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Abstract

Dengue fever (DF) has been a growing public-health concern in China since its emergence in
Guangdong Province in 1978. Of all the regions that have experienced dengue outbreaks in
mainland China, the city of Guangzhou is the most affected. This study aims to investigate
the potential risk factors for dengue virus (DENV) transmission in Guangzhou, China,
from 2006 to 2014. The impact of risk factors on DENV transmission was qualified by the
q-values calculated using a novel spatial-temporal method, the GeoDetector model. Both cli-
matic and socioeconomic factors were considered. The impacts on DF incidence of each single
factor and the interaction of two factors were analysed. The results show that the number of
days with rainfall of the month before last has the highest determinant power, with a q-value
of 0.898 (P < 0.01); the q-values of the other factors related to temperature and precipitation
were around 0.38–0.50. Integrating a Pearson correlation analysis, nonlinear associations were
found between the DF incidence in Guangzhou and the climatic factors considered. The
coupled impact of the different variables considered was enhanced compared with their indi-
vidual effects. In addition, an increased number of tourists in the city were associated with a
high incidence of DF. This study demonstrates that the number of rain days in a month has
great influence on the DF incidence of the month after next; the temperature and precipitation
have nonlinear impacts on the DF incidence in Guangzhou; both the domestic and overseas
tourists coming to the city increase the risk of DENV transmission. These findings are useful
in the risk assessment of DENV transmission, to predict DF outbreaks and to implement pre-
ventive DF reduction strategies.

Introduction

Dengue fever (DF) is a mosquito-borne viral infection caused by any one of four serotypes of
dengue virus (DENV 1–4) [1]. It is a major public-health concern throughout tropical and
sub-tropical regions. In recent decades, the incidence of DF has grown dramatically worldwide,
making it the most important mosquito-borne viral disease [2, 3]. It has been estimated that
390 million dengue infections occur per year, of which 96 million manifest clinically (with any
severity of disease) [3]. Brady et al. have estimated that more than 3.9 billion people in 128
countries are at risk of infection with dengue viruses [4]. The most seriously affected regions
include Africa, the Americas, the Eastern Mediterranean, South-East Asia and the Western
Pacific [3–5]. The drivers of the rapid dengue expansion include urbanisation, globalisation
(travel and trade), the lack of effective mosquito control and climate change [6, 7].

The first outbreak of DF in mainland China occurred in 1978 in the city of Foshan in
Guangdong Province. Since then, DF outbreaks have been recorded sequentially in Hainan,
Guangdong, Guangxi, Fujian, Zhejiang and Yunnan provinces [8]; the highest number of
DF cases reported in China occurred in Guangdong Province [9]. In 2014, the most
severe DF outbreak in history occurred in Guangdong Province, with more than 45 000
cases of infection [8–10]. In this outbreak, 37 359 cases of infection were reported in
Guangzhou, the provincial capital of Guangdong Province, seven times the historical
record, confirming Guangzhou as the most affected city [11]. DF outbreaks in China were
previously thought to be imported [9], but recent studies suggest that DF may be endemic
to China [12, 13].

DENV are transmitted by Aedes mosquitoes, which are highly sensitive to climate, as
temperature, precipitation and humidity, for example, can influence dengue transmission
both directly and indirectly mediated by mosquito density [14, 15]. The effects of climatic
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factors on DF incidence at different times and in different regions
have been studied [16–20] and can vary dramatically according to
region [15, 21]. Many studies have investigated the relationship
between DF incidence and climatic factors in Guangzhou, most
have employed regression models, such as the Poisson model
[22], the negative binomial model [23], the zero-inflated regres-
sion model [24] and the distributed lag non-linear models [25].
Although there are some inconsistencies, the results of these stud-
ies have provided valuable implications for dengue risk assess-
ment, prediction and prevention. However, the relationship
between climate factors and dengue transmission is complex
[15]; therefore, further research is needed.

Socioeconomic factors, such as urbanisation, also influence the
incidence of DF [15, 18, 26]. One study investigated the effects of
socioeconomic and environmental factors on the incidence DF at
the township level in the Pearl River Delta economic zone in 2013
[27]. Another study examined the effects of socioecological factors
on the spatial distribution of DF in the unprecedented 2014 out-
break in Guangzhou [28]. Both these studies employed annual
data. However, some socioeconomic factors, such as the number
of tourists, may vary dramatically in a year. To our knowledge,
no study on the effects of such factors on the incidence of DF
has been published.

In this study, we use a novel spatial-temporal method, the
GeoDetector, to identify the potential climatic and socioeconomic
factors associated with the DF incidence in Guangzhou.
The results may be useful in understanding the relationship
between DF incidence and risk factors in Guangzhou, in
providing information to predict DF outbreaks, and in developing
preventive measures.

Methods

Study area

Guangzhou, the city most affected by dengue in mainland China,
is located on the south-east coast of China (22°26′–23°56′N, 112°
57′–114°3′E, Fig. 1) and had a population of 13.08 million in 2014
[29]. As the capital of Guangdong Province, Guangzhou serves as
the political, economic, scientific, educational, tourism and cul-
tural centre in southern China. The city has a humid subtropical
climate; summers are wet with high temperatures and high
humidity, and winters are mild and comparatively dry.

Materials

Guangzhou DF cases
In this study, monthly DF cases from January 2006 to December
2014 (Fig. 2) were obtained from the Chinese Center for Disease
Control and Prevention (CDC, http://www.chinacdc.cn/). DF inci-
dence was calculated by determining the ratio between the num-
ber of DF cases and the population size of the year. All four
serotypes had been detected in Guangzhou, which was dominated
by DENV 1–2; DENV 3 was first detected in 2009 and DENV 4
re-emerged in Guangzhou in 2010 [13, 30].

Potential risk factors
Transmission of DENV requires multiple factors: virus must be
present (for example, imported cases), sufficient susceptible
humans to the virus and contact between humans and mosquito
vectors. While the first and second factors are usually related to
socio-economic factors (for example, population density,

Fig. 1. Geographic location of Guangdong Province and Guangzhou city in China, and meteorological stations used to interpolate the meteorological data in
Guangzhou.
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travellers go or from abroad), the third factor is influenced by
environmental factors, including climatic factors, living condi-
tions, land cover type, etc. In this study, we examined the effects
of both climatic and socioeconomic risk factors (Fig. 3) on the DF
incidence in Guangzhou.

In Guangzhou, Aedes albopictus was the only vector species
that transmitted DENV [9, 31]. The Breteau index (BI), calculated
as the number of containers positive for Aedes mosquito larvae
per 100 houses [1], was used to measure the mosquito population.
The monthly BI of Guangzhou is shown in Figure 4.

The climatic variables influencing the mosquito population
considered include the monthly mean temperature (T), mean
maximum temperature (Tmax), mean minimum temperature
(Tmin), precipitation (P), the number of days with rainfall (R)
and maximum daily precipitation (Pmax), as well as their lags of
1–3 months (V−j, j = 1, 2, 3, V denotes one of the former sym-
bols). These data from meteorological stations located in
Guangzhou and within 100 km of the borders of Guangzhou
(Fig. 1) between 2006 and 2014 were obtained from the China
Meteorological Data Sharing Service System (http://data.cma.cn/).

Fig. 2. Guangzhou DF monthly cases from January 2006 to December 2014: (A) January 2007 to January 2013; (B) June 2006 to December 2006; (C) June 2013 to
December 2013 and (D) June 2014 to December 2014.

Fig. 3. Potential risk factors to DF considered.
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We then employed the inverse distance weighted interpolation
method to obtain the corresponding data for Guangzhou. The
monthly mean, mean maximum and mean minimum tempera-
tures are shown in Figure 5, the other climatic factors are
shown in Figure 6.

In addition to the climatic factors, socioeconomic factors were
also considered to be potentially important drivers in DENV
transmission [18, 26]. In this study, we collected the data pertain-
ing to monthly domestic (D) and overseas tourists (O) coming to
Guangzhou from the Guangzhou Statistics Bureau (http://www.
gzstats.gov.cn/). Figure 7 shows the variations in the number of
tourists over time. Population density and the proportion of
urban and rural dwellers were also considered potential risk fac-
tors to DENV transmission.

GeoDetector
Several studies have reported the associations between DF inci-
dence in Guangzhou and risk factors [22–25]. However, these
methods usually limited to some shortcomings, for example, the
relationship between DF incidence and risk factors are usually
nonlinear; the risk factors may have an interactive effect on DF
incidence but cannot be fully reflected by regression models.
The above limitations do not exist in the case of the
GeoDetector model [32], of which, the basic idea is to measure
the correspondence of the spatial temporal distribution of
response variables (e.g. DF incidence) to that of suspected deter-
minants (e.g. climatic factors). It assumes that if the suspected
determinant is a disease risk, the spatial temporal distribution
of the disease should be similar to that of the factor. That is to
say, if a potential factor (X) causes a disease (Y), their temporal-
spatial distributions tend to be consistent [32], as measured by the
power of determinant:

q = 1− 1
Ns2

∑L

h=1

Nhs
2
h

where σ2 denotes the variance of Y in the study area; N is the size
of the population Y, which is composed of L strata (h = 1, 2,…, L)
and s2

h stands for the variance within stratum h. The value of the
q-statistic, ranging from 0 to 1, denotes the determinant power of

a potential risk factor X. This means that the factor explains
q× 100% of the DF incidence. The bigger it is, the more deter-
minant power of the factor X. If q = 1, Y is determined by X com-
pletely. On the contrary, if q = 0, the factor X is unrelated to Y
completely. In addition to extracting the determinant power of
a single factor, the q-statistic can also be used to probe the deter-
minant power of the interactive effect of two risk factors, X1 and
X2. By comparing the interactive effect between two factors with
the effect of their individual contributions to Y, the interactive
effects are determined (shown in Table 1). Detailed information
about the GeoDetector model can be found in [32–34].

The GeoDetector model can handle both quantitative and nom-
inal data, and thus offer a novel approach for detecting interactions
between the risk factors for infectious diseases, such as bacillary
dysentery [35] and hand-foot-and-mouth disease [36–38]. In this
study, we used three geographical detectors, i.e. factor detector,
ecological detector and interaction detector to identify, respectively,
the responsible factors, the relative importance factors and the
interaction relationship for each two factors. The method was
implemented using software downloaded from the GeoDetector
website at http://www.geodetector.org/. All variables are temporal
variables but without spatial variation. The population density
and the proportion of urban and rural dwellers were stable in
time within a year, while the climatic variables and tourists coming
to Guangzhou varied monthly. To use the model, the risk factors
measured by continuous data need to be discretised. Themost com-
monly used discretisation methods include the equal interval
method, the quantile method, the natural breaks method, the geo-
metrical interval method, the standard deviation method, etc. [39].
Here, we used the q-statistic as the indicator for the assessment of
the discretisation method and obtained the stratification informa-
tion [39].

Results

Descriptive statistics

There were a total of 39 695 DF cases between January 2006 and
December 2014. An obvious seasonal pattern in the number of
DF cases can be seen. Most cases occurred in the July–
November period, peaking in September and October (Fig. 2).

Fig. 4. Guangzhou monthly BI between January 2006 and December 2014.
Fig. 5. Guangzhou monthly mean, mean maximum and mean minimum tempera-
tures between January 2006 and December 2014.

4 Lingcai Kong et al.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0950268818002820
Downloaded from https://www.cambridge.org/core. University of New England, on 27 Oct 2018 at 12:58:17, subject to the Cambridge Core terms of use, available at

http://www.gzstats.gov.cn/
http://www.gzstats.gov.cn/
http://www.gzstats.gov.cn/
http://www.geodetector.org/
http://www.geodetector.org/
https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0950268818002820
https://www.cambridge.org/core
wjf
高亮



The DF incidence also shows striking annual variations, three
large outbreaks occurred in 2006, 2013 and 2014, with the highest
number of cases recorded in 2014 (37 359 cases). The DF cases
and the climatic and socioeconomic factors have been sum-
marised (Table 2).

Results from the GeoDetector

We used the GeoDetector method to detect the determinant power
of each risk factor and their interactive effects to the DF incidence in
Guangzhou. The potential risk factors include six climatic factors
(the monthly mean temperature, mean maximum temperature,
mean minimum temperature, precipitation, number of days with

Fig. 6. Monthly precipitation (A), number of days with rainfall (B) and maximum daily precipitation (C) in Guangzhou between January 2006 and December 2014.

Fig. 7. Tourists coming to Guangzhou between January 2006 and December 2014.

Table 1. Types of interaction between two factors

Interactive effects Condition

Weaken q(X1 > X2) , q(X1) + q(X2)
Weaken,
univariate

min(q(X1), q(X2)) , q(X1 > X2) , max(q(X1), q(X2))

Weaken,
nonlinear

q(X1 > X2) , min(q(X1), q(X2))

Enhance,
bivariate

q(X1 > X2) . max(q(X1), q(X2))

Enhance,
nonlinear

q(X1 > X2) . q(X1) + q(X2)

Independent q(X1 > X2) = q(X1) + q(X2)
The symbol of “>” means the interaction of two factors, and q(X1 > X2) represents the
q-value for the interaction between two factors X1 and X2.
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rainfall and maximum daily precipitation) and four socioeconomic
factors (the proportion of urban and rural dwellers, population dens-
ity and overseas and domestic tourists). The determinant power of
each factor and their interactive effects were qualified by the
q-value calculated using the GeoDetector model. The association
between the DF incidence and each factor – for example, a positive
or negative relationship – was assessed using Pearson correlation
coefficients.

The DF incidence demonstrates an apparent seasonal vari-
ation. This variation is correlated with the mosquito density
and climatic factors and/or their lags of 1–3 months with different
determinant powers. The q-values of BI and the climatic factors
are shown in Table 3. The results show that the determinant
power of BI is almost 60%, indicating a close relationship between
BI and DF incidence. Among the climatic factors, the number of
days with rainfall of the month before last has the highest deter-
minant power, with a q-value of 0.898 (P < 0.01). However, the
Pearson correlation was not significant (different from zero).
We suppose that a nonlinear relationship exists between the DF
incidence and the number of rainy days of the month before

last. Regarding precipitation, the determinant power with the
2-month lag is the highest among the other lags, with a q-value
of 0.486 (P < 0.01). The maximum daily precipitation in the last
2 months had the same q-values, 0.486. However, the Pearson
correlation coefficients between DF incidence and them were
not significant, meaning nonlinear relationships may exist
between them. The interpretation for the nonlinear relationships
can be found in the next section.

The determinant power of the mean temperature, mean max-
imum temperature, mean minimum temperature and their lags of
1–3 months are similar, with q-values within the range of 0.38–
0.50 (P < 0.01). The Pearson correlations between these variables
and the DF incidence were not significant (P > 0.05). This may
be because the impact of these climatic variables and these lags
on the DF incidence were nonlinear. The Pearson correlation
coefficients between DF incidence and each risk variable consid-
ered are shown in Table 4.

The determinant powers of socioeconomic factors were also
calculated using the GeoDetector method. Both domestic and
overseas tourists coming to Guangzhou have significant effects

Table 2. Statistical description of incidence and potential risk factors of DF

Variables Mean ± S.D.

Quantiles

5% 25% 50% 75% 95%

DF cases 367.55 ± 2478.47 0 0 1 7.5 453.6

BI 3.36 ± 2.26 0.67 1.62 2.92 4.58 7.80

Mean temperature (°C) 22.15 ± 5.69 12.74 17.55 23.12 27.59 29.08

Mean max temperature (°C) 26.78 ± 5.63 17.92 22.04 27.73 31.86 33.81

Mean min temperature (°C) 19.04 ± 5.77 9.30 14.82 20.28 24.71 25.84

Precipitation (mm) 163.76 ± 155.92 5.36 47.29 127.86 225.80 431.34

Number of rainy days 12.08 ± 6.24 2.35 6.41 12.35 17.25 21.11

Max daily precipitation (mm) 47.1 ± 34.79 3.86 18.10 41.91 64.63 112.84

Ratio of urban to rural population 9.17 ± 0.44 8.68 8.80 9.08 9.51 10.07

Number of overseas tourists 59.37 ± 16.63 40.97 46.72 55.10 62.91 90.30

Number of domestic tourists 293.22 ± 91.77 177.99 222.18 280.87 332.15 478.24

Population density (person/km2) 1611.53 ± 148.2 1340.61 1500.24 1709.57 1726.96 1759.46

‘S.D.’ denotes the standard deviation of the corresponding variable.

Table 3. q-values for mosquito density index and climatic factors and their lags
of month

Factor

Months of lags

0 1 2 3

BI 0.595 – – –

Mean temperature 0.387 0.394 0.397 0.492

Mean max temperature 0.485 0.397 0.402 0.487

Mean min temperature 0.386 0.390 0.397 0.438

Precipitation 0.384 0.408 0.486 0.395

Number of rainy days 0.390 0.391 0.898 0.457

Max daily precipitation 0.384 0.486 0.486 0.387

Note: all the q-values are significant from zero with P < 0.05.

Table 4. Pearson correlation coefficients between DF incidence and variables
related to climate

Factor

Months of lags

0 1 2 3

Mean temperature 0.079# 0.146# 0.166* 0.171*

Mean max temperature 0.106# 0.166* 0.182* 0.181*

Mean min temperature 0.065# 0.139# 0.158# 0.163*

Precipitation −0.111# 0.025 0.143# 0.074#

Number of rainy days −0.166* −0.006# 0.119# 0.145#

Max daily precipitation −0.126# −0.001# 0.070# 0.020

#P > 0.1; *0.05 < P < 0.1.
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on DF incidence, with q values of 0.489 and 0.487, respectively
(both P < 0.01). More tourists were associated with higher DF
incidence. The Pearson correlation coefficients between domestic
and overseas tourists and the DF incidence are 0.207 (P < 0.05)
and 0.174 (0.05 <P < 0.1), respectively. For the population density
and the proportion of urban and rural dwellers, neither has sig-
nificant explanatory power, with q-values of 0.0723 (P = 0.1234)
and 0.0671 (P = 0.1503).

From the former results, we found that, for each risk factor
related to temperature, the factor with 3-months lag has the lar-
gest q-value; for the factors related to precipitation, is the one
with 2-months lag. We analysed their interactive effects with BI,
the domestic and overseas tourists. The results show that the
coupled impact of every two factors considered was enhanced
compared with the effect of their individual influences
(Table 5). As we know, both higher temperature and more pre-
cipitation would provide more suitable conditions for mosquitoes,
the results show that their interactive effect is enhanced. DF in
Guangzhou was inspired by imported cases [30], travellers go to
or from countries where DF is endemic have chance to import
DENV. Coupled with greater mosquito population, or suitable
environmental and climatic factors, more travellers would
increase the risk of DF outbreak, caused enhanced interactive
effects.

Discussion

DF has been a growing public-health concern in mainland China
since its emergence in Guangdong Province in 1978 [40]. The city
of Guangzhou, the provincial capital of Guangdong Province and
one of the largest modern cities in China, has had the highest DF
incidence in mainland China [11]. In this study, the determinant
powers of potential climatic and socioeconomic factors were
examined. The results indicate that the number of rainy days of
the month before last had the greatest determinant power; the
BI, the temperature and its lags of 1–3 months, precipitation,
the maximum daily precipitation and the domestic and overseas
tourists had significant impact on DF incidence in Guangzhou.
The interactive effects of the mean minimum temperature and
the other climatic variables were enhanced compared with the
effect of their individual effects.

There is an obvious seasonal pattern in the Guangzhou DF
incidence. This seasonal variation is associated with climatic fac-
tors through direct and indirect effects [14, 15]. There is an

opposite effect of precipitation on mosquito populations. While
precipitation provides habitats for the aquatic stages of the mos-
quito life cycle, and higher precipitation is associated with
increased mosquito populations; intense rainfall may wash out
breeding sites and therefore have a negative effect on mosquito
populations [15]. This study shows that the number of days
with rainfall of the month before last has great impact on the
DF incidence, with a q-value of 0.898. This is consistent with
the findings in [14], which show the number of days with rainfall
to be a better predictor. The determinant powers of the other vari-
ables related to rainfall, the precipitation, the maximum daily pre-
cipitation and their lags of 1–3 months, were around 0.38 to 0.50.
A non-significant positive association between DF outbreak risk
and precipitation was detected in [14]. In this study, integrating
the determinant powers calculated using the GeoDetector model
with the Pearson correlation analysis, we found that nonlinear
relationships exist between the DF incidence and the variables
related to rainfall.

While precipitation plays an essential role in providing habitats
for the aquatic stages of the mosquito, temperature has a direct
effect on DENV replication within vectors and indirect effects
on DENV transmission by influencing the mosquito development
and survival [15]. This study also shows that temperature and its
lags of 1–3 months are important factors that influence the DF
incidence in Guangzhou. Higher temperature is associated with
higher DF incidence, which is a positive association. Like precipi-
tation, the relationships between DF incidence and the three vari-
ables related to temperature, as well as their lags of 1–3 months,
may be nonlinear. It is known that mosquito population dynam-
ics, the oviposition rates and transition and mortality in different
stages of the life cycle are considerably influenced by temperature
[15, 41–43]. In short, an ideal range for survival and development
through all phases of the mosquito life cycle occurs, for example,
at 20–30 °C, as stated in [44]. The development of mosquitoes is
often slower in both cooler and higher temperatures [41, 42],
although the critical limiting values may be different [15].
Temperature is also a key component in the ecology of DENV
in that increasing temperature can accelerate viral replication
within the vector and shorten the extrinsic incubation period
(EIP) [45, 46]. Because of the variation in temperature throughout
the day in nature, the effect of diurnal temperature ranges (DTRs)
on the susceptibility of Ae. aegypti to DENV to DENV has also
been explored in [47]. The authors found that compared with
moderate DTRs or constant temperature, larger DTRs decreased

Table 5. The q-values for the interactive effect of different factors

Factors BI T−3 T−3
max T−3

min P−2 R−2 P−2
max D O

BI

T−3 0.595EB

T−3
max 0.994EB 0.487EB

T−3
min 0.898EB 0.439EB 0.994EN

P−2 0.994EB 0.591EN 0.994EN 0.994EN

R−2 0.899EB 0.994EB 0.994EB 0.899EB 0.994EB

P−2
max 0.994EB 0.487EB 0.994EN 0.994EN 0.994EN 0.994EN

D 0.995EB 0.489EB 0.995EN 0.995EN 0.996EN 0.996EB 0.996EN

O 0.994EB 0.593EN 0.994EN 0.994EN 0.994EN 0.994EB 0.994EN 0.996EN

EB, enhance (bivariate); EN, enhance (nonlinear).
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the probability of infection of Ae. aegypti, but the EIP was
unchanged [47]. Synthesising the above results, the overall effect
of temperature on DENV ecology is complex; increasing tempera-
ture may accelerate parts of the viral transmission cycle, while
other variables may become limited by higher temperatures
[15]. Therefore, the nonlinear relationship between DF incidence
and temperature is readily comprehensible.

DF incidence is also influenced by socioeconomic factors, such
as population density, road density and land cover [27, 28, 48]. In
this study, we examined the determinant power of domestic and
overseas tourists coming to Guangzhou, the population density
and the proportion of urban and rural dwellers. The results
show that both domestic and overseas tourists coming to
Guangzhou have a high determinant power of 0.489 and 0.487,
respectively. There was a significant positive correlation between
the tourists and DF incidence. The situation is similar to that in
Australia, where there is an increasing trend in DF incidence as
the number of overseas visitors increases [49]. Residents in
Guangdong Province keep close connections with South East
Asian countries that are in the DF-endemic regions [50].
Therefore, more travellers from these countries increase the risk
of DENV transmission. We also explored the influence of popu-
lation density and the proportion of urban and rural dwellers. The
results show that these factors had non-significant determinant
power in relation to DF incidence. This is inconsistent with the
findings in [27], which analysed the relationships on a finer spa-
tial scale. This inconsistency may be because the data we used
were aggregated over large spatial scales.

The findings in this study have implication for the risk assess-
ment, early warning of DF in Guangzhou, and to implement pre-
ventive strategies. Special attention should be paid to the rainy
days, which has the largest determinant power on DF incidence.
Besides mosquito density and climatic factors, which have been
emphasised in the literatures [22–25], travellers to the city, especially
to or from countries where DF is endemic, should also be noted.

Our study aims to detect the impact of climatic and socio-
economic factors on DF incidence in Guangzhou. However,
there were some limitations. First, imported DF cases were not
excluded due to a lack of information. Nevertheless, this problem
has little influence on the results because the imported cases only
accounted for <1% of all DF cases in Guangzhou in 2006–2014
[22, 25]. Second, we used aggregated data for the whole city,
while the associations between DF and risk factors are site-specific
[15, 21]. This may result in some detailed information been sub-
merged; therefore, finer-scale research is needed in the future.
Third, unreported and inapparent cases are an inherent limitation
in the DF surveillance data. However, our results still have sig-
nificance in the risk assessment of DENV transmission, in the
prediction of DF outbreaks, and in implementing preventive DF
reduction strategies.
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