily overlooked
such as spatial heterogeneity.

In addition, some spatial interpolation methods, such as linear regressions, estimate distributions with the help
of auxiliary variables. Many auxiliary variables influence cancer mortality,7,10,28 and a number of studies have used
such variables to predict cancer mortality.7,29,30 Further, many auxiliary variables data are more accessible than
cancer mortality statistics.28 Smith used a multivariable logistic regression to assess the correlations of age-
adjusted bladder cancer mortality rates with socioeconomic, demographic and environmental variables.29 The
mortality rate of BC is also affected by various factors: physical condition,31 genetic background,32 eating habits,33

living environment,34 drinking,35 smoking,36 reproductive habits37 and so on. Because of the increased availability
of data, it is wise to estimate the distribution of cancer mortality by means of auxiliary variables. However, some
linear regression methods consider the effects of auxiliary variables on cancer mortality independent of spatial
correlation—a defect that should be remedied.

Of course, there are some methods that simultaneously consider spatial correlation and auxiliary variables, such
as the HB method and the CK method. The HB method is recognized as one of the most powerful tools in disease
mapping. It developed from the traditional Bayesian model,38 which decomposes a complex estimation problem
into a simple estimation problem that relies on conditional distributions of each parameter.39 Spatial correlation
was introduced into the HB method by defining spatial effects of cancer mortality in a study area. Specifically, in
the HB method, the cancer mortality in any subarea relies on the cancer mortality in other subareas.23 Liao et al.40

estimated the distribution of neural tube defects in Heshun, China using the HB method, and Cross et al.41 used it
to analyze brucellosis in north-western Wyoming, but this method cannot completely eliminate random spatial
noise. The homogeneity assumption of the HB method may not hold in a large study area, and a subarea in close
proximity may be not the best subarea on which to rely.14 The CK method uses auxiliary variables to improve the
interpolation accuracy.42 Knotters et al.43 studied that the CK method using auxiliary variables would perform
better than the OK mtheod. But the model will become very complex if there are too many auxiliary variables, and
the relationship between target variable and auxiliary variables is vital to determine whether the CK method would
be better than the OK method.42,44 In addition, these methods may not apply to study areas in which the spatial
heterogeneity is greater than the autocorrelation.

The sandwich estimation method, a new method suitable for spatial heterogeneous area, allows researchers to
easily combine spatial heterogeneity and auxiliary variables,14,15 and it has previously been used in disease
mapping.15 However, as too many auxiliary variables may lead to over-zoning, the sandwich estimation
method still needs to be improved.

3 A modified sandwich estimation method

Estimating the distribution of cancer mortality often consists of two steps: collecting and analyzing data, and
performing a suitable interpolation.45–47 The main data that are used in distribution estimations of cancer
mortality are cancer mortality surveillance data and auxiliary variables data. Cancer mortality surveillance data
are collected by the NCCR, while data on auxiliary variables are taken from prior information or research
literatures. The variables are then screened to identify useful variables and delete those that may negatively
influence the accuracy of the estimation.19 Performing the interpolation according to these data is the last step
in obtaining the final result. The general framework for this study is shown in Figure 1, which is split into two
parts: Variable selection and Sandwich estimation.

3.1 Variable selection

The pathogenesis of cancer is complicated, and geographical and pathogenic factors should be included in the
estimation of cancer mortality distributions. However, the data for some variables are inaccessible, such as genetic
background32 and reproductive habits,37 due to issues like privacy. Using prior knowledge and relevant studies,
various accessible factors can be selected as auxiliary variables,28,48 including geographical factors, socioeconomic
factors, physical condition and living habits. As the quality of the auxiliary variables greatly influences the
distribution estimation, it is necessary to select high-quality variables. Of course, high-quality early data
collection processes are vital, but in many cases, the quality of the collected data is not controlled by the
researcher. Therefore, the selection of variables becomes critical. The selection of variables primarily depends
on the effects of the variables on cancer mortality. Two indicators are used to measure these effects: Pearson
correlation coefficient and Geogdetector q-statistics.
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3.1.1 Pearson correlation coefficient

The Pearson correlation coefficient (r) was developed by Karl Pearson in 1895 to measure the correlation between
two datasets.49 The Pearson correlation coefficient can be defined as

r ¼

Pn
i¼1 ðxi � xÞðyi � yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 ðxi � xÞ2
Pn

i¼1 ðyi � yÞ2
q ð1Þ

where n is the magnitude of datasets X or Y, xi and yi indicate the i-st value of X and Y, respectively and x and y
indicate the mean values of X and Y, respectively. The Pearson correlation coefficient is between �1 and 1. If r> 0,
there is a positive correlation between the two datasets; if r< 0, there is a negative correlation between the two
datasets; if r¼ 0, there is no correlation between the two datasets; if r¼�1, it means that there is a perfect
correlation and a definite functional relationship between the two datasets. A larger absolute value of the
Pearson correlation coefficient indicates a stronger correlation between the variable and cancer mortality, that
is, the given variable has a greater effect on cancer mortality in some way.

3.1.2 Geogdetector q-statistics

Geogdetector q-statistics can be used to measure the spatial heterogeneity of cancer mortality and the influence of
the geographical spatial partitioning of a given property on cancer mortality.50,51 The q value quantifies the
similarity between the spatial distribution of cancer mortality and a particular factor.15,50 Geogdetector q-
statistics can be defined as

q ¼ 1�

PL
i¼1 ni�i

2

n�2
ð2Þ

Variable selection

geographical factors

Sandwich estimation

socioeconomic factors

physical condition

zoning layer 1 zoning layer 2 zoning layer n...

living habits
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Figure 1. Sandwich estimation for estimating cancer mortality distribution.
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where n is the number of cancer mortality surveillance points in the study area, L is the number of zoning areas, ni
is the number of cancer mortality surveillance points in subarea i, �2 is the variance of cancer mortality
surveillance points in the study area and �i

2 is the variance of cancer mortality surveillance points in subarea i.
The value of q ranges from 0 to 1, and the closer q is to 1, the more similar the spatial distributions of cancer
mortality and a particular factor are, which indicates that the factor has a greater influence on cancer mortality51,52

and, at the same time, that the spatial heterogeneity of cancer mortality is stronger.
After preliminary variables are confirmed, auxiliary variables that have strong effects on cancer mortality can be

screened out by combining r and q. The r and q are calculated using R 3.4.1 software.

3.2 Sandwich estimation

Sandwich estimation is a spatial estimation method for estimating stratified heterogeneous surfaces in multiple
units. It comprises three layers, from which it gets its name14: a sampling layer, a zoning layer, and a reporting
layer. The advantage of the sandwich estimation method is that multi-unit reporting can be achieved with few
samples, providing a straightforward and simple way to solve the problem of multiple reporting units and the
transfer of data between polygon systems.14 The sampling layer is a collection of sampling points. The zoning layer
divides the study area into multiple homogeneous zones of spatial attributes.14,51 The values of the zoning
layer can be estimated by taking the mean of the sampling data from the homogeneous layers. The reporting
layer consists of spatial units,14 which could be administrative units of a city, counties, ecological regions or
watersheds. County administrative units were used as the reporting layer in this study. The sampling data is
passed through the zoning layer to the reporting layer. The data and the error stream transfer the estimated
mean and sampling error layer by layer.

3.2.1 Zoning layer

High-quality zoning is critical to achieving high-accuracy sandwich estimation.14,53 Partitioning the study
area into homogeneous subareas is the purpose of zoning,53,54 which should consider the spatial structure
of cancer mortality surveillance data. The zoning layer can be created using any zoning method, so long as
it partitions the study area into homogeneous subareas.14,15 There are three main tools of zoning14,55: prior
information, pre-sampling and auxiliary variables. Prior information mainly stems from classical theories or
previous research conclusions such as climate zone, and additional knowledge regarding partitions could be
obtained by pre-sampling the units. After the selection of auxiliary variables believed to be correlated with cancer
mortality, each auxiliary variable is partitioned into homogeneous subareas and combined with cancer mortality
data.

In general, a zoning layer (according to one attribute variable or a cross-overlap of a couple of attribute
variables) can meet the requirements of the sandwich estimation. Due to its complex geographical and
pathogenic factors, more than 10 attributes strongly influence cancer mortality; a zoning layer with these
attribute variables will lead to over-zoning and is insufficient for sandwich estimation. Therefore, several zoning
layers are necessary to achieve high accuracy in the sandwich estimation. In this way, each variable corresponds to
a zoning layer. For each zoning layer, the estimated mean yz of zone z in this zoning layer is14,15

yz ¼
1

nz

Xnz
i¼1

yzi ð3Þ

where nz is the number of sampling points in zone z, yzi is the sampling value at location i in zone z, and the
estimated variance VðyzÞ of zone z is

VðyzÞ ¼ Eðyz � EyzÞ ð4Þ

For each auxiliary variable, one zoning layer estimation will be constructed from cancer mortality data.

3.2.2 Estimation layer

The reporting layer in the sandwich estimation method is flexible and could consist of administrative units,
ecological grids, basins, and so on. The estimation layer in the modified sandwich estimation method is
equivalent to the reporting layer in the standard sandwich estimation method. An estimation unit may overlap
with one or more subareas from a zoning layer. The estimations for the estimation units (the administrative units
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in this study) were acquired using the zoning unit estimations.14,15,56 The estimated value yr of each unit in the
estimation layer of one zoning layer can be expressed as

yr ¼
XLr

z¼1

Wrzyz ð5Þ

VðyrÞ ¼
XLr

z¼1

Wrz
2VðyzÞ ð6Þ

where Lr is the number of zones that are covered or partially covered by estimation unit r in the estimation layer,
VðyrÞ is the estimated variance of reporting unit r, and weight Wrz is

Wrz ¼
ArzPLr

r¼1 Arz

ð7Þ

where Arz is the area of zone z covered by the report unit r.
Although there is only one estimation layer, several zoning layers could create several sets of estimations for

each unit in the estimation layer.

3.2.3 Fused estimation layer

Variance is a measure of the dispersion of a set of data.57 In this study, variances specifically indicate the variations
of cancer mortality data passing through various zoning layers in each estimation unit. Information, comprising
estimations and sampling variances, flows from the sampling layer to the zoning layer and finally to the estimation
layer.14 Since the multiple zoning layers used in this paper can help to calculate estimations, variances flowed from
each zoning layer according to each auxiliary variable and were used to compute the weights that fused the final
estimations of each estimation unit. Therefore, the final estimated value yr in each report unit r should be
expressed as

yr ¼
Xnv

j¼1
Wrjyrj ð8Þ

where yrj is the estimated value of report unit r from zoning layer j according to auxiliary variable j, nv is the
number of auxiliary variables and Wrj is the weight of yrj, which is defined as

Wrj ¼

1
VðyrjÞPnv
j¼1

1
VðyrjÞ

ð9Þ

where VðyrjÞ is the estimated variance of report unit r from zoning layer j according to auxiliary variable j. In other
words, a bigger variance indicates a smaller weight. In addition, the final variance VðyrÞ is calculated as

VðyrÞ ¼
Xnv
j¼1

Wrj
2VðyrjÞ ð10Þ

Further, in sandwich estimation, the sampling data is conducted by the zoning layer, and the zoning layer and
estimation layer are mutually independent. Therefore, sampling data need not follow a specific spatial distribution.
In the zoning layer, the distribution of sampling data within the partition also has no influence on the partition
estimation. However, it is important to note that if a zone does not contain any sampling data, then the value for
that zone cannot be estimated. The modified sandwich estimations are also performed using R 3.4.1 software.

4 Case study

4.1 Cancer mortality data

The estimation of the BC mortality rate distribution in the Chinese mainland in 2005 will serve as a case study to
demonstrate the modified sandwich estimation. As a common and highly invasive malignant tumour with a slow
progression of symptoms,58 BC poses a serious threat to global women’s health.59 The morbidity of BC is low in
China, but changes in eating habits, reproductive behavior and lifestyle are making people increasingly at-risk of
developing BC.60,61 Further, an accurate understanding of the distribution of BC mortality can provide a basis for
research, prevention and treatment of BC.28,62 However, due to differing economies, living habits and the complex
pathogenic factors of BC,63–66 there are regional differences in the distribution of BC mortality in China.12,13
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The BC mortality surveillance data for 2005 was extracted from the Third National Retrospective Sampling
Survey of Death Causes, conducted by the Chinese Ministry of Health from 2004 to 2005.67,68 The BC mortality
surveillance data covered 218 surveillance counties (Figure 2), accounting for 143 million person-years between 2004
and 2005.67,68 The sampling survey collected information from a nationally representative sample.68 As this
is published tabulated data, no ethics approval was required for this study.68 The distribution of the surveillance
counties in the Chinese mainland is shown in Figure 2. Table 1 gives a description of the 2005 county-
level surveillance BC mortality data from the Chinese mainland. The lowest county mortality of BC was
0.000 cases per 100,000, and the highest county mortality of BC was 19.975 cases per 100,000. And, the mean
and median county mortality of BC were 5.658 and 5.135 per 100,000, respectively (Table 1), which indicated
the data are not skewed. Spatial autocorrelation is common used in spatial populations22 and can assist in
the selection of interpolation methods.18,69 In this study, Moran’s I, which has a value between �1 and 1, is used
to measure spatial autocorrelation.22,70 The conceptualization of spatial relationship of Moran’s I for BC mortality
was inversed distance, which means that nearby neighboring features have a larger influence on the computations of
a target feature than features that are far away. The threshold distance of Moran’s I calculation was maximum of the
nearest distance between all features. So, the data has a Moran’s I of 0.213, which indicates a weak spatial
autocorrelation; therefore, some interpolation methods based on spatial autocorrelation71–73 may not able to
accurately estimate the distribution of BC mortality. The Geogdetector q-statistic, which is used to measure
spatial heterogeneity, has a value of 0.540, indicating great spatial heterogeneity in the distribution of cancer
mortality. Hence, the modified sandwich estimation method may be suitable.

4.2 Auxiliary variables selection

BC has complicated pathogenic factors63,64 that can generally be divided into two categories: 1) endogenous factors,
such as genetic background,32 physical condition31 and hormone level,74,75 and 2) exogenous factors, such as eating
habits,33 living environment,34,65,66 drinking,35 smoking,36 reproductive habits37 and other elements of lifestyle.
However, many of these variables are inaccessible. Socioeconomic factors, who are positively related to BC risk,
can serve as an auxiliary of lifestyle, which is generally inaccessible.28,48 Genetic background encompasses a family
history of cancer,32 which is the primary cause of BC, but this is also difficult to access, primarily due to privacy issues.

Therefore, from the factors of physical condition, living habits, living environment and reproductive habits, 21
auxiliary variables were selected by reviewing the relevant literatures,5,13,27,35,76–82 which are shown in Table 2.

Figure 2. Distribution of BC surveillance counties in the Chinese mainland, 2005 (unit: 1/100,000).
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The data for these 21 auxiliary variables were taken from various sources. Socioeconomic data such as per-capita
gross domestic product (GDP) were taken from the China Compendium of Statistics 1949–2008.83 Demographic
data, such as average number of live births for women aged 15 to 64, urbanization rates, the average level of
education and female average fertility index, were extracted from the Fifth National Population Census (2000) and
Sixth National Population Census (2010).68 Health data such as smoking rates, alcohol consumption, fruit and
vegetable intake and proportions of overweight women were extracted from the Nutrition and Health Status of the
Chinese People (http://www.moh.gov.cn/wsb/pzcjd/200804/21290.shtml). The PM2.5 (particulate matter that has
an aerodynamic diameter of 2.5 microns or smaller) data were extracted from the satellite inversion data of the
National Aeronautics and Space Administration (NASA). The elevation dataset was provided by the Data Center
for Resources and Environmental Sciences, Chinese Academy of Sciences (RESDC) (http://www.resdc.cn).
The corresponding used year for the auxiliary data were also shown in Table 2.

The Pearson correlation coefficient and the Geogdetector q-statistics of these auxiliary variables and BC
mortality were calculated, and the results are shown in Table 3. It is worth noting that several auxiliary
variables are continuous numerical data, which were first discretized using Ward’s minimum variance
method,84–86 based on the theory that the sum of the squared distances in the class is the smallest. The results
showed that 5–10 classes may be the best choice for zoning the BC mortality. For each variable, the zoning mode
with the biggest Geogdetector q-statistics was selected as the zoning mode for that variable (Tables 3 and 4). Most
of the auxiliary variables significantly influence BC mortality, with some exceptions, such as drinking, which seem
to contradict common sense. According to the results, auxiliary variables (over_weigh, drink, fruit, milk,
fat_intake and dryland) with insignificant correlations (p-value> 0.05) were removed from the study. Then, the
auxiliary variable (redmeat) that was significantly correlated with BC mortality (0.01< p-value< 0.05) but had
only minor influence on it was also deleted. After selection, 14 auxiliary variables were retained. For these 14

Table 2. Pathogenic factors and corresponding auxiliary variables.

Pathogenic factor Auxiliary variable Abbreviation Year

Physical condition Female per capita body mass index (kg/m2) bmi 2004

Female overweight rate (%) over_weigh 2004

Percentage of population aged 15–64 (%) popul_15 2000

Percentage of population over 60 years of age (%) popul_60 2000

Living habits Female smoking rate (%) smoke 2004

Female drinking rate (%) Drink 2004

Rate of excessive female red meat intake (%) redmeat 2004

Rate of insufficient female vegetable and fruit intake (%) Fruit 2004

Per capita milk intake (kilocalorie) milk 2004

Per capita animal fat intake (kilocalorie) fat_intake 2004

Socioeconomic Urbanization rate (%) urban 2000

Per capita gross national product (trillion dollars) gdp 2005

Average level of education for women (year) edu 2000

Proportion of non-agricultural population (%) nonagri 2000

Proportion of population in second industry (%) sec_indus 2000

Average population density (people/km2) popul_dens 2010

Average number of live births of women aged 15–64 birth 2000

Ratio of women over 15 years of age who have a spouse (%) spouse 2000

Proportion of dry land area (%) dryland 2005

Geographical Elevation (km) elevation 2005

Average annual fine particulate matter ratio (mg/m3) pm 2005

Table 1. Summary statistics of BC mortality surveillance data (n¼ 218, unit: 1/100,000).

Cancer Mean Median Min Max STD Moran’s I q

BC 5.658 5.135 0.000 19.975 2.872 0.213* 0.540

*P< 0.0001.
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variables, condition number (K) was calculated to determine the collinearity, generally, if K< 100, the degree of
collinearity is small; if 100�K� 1000, there is a general degree of collinearity; if K> 1000, there is a serious
collinearity. And the result showed that K was 45.8277, so there was very small collinearity between the auxiliary
variables.

4.3 Sandwich estimation

From the three main sources of zoning,14,55 this study chose to zone according to auxiliary variables. For the 14
auxiliary variables, 14 zoning layers were constructed. The BC mortality in each zone was roughly homogeneous to

Table 3. Pearson correlation coefficient and Geogdetector q

statistics of auxiliary variables.

Auxiliary variable r q

bmi �0.229a 0.262

over_weigh 0.042 0.267

popul_15 0.510a 0.442

popul_60 0.461a 0.324

smoke 0.193a 0.316

drink �0.100 0.258

redmeat �0.161b 0.286

fruit �0.119 0.265

milk �0.011 0.222

fat_intake 0.126 0.215

urban 0.546a 0.382

gdp 0.418a 0.330

edu 0.601a 0.451

nonagri 0.553a 0.393

sec_indus 0.435a 0.345

popul_dens 0.492a 0.490

birth �0.643a 0.540

spouse �0.242a 0.301

dryland �0.072 0.308

elevation �0.379a 0.345

pm 0.433a 0.378

aCorrelation is significant at the 0.01 level (two-tailed).
bCorrelation significant at the 0.05 level (two-tailed).

Table 4. Zoning layers for estimation.

Auxiliary variable Zones q

bmi 10 0.262

popul_15 10 0.442

popul_60 9 0.324

smoke 10 0.316

urban 10 0.382

gdp 10 0.330

edu 10 0.451

nonagri 9 0.393

sec_indus 10 0.345

popul_dens 10 0.490

birth 10 0.540

spouse 10 0.301

elevation 10 0.345

pm 10 0.378

Liao et al. 9



achieve the optimal partitioning mode of each variable. The partitioning mode of the auxiliary variables that had the
greatest influence on BC mortality was found using Geogdetector q-statistics, with a greater q indicating a better fit.
The optimal zoning situation of each auxiliary variable is shown in Table 4. As demonstrated in Table 4, most of the
zoning layers (12 out of 14) were divided into 10 subareas and two zoning layers were divided into nine subareas.

The estimation layer consisted of 2862 counties. For each zoning layer, a set of values of the estimation layer
would be estimated. As an estimation unit may overlap with one or more subareas from a zoning layer, the
estimations were performed using equation (5). Several estimation layers were fused using equation (8).

4.4 Method comparison and precision evaluation

This study compares the effectiveness of applying the modified sandwich estimation method, the HB method and
the OK method for estimating the distribution of BC mortality in the Chinese mainland in 2005. LOOCV was
applied to evaluate the accuracy of the four methods, and the root-mean-squared-error (RMSE) and coefficient of
determination (R2) were calculated.

The HB method, recognized as one of the most powerful tools in disease mapping, is a statistical model written
in multiple levels that estimates the parameters of the posterior distribution using the Bayesian method. This
method defined probability distribution parameters of cancer mortality in the study area, with cancer mortality in
any subarea relying on cancer mortality from other subareas.23,39 Assumed that the BC mortality OðiÞ in every
region i is Poisson distributed23,87

OðiÞ � PðEðiÞ � rðiÞÞ ð11Þ

where rðiÞ is the relative risk of cancer in region i, EðiÞ is proportional to the total population of the region i, and
rðiÞ can be linearly transformed

logðrðiÞÞ ¼ Tþ XTUþ vðiÞ þ eðiÞ ð12Þ

where T is a constant value, the prior probability distribution of T is usually a flat distribution or a uniform
distribution; XT and U denote the auxiliary variables and corresponding coefficient, vðiÞ reflects the spatial
structure via an intrinsic Gaussian autoregression, and eðiÞ reflects the heterogeneity of region i. Assuming that
wði, j Þ is the spatial weight matrix that indicates the spatial adjacent relationship of location i and its n neighbors, if
i and its neighbor j are spatial adjacent, then wði, j Þ is 1, otherwise is 0, w�ði, j Þ ¼ wði, j Þ

�Pn
i¼1 wði, j Þ is the

standardization of the rows of wði, j Þ, so the prior distribution of vðiÞ is23

vðiÞ � N
Xn

j¼1
w�ði, j Þvð j Þ, �2

.Xn

j¼1
wði, j Þ

� �
ð13Þ

And the prior distribution of eðiÞ is23

eðiÞ � Nð0, �2Þ ð14Þ

where 1=�2 � Gammaða, bÞ, 1=�2 � Gammaðc, d Þ, a and c are shape parameters, and b and d are inverse scale
parameters.23,88

The OK method, based on spatial variation theory, is an optimized linear unbiased estimation method.89,90 The
OK method is one of the most common interpolation methods used to map the spatial distributions of
attributes.91–93 A condition of the OK method is that the regional variation ZðxÞ be second-order stationary.
If this condition is met, the OK method94,95 can estimate BC mortality at any location using the weighted linear
combination of observations from the study area

Z0ð�0Þ ¼
Xn
i¼1

�iZðxiÞ ð15Þ

where �i is the weight, which denotes the contributions from observations that ensure Z0ð�0Þ is unbiased. The
optimized unbiased estimation stands for the average of the estimated error or residuals close to zero, which is the
mathematical expectation that the difference between the predicted value Z0ð�0Þ and observed value Zðx0Þ is zero,
and that the variation in the differences between the predicted Z0ð�0Þ and observed Zðx0Þ is minimized.
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The CK method is an extension of the OK method, also based on spatial variation theory.89,90 These
two methods are essentially the same. In addition to the target variable, the CK method is a multivariate
kriging model that introduced several affected variables. If the regional variation ZðxÞ is second-order
stationary, the CK method can estimate BC mortality at any location using the weighted linear combination of
observations from the study area

Z0ð�0Þ ¼
Xn
i¼1

�1iZ1ðxiÞ þ
Xm
j¼1

�2jZ2ðxjÞ ð16Þ

where Z1ðxiÞ and Z2ðxjÞ are the measured value of target variable Z1 and auxiliary variable Z2, respectively; and �1
and �2 are the weight of target variable Z1 and auxiliary variable Z2, respectively. When the spatial information of
a certain environmental variable that needs to be studied is missing, it can be analyzed by using the information
of several variables related to it.96 In theory, in a more complex large spatial scale area, the CK method will be
superior to the OK method.42,44

The LOOCV, a method commonly used for evaluating the accuracy of interpolation methods, was applied in
this study. A BC mortality surveillance point was removed from the original data; the remaining observations were
used for the interpolations; and the value of the removed point was compared with corresponding estimated
value.97 The RMSE, one of the most commonly used evaluation methods, was calculated to compare the
accuracy of predictions

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1
ðxobs,i � xpred,iÞ

2

r
ð17Þ

where xobs,i denotes the observed BC mortality value in location i, xpred,i represents the estimated value in location i
and n is the number of observations. A smaller RMSE indicates a more precise interpolation model. In addition,
R2 is often used in classical regression analyses, as it can measure the closeness of the model’s fit to the variable.
Here R2 is defined as

R2 ¼ 1�

Pn
i¼1 xobs,i � xobs,mean

� �2
Pn

i¼1 xobs,i � xpred,i
� �2 ð18Þ

where xobs, i indicates the observed value in location i, xpred, i indicates the predicted value in location i, xobs,mean

stands for the mean of the observed values and n is the number of observations. A larger R2 indicates a more
precise interpolation model.

4.5 Results and discussion

Four interpolation methods—the modified sandwich estimation, the HB, the CK and the OK methods—were used
to estimate the distribution of BC mortality in the Chinese mainland in 2005. The modified sandwich estimation,
the HB and the CK methods, used the same filtered auxiliary variables; the modified sandwich estimation method
takes into consideration spatial heterogeneity; the HB method and CK method are based on the spatial
autocorrelation, and the OK method only considers the spatial autocorrelation of the BC mortality surveillance
data. Each method was calculated using R 3.4.1 software, the modified sandwich estimation method was
performed using our own code, the HB method was performed using the R package-INLA, and the CK and
OK methods were performed using the R package-gstat. The kriging and HB model parameters’ settings are
described in detail in the Supplemental Material.

The accuracy comparison of the four methods is shown in Table 5. The values of the RMSE of the four
methods are 2.097 for the modified sandwich estimation, 2.116 for the HB method, 2.713 for the CK method
and 2.779 for the OK method, indicating that the modified sandwich estimation method was the best method of
them, then the HB, CK, and OK method. The R2 ranked the methods in the same order as the RMSE. The linear
regression graph of cross-validation (Figure 3) showed that the estimated BC mortalities from the modified
sandwich estimation method and the OK method were relatively concentrated, while the results of the HB
method and the CK method were relatively dispersed. The linear regression slope of the HB method was
closest to 1, followed by the modified sandwich estimation method. The OK method had the smallest slope,
indicating that the modified sandwich estimation method, the CK method and, particularly, the OK method

Liao et al. 11



underestimated BC mortality. However, in terms of precision, the modified sandwich estimation method is
superior to the HB, the CK and the OK methods in estimating the distribution of BC mortality. More details
about the precision of the four methods are included in the Supplementary Material.

The distribution of percentage differences between the estimated mortalities of the four methods and the
surveillance data is illustrated in Table 6. In the surveillance data, the BC mortality of most counties (79.36%)
was between 3 and 10 per 100,000. The estimated BC mortality of most counties (98.01% for the modified
sandwich estimation method, 86.65%for the HB method, 92.17% for the CK method and 97.44% for the OK
method) was between 3 and 10 per 100,000, but the estimated BC mortality of counties (7.37%) between 5 and 10
per 100,000 for the CK method was more than the other three methods, indicating the CK method underestimated
the BC mortality seriously, and the estimated BC mortality of most counties (91.40%) was between 5 and 10 per

Figure 3. Linear regression graph of cross-validation (unit: 1/100,000).

Table 5. Accuracy comparison of the four methods.

Method RMSE (unit: 1/100,000) R2

Modified sandwich 2.097 0.587

HB 2.116 0.466

CK 2.713 0.145

OK 2.779 0.064
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100,000 for the OK method. This indicates that the results of the modified sandwich estimation method and HB
method were closest to the BC mortality surveillance data. The four estimated distributions of BC mortality in the
Chinese mainland in 2005 are shown in Figure 4. Comparing this figure with Figure 2, which shows the
distribution of BC mortality surveillance data, can reflect the valuation of each method. Although the modified
sandwich method underestimated the values in a few cases, it was more accurate than the other two methods.

According to the estimated BC mortality distribution of HB method (Figure 4(b)), the mortality of BC was low
in some regions of central Inner Mongolia Province, western China, central and eastern China, while in some
regions of north-eastern China, Inner Mongolia Province, North China Plain, Qinghai Province, Xinjiang
Province, Chengdu Plain and south-eastern China, the BC mortality were relatively high. The HB method is
able to describe complex interactions between the parameters of a stochastic model.98,99 Compared to other
methods, the HB method has two primary advantages40,99: first, it can manage the uncertainty of sampling
data using a framework of probability theory; second, it relies on clear and definite assumptions. However, the
HB method still needs to be improved. Ideally, the HB method would ‘‘leverage power’’ from similar but non-
adjacent areas in a region. Like the OK method, the HB method also tends to smooth data.100,101 The HB method

Figure 4. Distribution of the estimated BC mortality in the Chinese mainland in 2005 by (a) modified sandwich estimation, (b) HB,

(c) CK and (d) OK (unit: 1/100,000).

Table 6. Statistics of estimations from four methods.

Mortality (1/100,000) Surveillance data Modified sandwich HB CK OK

0–3 33 (15.14%) 45 (1.57%) 325 (11.36%) 207 (7.23%) 35 (1.22%)

3–5 70 (32.11%) 1344 (46.96%) 1079 (37.70%) 976 (34.10%) 173 (6.04%)

5–10 103 (47.25%) 1461 (51.05%) 1401 (48.95%) 1662 (58.07%) 2616 (91.40%)

10–15 11 (5.05%) 11 (0.38%) 52 (1.82%) 16 (0.56%) 30 (1.05%)

>15 1 (0.46%) 1 (0.03%) 5 (0.17%) 1 (0.03%) 8 (0.28%)

Total counties 218 (100%) 2862 (100%) 2862 (100%) 2862 (100%) 2862 (100%)
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only considers the spatial autocorrelation of adjacent regions, but in some situations this spatial autocorrelation
does not exist,23 which is the weakness of the HB method. When a study area contains heterogeneous
characteristics, the HB method will inevitably enlarge the error of the smooth values. In this study, the
accuracy of the HB method is worse than that of the modified sandwich estimation, but it still gets the same
distribution as the result of the modified sandwich estimation method and its results are closest to the BC mortality
surveillance data in cross-validation (Figure 3).

As previously mentioned, the CK and OKmethods are primarily based on the theory of spatial autocorrelation,
which allows them to make full use of the spatial autocorrelation of the BC mortality data.102,103 Therefore, the
ideal condition to utilize the CK and OK method is high spatial autocorrelation. The low spatial autocorrelation
of the BC mortality surveillance data (Moran’s I of 0.213) is not suitable for the CK and OK method, which led to
the low precision for estimating the distribution of BC mortality (Figure 4(c) and (d) and Table 5). In addition, the
CK method can also use the information of auxiliary variables, and it could perform better than the OK method
(Table 5). Although the variation function of the kriging could be established with 218 BC mortality surveillance
points,104 this only encompasses 7.6% (218/2862) of the surveillance points, which is a relatively low sampling
proportion. Meanwhile, the smoothing effect of the CK and OK methods is significant,105 which means they can
underestimate high sampling values and overestimate low sampling values,106 as shown in Figure 4(c) and (d),
especially the OK method.

Compared with the estimated BC mortality distribution of the HB, CK and OK methods, the BC mortality of the
modified sandwich estimation method has a higher BCmortality interpolation values in the regions of eastern coastal
areas of China, the north-eastern China, western Inner Mongolia Province, parts of Xinjiang Province and Gansu
Province, and central China, which is consistent with some other researches28,68,107 that have close or same study
time. Although the spatial heterogeneity is common in geography,14,23,70 it is often overlooked. The most commonly
used interpolation methods are based on spatial autocorrelation theory. The hypothetical premise of the sandwich
estimation method is that the heterogeneous areas can be zoned into several homogeneous subareas,14 which is
applicable to the mortalities of certain cancers.6,13,26,27 Dirichlet is a stochastic process that is widely used for
Bayesian nonparametric statistics.108,109 It is a distribution over distributions,108 which means that Dirichlet
processes are often used to describe the prior knowledge about the distribution of parameters. Different from the
Dirichlet processes, the sandwich estimation method can perform undeniably effective estimations on spatially
heterogeneous surfaces.14,15 The essence of the sandwich estimation method is calculating the mean of cancer
mortality in the homogenous subarea. However, it is difficult to zone a study area into perfectly homogeneous
subareas, which leads to a degree of smoothing (Figure 4(a)). In addition, due to over-zoning, an excess of zoning
layers may not bring significant benefits to the sandwich estimation method.110 This study improved the sandwich
estimation method by solving the problem of over-zoning, increasing its application range and quality. Further, the
comparisons to the HB and OK methods also show the advantage in accuracy of the modified sandwich estimation
method. It is worth noting that sandwich sampling is preferred for the sandwich estimation method.14,55

5 Conclusion

Due to its complicated pathogenic factors, distributions of cancer mortality commonly exhibit spatial
heterogeneity. Most of the traditional, commonly used interpolation methods, such as the HB, CK and OK
methods, are based on spatial autocorrelation theory. Therefore, the spatial heterogeneity of cancer mortality
may nullify the theoretical basis of these methods. The sandwich estimation method, based on spatial
heterogeneity theory, transfers the cancer mortality surveillance data to the estimation layer through the zoning
layer, which can be created simply and feasibly. However, in order to prevent over-zoning, large numbers of
auxiliary variables should not be used in the original sandwich estimations, so it is sometimes difficult to utilize
sufficient information in this method. The original sandwich estimation method was improved in this study: Each
auxiliary variable now corresponds to a zoning layer; the corresponding estimation layers derive from the zoning
layers; and finally, the reciprocals of the variances serve as the weights fusing these estimation layers and
calculating estimated results. With BC mortality in Chinese mainland in 2005 as a case study, the accuracies of
the HB, CK and OK methods were compared to that of the modified sandwich estimation method, which was
found to be better than the HB method, and the HB method was found to be better than the CK and OK methods.
In terms of distribution, the results from the HB and the modified sandwich estimation method are reliable and
have almost the same distribution as the BC surveillance data. In short, this study attempted to use the sandwich
estimation method to estimate the distribution of cancer mortality with strong spatial heterogeneity, which holds
great potential for application in further estimations of cancer mortality distributions.
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At the same time, there are some problems in this study. Using variances as weights may not be the best way to
determine the weights used to fuse the results, and more effective weight determination methods should be
explored in future work. The sandwich estimation method can eliminate some extreme values that should not
be ignored. In addition, due to the limited data source, the auxiliary data whose date were close to data of 2005
were used, and the effect of BC incidence or death time lag should be included carefully in the future.
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