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Abstract: Coal is a vital basic energy source in China, and rail serving is its major mode of
transportation. Heavy metals in street dust surrounding the coal railway do harm to the environment
and pose a potential risk to human health. This paper aims to identify the effects of coal transportation
hubs on heavy metals in street dust. The geoaccumulation index and ecological risk index were
used to assess the contamination levels of the following elements in Yuanping, Shanxi: arsenic (As),
cadmium (Cd), chromium (Cr), copper (Cu), mercury (Hg), nickel (Ni), lead (Pb), and zinc (Zn).
The levels of contamination of these heavy metals in soils were compared to those in street dust,
and the difference between the railway’s and mining’s impacts on dust’s heavy-metal concentrations
was explored. The results indicated that Cr and Pb in street dust were mainly affected by coal railway
transportation, and the interaction effect of coal railway transportation and mining was greater than
either of them alone. A potential control and prevention zone for Cr and Pb extending 1 km to both
sides of the railway was identified. This work proves that coal railway transportation has certain
effect on heavy metals in street dust and provides a scientific approach for future environmental
impact assessments of coal transportation via railway.
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1. Introduction

China is rich in coal resources, and coal remains a basic energy source there [1–3], securing it a
significant position in the national economy. China’s coal production is mainly located in the northern
China centred on Shanxi Province; in the eastern China centred on Shandong Province and Huai River;
in south-western China centred on Guizhou Province; and, in north-western and north-eastern China.
However, the demand for coal is concentrated in the economically developed, coastal areas of eastern
China and the southern China [4,5]. Consequently, an abundance of coal is transported over long
distances. At present, it is transported mainly by waterway, highway, and railway, with railway being
the major mode of transportation [6] due to its large-volume capacity, ability to cover long distances,
high speed, and freedom from interference by climatic conditions. As more coal accumulates in the
coal transportation hubs, one expects a higher concentration of heavy metals in the areas surrounding
these hubs, which does harm to the environment. Due to vibration, leakage, and the effect of wind [7]
in railway transportation, coal dust is introduced into the environment along railway lines and it
causes heavy metals to accumulate [8].
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Street dust is the accumulation of solid particles on outdoor ground surfaces [9,10]. Street dust
affects urban environmental quality, introducing pollution via multiple modes [11,12]. Many studies
showed that heavy metals in street dust do not degrade, but rather persist in street dust [13–15].
As street dust permeates the ecological environment by many means, such as surface runoff and
atmospheric precipitation [16–18], heavy metals contained in street dust eventually enter the food
chain, which are posing a potential risk to human health [19–22]. Many recent studies on heavy metals
in street dust involved assessments of contamination levels [22–24], spatial distribution [11,22,24],
and source identification [25–27]. Heavy metals in street dust have many sources [28–30], which can
be divided into two types: natural sources and those based on human activity. Natural sources include
soils [31]. Human activity—the main source of heavy metals in street dust—includes vehicle emissions,
coal combustion, and building materials. Some studies [32,33] have shown that coal transportation
influences the environment, but there are few studies on the effects of coal railway transportation
on the presence of heavy metals in street dust. These factors are important in establishing pollution
control strategies [34,35], in particular, in coal transportation hubs.

This article describes a study that focused on the coal transportation hub of Yuanping in Shanxi
Province and analysed the effects of railway coal transportation on the surrounding environment.
The study assessed the levels of contamination in street dust of the following heavy metals: arsenic
(As), cadmium (Cd), chromium (Cr), copper (Cu), mercury (Hg), nickel (Ni), lead (Pb), and zinc
(Zn). As is a metalloid, but its physicochemical properties are similar to those of heavy metals, so As
is usually analysed according to the analysis method of heavy metals [11,36] and the term “heavy
metal” was used for all the elements in this study. The study employed the geoaccumulation index
(Igeo) and ecological risk index (RI; [37–40]. The relative levels of contamination of heavy metals in
soils and in street dust were compared to exclude the influence of soils on street dust contamination.
Furthermore, the contamination impacts of mining and transportation were separated by correlation
and geographical detector analysis.

2. Materials and Methods

2.1. Study Area

Yuanping (38◦35′–39◦09′ N, 112◦17′–113◦35′ E) is located in the north of Shanxi Province and a
major coal transportation hub between the south of Shanxi and northern China (Figure 1). The city
has an area of approximately 2560 km2 and is rich in mineral resources. It is surrounded by many
large coalfields distributed in the northwest: Ningwu, Datong, Xishan, and Qinshui. Yuanping
has a prevailing northwest wind that occurs in spring. It belongs to the temperate continental
climate zone and has an average annual temperature of 9.8 ◦C and average annual precipitation of
417.1 mL. Yuanping is located along the Sanxi coal transportation channel (contains coal transportation
channels in Shanxi, Shaanxi, and western Inner Mongolia), and the Beijing–Yuanping, Beitongpu, and
Shuohuang railways intersect in the city, which has a total transportation area of 39.87 km2.



Int. J. Environ. Res. Public Health 2018, 15, 2662 3 of 21
Int. J. Environ. Res. Public Health 2018, 15, x 3 of 22 

 

 
Figure 1. Distribution of street dust and soils sampling locations in Yuanping. 
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villages were sampled in the 520 villages in Yuanping. In the same way, 51 of the most important 
villages were further sampled form the 432 villages. Two samples were sampled per village, after 
removing invalid, contaminated samples, 94 street dust samples, 93 topsoil samples, and 77 coal 
samples were collected. The geographic coordinates of all sampling points were recorded using a 
global positioning system (GPS). All samples were kept in polyethylene bags and brought back to 
the laboratory after marking. The samples were collected in the following manner: Firstly, for street 
dust samples (Figure 1), at each street dust sampling site, a street dust sample of approximately 200 
g was swept into a polyethylene bag with a brush by gently sweeping an area of about 1 m2 at the 
side of the road. Secondly, for topsoil samples (Figure 1), five subsamples were collected with a 
stainless-steel auger at each topsoil sampling site within 10 m2 and were mixed into one composite 
sample. Thirdly, for coal samples (Figure 1), sampling sites were mainly located at surrounding coal 
temporary storage points, coal washing pools, and household coal storage locations along the 
railway lines, four subsamples in four directions and one subsample on the top of a coal stack were 
collected at the temporary and household storage sites, four subsamples in four corners of each coal 
washing pool were collected. Subsamples that were collected at a given sampling site were mixed 
into one composite sample. 

All samples were processed uniformly. After air drying, manually removing plant materials 
and pebbles, and finally, grinding, all of the samples were sieved through a 1-mm mesh nylon sieve. 
The concentrations of As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn in street dust, topsoil, or coal were 
measured. Samples of 5 g each were pressed into thin slices using a tablet machine, As and Zn 
concentrations were measured using X-ray fluorescence spectrometry. A sample of about 0.5 g and a 
small amount of water were mixed into a beaker, then the samples were heated to near dry after 
adding 10 mL hydrochloric acid (HCl, 36%), finally Cd concentration was measured using 
inductively coupled plasma mass spectrometry (ICP-MS) [41]. A sample of about 0.1 g and a small 
amount of water were mixed into a Teflon crucible, 3 mL nitric acid (HNO3, 69%), 1 mL hydrofluoric 
acid (HF, 40%), 1 mL perchloric acid (HClO4, 70%), and 2 mL HCl (36%) were added, after complete 
digestion and evaporation, Cr, Cu, Ni, and Pb concentrations were measured using inductively 
coupled plasma optical emission spectrometry (ICP-OES). A sample of about 0.5 g and a small 
amount of water was added into a digester, 10 mL of a mix of HNO3 (69%), and sulfuric acid (H2SO4, 
98%), as well as 10 mL potassium permanganate (KMnO4, 2%), were added to dissolve Hg was 
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2.2. Sampling and Chemical Analysis

Based on stratified, multi-phased, and cluster probability statistical methods, a total of 432 villages
were sampled in the 520 villages in Yuanping. In the same way, 51 of the most important villages were
further sampled form the 432 villages. Two samples were sampled per village, after removing invalid,
contaminated samples, 94 street dust samples, 93 topsoil samples, and 77 coal samples were collected.
The geographic coordinates of all sampling points were recorded using a global positioning system
(GPS). All samples were kept in polyethylene bags and brought back to the laboratory after marking.
The samples were collected in the following manner: Firstly, for street dust samples (Figure 1), at each
street dust sampling site, a street dust sample of approximately 200 g was swept into a polyethylene
bag with a brush by gently sweeping an area of about 1 m2 at the side of the road. Secondly, for topsoil
samples (Figure 1), five subsamples were collected with a stainless-steel auger at each topsoil sampling
site within 10 m2 and were mixed into one composite sample. Thirdly, for coal samples (Figure 1),
sampling sites were mainly located at surrounding coal temporary storage points, coal washing pools,
and household coal storage locations along the railway lines, four subsamples in four directions and
one subsample on the top of a coal stack were collected at the temporary and household storage sites,
four subsamples in four corners of each coal washing pool were collected. Subsamples that were
collected at a given sampling site were mixed into one composite sample.

All samples were processed uniformly. After air drying, manually removing plant materials
and pebbles, and finally, grinding, all of the samples were sieved through a 1-mm mesh nylon sieve.
The concentrations of As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn in street dust, topsoil, or coal were measured.
Samples of 5 g each were pressed into thin slices using a tablet machine, As and Zn concentrations were
measured using X-ray fluorescence spectrometry. A sample of about 0.5 g and a small amount of water
were mixed into a beaker, then the samples were heated to near dry after adding 10 mL hydrochloric
acid (HCl, 36%), finally Cd concentration was measured using inductively coupled plasma mass
spectrometry (ICP-MS) [41]. A sample of about 0.1 g and a small amount of water were mixed into
a Teflon crucible, 3 mL nitric acid (HNO3, 69%), 1 mL hydrofluoric acid (HF, 40%), 1 mL perchloric
acid (HClO4, 70%), and 2 mL HCl (36%) were added, after complete digestion and evaporation, Cr,
Cu, Ni, and Pb concentrations were measured using inductively coupled plasma optical emission
spectrometry (ICP-OES). A sample of about 0.5 g and a small amount of water was added into a
digester, 10 mL of a mix of HNO3 (69%), and sulfuric acid (H2SO4, 98%), as well as 10 mL potassium
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permanganate (KMnO4, 2%), were added to dissolve Hg was determined its concentration by flame
atomic absorption spectrometry (F-AAS, Beijing, China; [42,43]). The data analysis of this study was
completed using SPSS 22.0 software (New York, NY, USA).

2.3. Contamination Assessment Methods for Heavy Metals

2.3.1. Geoaccumulation Index (Igeo)

The Igeo, introduced by Müller [44], is the most popular index used to evaluate pollution [39,45]
and it takes both the background value and diagenesis into consideration [44,46]. Igeo is defined by the
following equation:

Igeo = log2(Ci/1.5Cbi) (1)

where Ci is measured concentration of element i and Cbi is geochemical background reference value
of element i. In this study, Cbi is taken from the national primary standard for heavy metals in soils
in China (Table 1). The constant of 1.5 is the correction factor for lithological actions. The following
classification scale is given for Igeo [23,37]: Igeo ≤ 0 is classified as practically unpolluted; 0 < Igeo ≤ 1,
unpolluted to moderately polluted; 1 < Igeo ≤ 2, moderately polluted; 2 < Igeo ≤ 3, moderately to strongly polluted;
3 < Igeo ≤ 4, strongly polluted; 4 < Igeo ≤ 5, strongly to extremely polluted; and, Igeo > 5, extremely polluted.

2.3.2. Potential Ecological Risk Index (RI)

The RI was originally introduced by Hakanson [47] and quantitatively expresses the potential
ecological risk of single or multiple elements. The RI is calculated as follows [39,47]:

RI = ∑n
i=1 Er, (2)

Er = Tr × C f , (3)

C f =
Cs

Cn
, (4)

where Er is the ecological risk factor of Element x and Tr is the toxic response factor of Element x,
known for As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn to be 10, 30, 2, 5, 40, 5, 5, and 1, respectively [48,49].
Cs and Cn are the content of element and geochemical background reference values [50], respectively.
The following classification scheme is used to describe risk levels: Er < 40 is classified as low potential
ecological risk; 40 ≤ Er < 80, moderate potential ecological risk; 80 ≤ Er < 160, considerable potential
ecological risk; 160 ≤ Er < 320, high potential ecological risk; and, Er ≥ 320, extreme ecological risk.
Moreover, RI < 150 is classified as low ecological risk; 150 ≤ RI < 300, moderate ecological risk;
300 ≤ RI < 600, considerable ecological risk; and, RI ≥ 600, extreme ecological risk. Contamination
assessment was processed using SPSS 22.0 software, and the distribution of heavy metals in street
dust was mapped using ArcGIS 10.4 software (Environmental Systems Research Institute, Redlands,
CA, USA).

2.4. Geographical Detector

Geographical detector methodology is often used to explore the influence of geospatial factors
on disease risk [51]. The geographical detector is grounded on the power of determinant (PD),
which generates four detectors [51,52]: risk detector, factor detector, ecological detector, and interaction
detector. The risk detector is used to explore the main risk region; the factor detector is used to identify
factors that caused said risk. The ecological detector is mainly used to explain the relative importance
of risk factors, and the interactive detector can be used to explain whether the impact factor was
independent or interactive [51,52]. The biggest advantage of the geographical detector is that there are
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no assumptions that effectively overcome the limitations of dealing with class variables in traditional
statistical analysis methods.

PD = 1− 1
Nσ2 ∑L

i=1 Niσi
2 (5)

where N and σ2 denote the number and variance, respectively, of measured element concentrations
in a study area and Ni and σi denote the number and variance, respectively, of measured element
concentrations in stratum i (i = 1, 2,. . . , L) [53]. The PD gives the impact degree of a factor on the
research object, namely the impact of distances to the railway and mines on the element content in this
study. The PD value is between 0 and 1; a high PD value indicates a high effect of the factor on the
research object. The geographical detector process was performed using Geographical Detector 2015
software [51].

2.5. Assessment Procedure

The procedure for assessing spatial interpolation in estimating heavy metals in soils in this study
can be described using three main steps (Figure 2):

Step 1 Concentrations of heavy metals in street dust and soils sampling data were measured.
Step 2 Geoaccumulation index, ecological risk index, Pearson correlation coefficient, and geographic

information system (GIS) mapping methods were used to analyze the effect of soils on the heavy-metal
levels and selected heavy metals that were not mainly affected by soils.

Step 3 Pearson correlation coefficient and Geographical detector were used to analyze the impact
of coal railway transportation on heavy metals in street dust.
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3. Results

3.1. General Statistics of Heavy Metals

The national primary standard for heavy metals in soils in China (Environmental Quality Standard
GB 15618-1995) is also used for analysis heavy metals in street dust [11,28,38], so it is used as
background value for street dust and soils in this study. Previous studies have shown that several heavy
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metals in street dust may be affected by the local soils [38,43]. For this reason, the descriptive statistics
of heavy metals in street dust and soils were provided in Table 1. Among them, Pb, Zn, and Cr stood
out with larger concentration value ranges. The national primary standard (NPS) for heavy metals in
soils in China (GB 15618–1995) was used as the background value. The mean concentrations in street
dust of all the heavy metals, except As, Cd, and Ni exceeded their corresponding background values.
Among them, the mean concentration of Pb was the highest at 13 times that of its background value.

Table 1. Summary statistics of heavy-metal concentrations in soils and street dust (unit: mg/kg).

Element Source Mean Min Max STD a NPS b Polluted Sites and Percentage (>NPS)

As
dust 4.2 0.7 19.4 3.2

15
2 (2.1%)

soils 10.9 7.0 20.9 2.3 6 (6.5%)

Cd
dust 0.17 0.00 1.91 0.24

0.2
13 (13.8%)

soils 0.22 0.03 0.42 0.07 51 (54.8%)

Cr
dust 148.8 23.5 1592.4 248.6

90
28 (28.8%)

soils 66.1 16.1 182.2 26.7 16 (17.2%)

Cu
dust 46.1 10.4 849.2 89.3

35
26 (27.7%)

soils 24.0 8.5 200.5 22.8 10 (10.8%)

Hg dust 0.47 0.04 2.78 0.43
0.15

68 (72.3%)
soils 0.02 0.01 0.05 0.01 0 (0)

Ni
dust 26.8 11.1 87.6 11.4

40
9 (9.6%)

soils 23.0 7.4 85.2 8.7 2 (2.2%)

Pb
dust 449.0 65.5 6349.2 964.2

35
94 (100%)

soils 147.6 45.8 908.8 89.3 93 (100%)

Zn
dust 347.7 28. 6 2529.4 487.7

100
70 (74.5%)

soils 47.5 20.0 110.3 17.3 1 (1.1%)
a STD denotes standard deviation; b NPS denotes the national primary standard for heavy metals in soils in China
(Environmental Quality Standard GB 15618-1995).

The minimum concentrations in street dust of all the elements exceeded those in soils, except As,
Cd, and Cr. Similarly, the maximum concentrations in street dust of all elements exceeded those in
soils, except As, and the mean concentrations in street dust of all except As and Cd exceeded those
in soils. Moreover, the percentage of polluted sites out of the total number of sampling points was
greater for street dust than for soils. These findings indicated that the concentrations of most heavy
metals in street dust (excluding As) were far beyond those found in soils, and heavy metals in street
dust might be affected by other factors.

3.2. Contamination Level Assessment

3.2.1. Contamination Level Analysis

The Igeo values for the heavy metals in street dust and soils were presented in Figure 3. In street
dust, none of the sampling points were polluted by As, and most of the sampling points were not
polluted by Cd, Cr, Cu, or Ni. For Hg and Zn. Most points had Igeo values between 0 and 1, indicating
that the samples were unpolluted or had moderate pollution levels. A small number of sampling
points for Hg and Zn had Igeo values between 1 and 2, indicating moderate pollution. For Pb, most
sampling points also had Igeo values between 1 and 2, or moderate pollution.

According to mean Igeo values, the pollution levels in street dust were higher than those in soils in
the cases of Pb, Hg, Zn, Cr, and Cu, but they were lower in the case of Cd. As and Ni did not cause
any pollution in street dust. In other words, the sampled street dust was contaminated to some extent
(Igeo > 0) by heavy metals, such as Hg, Zn, Cr, Cu, and particularly by Pb. The sampled soils contained
some level of Pb, Cd and Cr pollution (Igeo > 0), indicating that the initial source of some heavy metals
in street dust was different from that of soils [31].
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3.2.2. Ecological Risk Analysis

The Er results for the heavy metals in street dust and soils were shown in Figure 4. For street dust,
almost all sampling points reported low potential ecological risk from As, Cd, Cr, Cu, Ni, Pb, and Zn.
Most of the Er values of Hg were between 40 and 160, indicating moderate to considerable potential
ecological risk, while a few sampling points showed a similar moderate-to-considerable potential risk
from Cd, Cu, and Pb. A small number of sampling points returned Er results, which indicated a high
potential for ecological risk from Cd and Pb and an extremely high risk from Hg and Pb. On the whole,
the potential ecological risk results of street dust samples were significantly higher than those of soils
samples, particularly in the cases of Cr, Cu, Hg, Pb, and Zn.
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Figure 4. Box-plots of Er for heavy metals.

The RI for the maximum, minimum and mean Er for each heavy metal in soils and street dust
were shown in Table 2. The RI values in street dust were higher than those in soils, indicating that
the ecological risk presented by street dust is more serious than that of soils. The distributions of
RI in street dust and soils by ordinary kriging were shown in Figure 5 to improve understanding
by showing the ecological risk in spatial terms. The RI values of street dust were higher than 150 in
most areas, indicating moderate ecological risk, while the findings showed that some areas in western,
central, and south-central Yuanping face considerable risk, with RI values greater than 300. Certain
individual sites had RI values greater than 600 and thus face extreme ecological risks. Figure 5a showed
that high RI values in street dust were mostly found in areas surrounding railway lines. Meanwhile,
the RI values of soils in most areas indicated low ecological risk, although some areas in the south of
Yuanping face moderate ecological risk (Figure 5b).

The differences in ecological risk that are presented by street dust and soils were computed using
RI values of street dust samples minus those of soils (Figure 5c). The differences were larger in the
north-western, central, south-central, and north-eastern regions of Yuanping, which are areas generally
distributed around the railway (Figure 5c). In almost all areas, the RI values of heavy metals were
higher in street dust than in soils. In other words, a greater ecological risk is posed by heavy metals in
street dust than in soils. The impact of street dust has been shown to be contained within 10 km of
railway lines [54], as illustrated on the map in Figure 5c by a 10-km zone on either side of the railway.
Most of the high-value regions were within this zone, indicating that the railway might have caused
the different concentrations in heavy metals between street dust and soils.



Int. J. Environ. Res. Public Health 2018, 15, 2662 9 of 21

Table 2. Er and RI values for measured heavy metals in street dust and soils samples.

Element
Er RI Ecological Risk

As Cd Cr Cu Hg Ni Pb Zn

Max
Dust 13.0 285.7 35.4 121.3 740.1 11.0 907.0 25.3 2138.8 Very high
Soils 14.0 63.4 4.1 28.6 11.9 10.7 129.8 1.1 263.5 Moderate

Min
Dust 0.5 2.1 0.5 1.5 11.8 1.4 9.4 0.3 27.4 Low
Soils 4.7 3.7 0.4 1.2 1.1 0.9 6.6 0.2 18.7 Low

Mean
Dust 2.8 24.8 3.3 6.6 124.1 3.4 64.1 3.5 232.6 Moderate
Soils 7.2 32.5 1.5 3.4 4.3 2.9 21.1 0.5 73.4 Low
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3.3. Distribution of Heavy-Metal Concentrations

In order to obtain the most accurate distribution possible using the available land-use areal
data, one new and two commonly used methods were tested using interpolation of the Cr data.
The commonly used methods were ordinary kriging (OK) and inverse distance weighted interpolation
(IDW), and the new method was area-and-point kriging (AAPK). For Cr, 70% of the sampling data
was used for interpolation and the remaining 30% was used for verification. The mean squared error
of the OK, IDW, and AAPK methods were 197.3 mg/kg, 250.6 mg/kg, and 189.8 mg/kg, respectively.
Consequently, AAPK was used to find the distribution of heavy metals in street dust and soils.

The differences in the concentrations of heavy metals in street dust and soils were shown in
Figure 6. The red area represented regions where the heavy-metal content in street dust was higher
than that in soils, and the green areas showed where the heavy-metal content in street dust was lower
than that in soils. Except for As, the concentrations of the heavy metals in street dust were higher than
those in soils to varying extents. In particular, the concentrations of Cr, Cu, Hg, Pb, and Zn in street
dust were generally higher than that in soils. Cr, Cu, Hg, Pb, and Zn in street dust must be affected by
other factors [55,56]. Even more noticeable was the fact that the Hg content in street dust was greater
than that in soils almost everywhere. The maps in Figure 6 identified a roughly 10-km buffer zone
surrounding the railway lines [54]. Most of the red regions of all eight elements fell within the buffer
zone, indicating once again that the railway may be the reason for the difference in the heavy-metal
content of street dust and soils [57,58].
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3.4. Impact Analysis of the Coal Transportation Channel on Heavy-Metal Content

From the above analysis, it was assumed that the railway had some influence on the heavy-metal
content of street dust, especially for Cr, Cu, Hg, Pb, and Zn. Since the railway’s effect on street dust
was confined to an area within 10 km of the track, those sampling points of the five heavy metals that
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fell within this area (80 of the total 94) were selected to analyse the correlation between the distance to
the railway and the heavy-metal concentrations in the sampled street dust. The correlation analysis of
this study was completed using R software (The University of Auckland, Auckland, New Zealand).

To further illustrate the similarity of the heavy-metal content in street dust and coal transported
on the railway, this study analysed the relationship between differences in the heavy-metal content
and the distances from street dust collection sites to the railway (Figure 7). Because the heavy-metal
concentrations of transported coal on the railway was unavailable to test, coal samples near the
railway were used instead. Transported coal is loaded and unloaded mainly in the 1.5 km around the
railway [54]; the coal samples near the railway (24/77 coal samples within 1.5 km around the railway)
were very similar to the coal transported on the railway. Therefore, the maximum value of heavy-metal
concentrations for the 24 samples was selected as the heavy-metal content of coal transported on the
railway (Table 3). The heavy-metal content of street dust was predicted to be lower than that of the
coal transported on the railway, with the difference—expected to be less than 0—increasing as the
distance between the street dust sample site and the railway increased. However, there were many
high content sampling points, indicating that other factors, such as nearby coal mines, had affected
the heavy-metal concentrations in street dust. Nevertheless, the differences in concentrations of Cr
and Pb in street dust and transported coal increased slightly as the distance between the sample site
and the railway increased, up to about 7 km for Cr and Pb. These findings indicated that Cr and Pb
concentrations in street dust were affected by the railway to some extent.

Table 3. Estimated heavy-metals concentrations of the coal (unit: mg/kg).

Element Cr Cu Hg Pb Zn

Value 15.5 41.1 0.07 43.3 184.4
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The relationship between the heavy-metal content of street dust and distance to mines is shown
in Figure 8. The mines in Yuanping are mainly coal mines. There are 121 major mines in Yuanping,
including 98 coal mines, 12 iron ore mines, and 11 quartzite mines. Some values of heavy metals in
street dust were higher than that in coal transported on the railway, which may be explained by the
presence of mines. Figure 8 showed that, as distance increased between the mines and street dust
collection sites, the heavy-metal levels first decreased and then increased.
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Figure 8. Relationship between the heavy-metal content of street dust and distance of sample sites
to mines.

The Pearson correlation coefficient was used to measure the degree to which distances to the
railway and to mines impacted heavy-metal content in street dust samples. The results of this
analysis were shown in the Before Segment column in Table 4. The correlation coefficients for the
distance to the railway of only two heavy metals, Cr and Pb, were negative, but the results were
insignificant, with p-values of 0.142 and 0.121, respectively. The results were weaker for mines.
As such, the correlations were not significant, which is likely due to the bias distribution of street dust
sampling points (Figure 1). In order to address the bias, 80 sampling points were segmented, with
the goal of an equal number of sampling points per segment. The Pearson correlation of the mean
heavy-metal concentration in each section and the mean of the corresponding distances to the railway
lines and mines were then calculated. The results were shown in the After Segment column in Table 4.
Using three or four segments achieved high Pearson correlation coefficient results and significant
p-values for all three heavy metals—better results than were achieved with other segmentations.
However, the number of sampling points was different in each segment. The best unbiased results
were achieved for Cr and Pb for the railway, which had almost the same number of samples in each
segment. The sample bias was the greatest for mines with the highest sample bias of 38 for Cr. Pearson
correlation analysis showed that both coal transportation and local coal mining had stronger effects on
the heavy-metal content of street dust after renewing the spatial scale [59,60] than before.
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Table 4. Correlation coefficients among Cr and Pb concentrations with distance to railway and mines.

Element Type Before Segment After Segment

Pearson’s r p Value Number of Segments Segmented Values (km) Number of Samples per Segment Sample Bias a Pearson’s r p Value

Cr
railway −0.166 0.142 4 1.022; 3.946; 6.376 22; 23; 22; 13 10 −0.959 0.041
mines −0.008 0.944 3 3.275; 6.435 20; 11; 49 38 −0.998 0.045

Pb
railway −0.175 0.121 4 1.110; 2.482; 5.972 25; 17; 22; 16 9 −0.984 0.015
mines −0.010 0.930 3 4.931; 8.395 26; 17; 37 20 −0.997 0.049

a Sample bias: maximum number of samples in a segment minus minimum number of samples in a segment.
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The geographical detector method was then used to measure the degree to which the distances
to the railway and mines impacted heavy-metal content in street dust. The PD results were shown
in Table 5. The PDs of railway distance on heavy-metal concentrations were in the following order:
Pb > Cr. However, the PDs of mine distance on heavy-metal concentrations were in a different order:
Cr > Pb. It should be noted that the PDs of railway distance on heavy-metal concentrations were
greater than that of mine distance, indicating that the effect of railway transportation on heavy metal
levels in street dust is greater than that of mining production. In other words, Cr and Pb in street dust
were influenced more by coal transported via the railway than by coal in local mines. In addition,
the interaction between railway and mines enhanced each other (Table 5), as the PDs were in the
following order after interaction: Cr > Pb. The railway-mines interaction enhanced their individual
influences on heavy-metal levels in street dust (Table 5).

Table 5. Degree of impact of distance to railway and mines on Cr and Pb concentrations in street dust.

Element
PD

Distance to Railway Distance to Mines Interaction

Cr 0.04 0.01 0.25
Pb 0.04 0.00 0.13

Of the segments studied, the one closest to the railway had the highest levels of heavy metals in
street dust, followed by the mid-distance and the farthest segments. For Cr and Pb, the first boundary
occurred about 1 km from the railway (as shown in Table 6). This finding supported the idea that the
government should focus primarily on these zones when taking actions to protect human health and
the environment; for example, the government should focus on these zones when allocating funds for
clean up. The second segment was 1–4 km from the railway for Cr and 1–2.5 km for Pb. These zones
should be monitored by the government.

Table 6. Zones surrounding railway lines requiring government involvement.

Element First Two Boundaries (km) Control and Prevention Zone (km) Monitor Zone (km)

Cr 1.02; 3.95 <1 1–4
Pb 1.11; 2.48 <1 1–2.5

4. Discussion

By identifying the impact of the coal transportation railway in Yuanping on the heavy-metal
pollution in street dust, the results demonstrated that Cr and Pb concentrations in street dust
were affected by the railway and the impact of coal transportation via railway on heavy metals
in surrounding areas is a significant concern. In this article, the results from the combined application
of contamination assessment methods, correlation analysis, and GIS methods were acceptable and
this analysis frame could be applied to analyse the impact of coal transportation on heavy metals in
street dust.

Heavy metals in street dust mainly originate from natural sources [11,29,30], such as soils [31]
and human activity, such as mining. Transportation networks are the main source of street dust and
the main contributors to heavy metals in street dust in some developed transportation areas [43].
The principal component analysis (PCA) is a generally used method to identify the pollution source
the heavy metals in street dust [28]. The Bartlett’s sphericity test was significant at p < 0.001, which
confirmed that the heavy-metal concentrations in street dust were suitable for PCA in this study.
The first principle component (PC1) explains 31.4% of the total variance and included significant
loadings for Cr and Pb with loading values of 0.97 and 0.96, respectively (Figure 9), indicating that
they have a same potential source of pollution. Of course, heavy metals in soils could transfer to
street dust [31], but concentrations and ecological risk of Cr and Pb were higher in street dust than
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that in soils, suggesting that the pollution of these metals resulting from soils is limited. The PD and
correlation coefficients results further illustrates that their source was railway and mines, and the effect
of railway in street dust was greater than that of mines on Cr and Pb levels in street dust. Cr and Pb
are commonly used in different plastics and building materials [28,61]. However, traffic sources is
another source of Cr and Pb in street dust [28]. Cr is often generated from coal [27] and Pb is usually
found in vehicles [62,63], and coal railway transportation is happens to be the combination of coal and
transportation. The second principle component (PC2) explains 22.7% of the total variance, including
As, Cu, and Hg (Figure 9). For PC2, As is associated with soil parent materials [64], which can explain
why the content of As in soils was higher than that in street dust. Cu is key component of building
materials [65,66] and Hg is widely used in pesticides, such as thermometers [67–69]. Coal combustion
is one of the main sources of Hg in Shanxi province [36,70]. The source of PC2 is mainly related
to human life activities. The third principle component (PC3) explains 14.4% of the total variance,
including Cd, Ni, and Zn (Figure 9). The enrichment of Cd and Zn in soils was closely correlated to
agricultural production [71]. Cd is usually considered as an element included in the use of phosphate
fertilizer, livestock manure, and so on [72]. In addition, Cd is an important element of lubricating
oil and tires [25]. Ni and Zn can also be found in automobiles [62]. So, the origin of this principle
component was mainly related to agricultural activities and vehicular transport [36].
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Representative studies that are consistent with the conclusions of this study are presented in
Table 7. These studies showed that railways have significant influence on heavy-metal concentrations
in surrounding areas [73,74], and the concentrations of several heavy metals decreased with increasing
distance from the railroad [75,76]. In coal transportation hubs, the flow of trains through the hubs
is resulting in inestimable pollution [77,78]. Because trace Cr and Pb affect human metabolism and
may lead to cancer [19,79,80], the government should monitor railway lines [77] for these three heavy
metals. A reduction in and better management of coal transportation would benefit the environment
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surrounding the railway [43]. However, transportation volume is unlikely to decrease given China’s
rapid economic development [81].

Table 7. Representative studies similar to this study, focusing on railway effects on the surrounding
heavy-metal concentrations (n: number of samples).

Study Area Main Conclusion Reference

Delhi–Ulan section of the Qinghai–Tibet railway
in China (n = 225)

“Significantly negative correlations between distance and
the concentrations of Cu, Zn, Cd, and Pb . . . Pb, Cd, and
Zn in soils were concluded to be influenced by railway.”

[75]

Qinghai–Tibet railway in China (n = 127) “Concentrations of Zn, Cd and Pb were the most affected
. . . by railway transport.” [73]

Zhengzhou-Putian Section of Longxi-Haizhou
Railroad in China (n = 20)

“Railroad transportation had tremendous impacts on
railroad-side soils . . . concentrations of Pb, Zn, and Cd in

soils . . . decreased quickly with the distance from the
railroad, increased again and formed a secondary peak at

certain distances from the railroad, and then gradually
decreased with the increase of distance.”

[76]

Chengdu-Kunming railway in China (n = 57) “The concentrations of Cu, Mn, Pb, Cd and Zn decreased
with increasing distance from the railroad.” [82]

One railway junction in northern Poland (n = 15) “The heavy metal contamination level is much higher in
the area of the . . . the railway siding.” [74]

Except for the amount of transported coal cannot be reduced, many technologies are also lacking to
effectively control pollution resulting from coal transportation [77,83] and mining [84], so heavy-metal
pollution is inevitable where these activities take place [21,28,85]. In addition, the concentration of
heavy metals in coal varies by location due to differences in the geological environment [86]. In Shanxi
Province, there have been five coal-forming periods: Late Carboniferous, Early Permian, Middle
Jurassic, Tertiary, and Quaternary [87]. Cr and Pb are mainly present in Tertiary brown coals [87].
Tertiary brown coals occur in Yuanqu County and Fanci County, and Fanci County is very close
to Yuanping. In Shanxi Province, Late Carboniferous coals occur in the Hedong, Datong, Ningwu,
and Xishan coalfields, as well as others [87], some of which are located near Yuanping. New methods to
reduce the amount of coal dust that is produced in transportation should be adopted instead [7,88,89],
such as covering the freight with tarpaulins or sprinkling water on the coal. Using dustproof partitions
and establishing isolation belts around the railway may also be effective in reducing heavy-metal
contamination. Mining activity’s contribution to the presence of heavy metals in street dust should
also be addressed [84,90], and protective measures should be taken to reduce this contribution [91,92].

China relies heavily on coal; as such, there are many coal transportation hubs in the country.
The impact of coal transportation hubs on the environment cannot be ignored. The methods that were
used in this study are generally applicable to assess any railway’s scope of influence [77,83,93] on
heavy metals in street dust at any coal transportation hub. It should be noted, however, that restricting
such analyses to the areas immediately around railway lines is insufficient to address the problem of
heavy-metal contamination, because contamination is also attributable to other industries and to the
population living near the hub [55,56]. These sources of heavy metals should also be identified and
addressed. Street dust carried into the study area by wind may also influence the heavy-metal content
of local street dust; this “wind-delivered dust” is a factor to be considered in future research.

5. Conclusions

In this study, the spatial characteristics of heavy metals in street dust were analysed, as was the
impact of the railway in Yuanping, a city in Shanxi, China, on heavy metals in street dust. The results
showed that Cr and Pb were mainly affected by coal railway transportation, and the railway–mines
interaction effect was stronger than either of the factors acting alone. The government should place a
high priority on the zone extending 1 km on either side of the railway for the control and prevention of
Cr and Pb contaminations. Mid-distance zones should be monitored by the local government and are
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defined as follows: 1–4 km from the railway for Cr and 1–2.5 km from the railway for Pb. Our research
indicated that coal transportation via railway contributes to heavy-metal pollution in street dust in
coal transportation hubs. The combined application of contamination assessment methods, correlation
analysis, and GIS methods provides a proper and precise theoretical framework to identify the effects
on the environment of coal transportation via railway. The correct interpretation of the impact of coal
railways on street dust data would be helpful in environmental source impact assessments. However,
this paper just proposed a simple framework to measure the impact of coal railway transportation on
heavy-metal contents in street dust, more finer scale research needs to be done in the future, such as
how does the coal railway transportation affect heavy metal content, etc.
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