
Accepted Manuscript

A functional data analysis of spatiotemporal trends and variation in fine particulate
matter

Meredith C. King, Ana-Maria Staicu, Jerry M. Davis, Brian J. Reich, Brian Eder

PII: S1352-2310(18)30226-7

DOI: 10.1016/j.atmosenv.2018.04.001

Reference: AEA 15934

To appear in: Atmospheric Environment

Received Date: 19 May 2017

Revised Date: 23 March 2018

Accepted Date: 3 April 2018

Please cite this article as: King, M.C., Staicu, A.-M., Davis, J.M., Reich, B.J., Eder, B., A functional data
analysis of spatiotemporal trends and variation in fine particulate matter, Atmospheric Environment
(2018), doi: 10.1016/j.atmosenv.2018.04.001.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to
our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and all
legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.atmosenv.2018.04.001


M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

A Functional Data Analysis of Spatiotemporal Trends and Variation1

in Fine Particulate Matter2

Meredith C. Kinga,∗, Ana-Maria Staicua, Jerry M. Davisb, Brian J. Reicha, Brian Ederc
3

aDepartment of Statistics, North Carolina State University , Raleigh, North Carolina, 276954
bDepartment of Marine, Earth & Atmospheric Sciences, North Carolina State University, Raleigh, NC 276955

cComputational Exposure Division, National Exposure Research Laboratory, U. S. Environmental Protection Agency,6

Research Triangle Park, NC 277117

Abstract8

In this paper we illustrate the application of modern functional data analysis methods to study the9

spatiotemporal variability of particulate matter components across the United States. The approach10

models the pollutant annual profiles in a way that describes the dynamic behavior over time and11

space. This new technique allows us to predict yearly profiles for locations and years at which12

data are not available and also offers dimension reduction for easier visualization of the data. Ad-13

ditionally it allows us to study changes of pollutant levels annually or for a particular season. We14

apply our method to daily concentrations of two particular components of PM2.5 measured by two15

networks of monitoring sites across the United States from 2003 to 2015. Our analysis confirms16

existing findings and additionally reveals new trends in the change of the pollutants across seasons17

and years that may not be as easily determined from other common approaches such as Kriging.18

19
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1. Introduction22

Despite recent mitigation strategies promulgated by the U. S. Environmental Protection Agency23

(EPA), fine particulate matter (PM2.5 - aerosols with diameters less than or equal to 2.5µ) continues24

to have a detrimental effect on human health and welfare in many areas of the nation. In a 201025

study, the EPA reported that over 20 million citizens lived in counties that exceeded the National26

Ambient Air Quality Standard (NAAQS) for PM2.5. It is estimated that thousands of premature27

deaths occur in the U.S. annually due to elevated concentrations of PM2.5 (Pope and Dockery,28

2006). Additionally, PM2.5 contributes greatly to visibility degradation through the scattering and29

absorption of visible light (Malm et al., 2004) and excessive nutrient and pollutant deposition.30

In this paper we are concerned with characterizing how two main pollutant species of PM2.5 -31

particulate nitrate (NO−3 ) and particulate sulfate (SO−24 ) - vary during 2003-2015 across the U.S.32

The motivating data set contains concentrations of these pollutant species recorded by two mon-33

itoring networks, which operate independently and often have disparate sampling protocols and34

standard operating procedures; see Figure 1. Our objective is to study the variability of fine par-35

ticulate nitrate and sulfate over time and across the U.S. using recent functional data analysis36

techniques.37

Due to the health risks and visibility degradation associated with high concentrations of PM2.5,38

its behavior has been extensively studied. Millar et al. (2010) provide a thorough review of ap-39

proaches to modeling exposure to fine particulate matter. A popular class of methods are empirical40

(statistical) methods, common examples of which include Kriging (see Liao et al. (2006) and Leem41

et al. (2006) among others) and land use regression models. Hoek et al. (2008) provide a review42

of various land use regression models utilized to investigate spatial variation in concentrations.43
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Physical models, which apply mathematical equations from physical processes, are another com-44

mon approach (Cyrys et al., 2005; Næss et al., 2007). Finally, many hybrid methods have been45

developed to incorporate different models and data sources (Hu et al., 2013; Liu et al., 2009).46

Berrocal et al. (2009) provide a way to incorporate data with different spatial supports; they use47

their method to analyze ozone levels using measurements taken from specific monitoring locations48

and the Community Multiscale Air Quality (CMAQ) model.49

To study the spatiotemporal behavior of fine particulate matter, we consider an empirical mod-50

eling view in this work. In this case, the availability of complete data sets is necessary for many51

statistical approaches, and in the case of pollution data it is very common to have incomplete ob-52

servations. For example, in the motivating application the planned schedule for measuring the53

pollution concentration is every third day. Various statistical approaches have been proposed to54

first impute the missing values and then model and predict fine particulate matter. Hierarchical55

Bayesian methods are a commonly used approach to model spatiotemporal behavior of particu-56

late matter and predict missing observations (Sahu et al., 2006; Kibria et al., 2002; Zidek et al.,57

2002). Smith et al. (2003) use thin plate regression splines to model the temporal and spatial58

trends in the data and employ an expectation-maximization algorithm approach to predict missing59

observations. Sampson et al. (2011) consider data with a similar structure to ours and propose a60

spatiotemporal model that separates temporal trends and spatially varying coefficients and allows61

for non-stationary spatial correlation. Table 5 in the Supplementary Materials provides further62

comparison of these approaches.63

The use of functional data analysis methods for environmental data has received attention re-64

cently (Gao and Niemeier, 2008; Park et al., 2013; Shaadan et al., 2012; Hörmann et al., 2015).65
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We propose incorporating the annual periodicity of the measurements into the model by viewing66

the annual concentration profiles at a location as a functional time series (Hörmann and Kokoszka,67

2012) and modeling it as the sum of three components: 1) an annual mean level, 2) a linear com-68

bination of smooth annual trends with site-specific coefficients that vary over the years during69

the period of study, and 3) an annual specific residual effect. The annual trajectory may or may70

not vary over the space and the annual residual profile is assumed to be independent across sites71

and years, but allowed to exhibit dependence within a year. Although derived from a different72

perspective, our modeling technique shares several similarities with Sampson et al. (2011). Both73

approaches rely on a linear combination involving orthogonal smooth temporal trends. Sampson74

et al. (2011) works with the full time series and the temporal trends are functions defined over the75

entire period under study. In contrast we view the site level data as a functional time series where76

the functional argument is day within year and the series is indexed by year, and thus the trends are77

functions defined over a year-time. As a consequence of the different perspectives, the coefficients78

are space-dependent solely in Sampson et al. (2011), while they exhibit both spatial and yearly79

variation in the proposed approach. Furthermore the assumptions of the residual process are dif-80

ferent: the residual component is allowed to have spatial dependence and is assumed independent81

over days/years in Sampson et al. (2011), while it is allowed to have dependence across the days82

within year, but is assumed independent over space and years in our method.83

Our paper makes several contributions to the field. First, it proposes a dimension reduction84

approach of the complex dependent data over space and time. The methods are accompanied by85

an estimation approach that is distinct from other ideas considered in the literature and it leads to86

fast computations. This is in contrast to a full hierarchical Bayesian modeling approach, which87
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is more computationally intensive. Second, our methodology relies on weaker assumptions than88

the ones commonly used in these settings. In particular, when Kriging is employed for prediction,89

stronger assumptions about the covariance structure - such as separable covariance structures which90

assume the dependence across space is independent of time and vice versa - are often needed to91

make computation feasible. By comparison, the proposed method considers a non-separable and92

non-stationary covariance structure. Third, the proposed method allows us to better visualize and93

gain insights from the data.94

The remainder of the paper is structured as follows: Section 2 describes the data to be used95

in this paper. The modeling framework and estimation techniques are detailed in Section 3. The96

application of the proposed methods to our data and interpretation of the results are discussed in97

Section 4 and a description of the software implementation is found in Section 5. We conclude98

with a brief summary in Section 6.99

2. Data description100

Particulate nitrate and sulfate are recorded by two networks: the Interagency Monitoring of101

Protected Visual Environments (IMPROVE), and the Chemical Speciation Network (CSN).102
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Figure 1: The left panel shows the location of the sites in the two networks: IMPROVE (blue triangles) and CSN
(red circles). The right panel depicts the data for a CSN site in North Carolina observed from 2003-2015.

IMPROVE. The IMPROVE network, which began operations in 1985, represents a collabora-103

tive monitoring effort governed by a consortium of federal, regional, and state organizations. The104

majority of IMPROVE monitors are located in rural areas, often in national parks. There is a higher105

density of sites located in the western U.S. than in the eastern U.S.; the sites are depicted using106

filled triangles in Figure 1. They collect 24-hour integrated samples every third day (midnight to107

midnight LST). For a detailed description, see Malm et al. (2004).108

CSN. The U.S. EPA’s more recently established CSN also follows the one-in-three days collec-109

tion protocol; see the CSN website for more information (EPA, 2016). Most of the sites monitored110

by this network are located in urban areas with a greater density in the eastern U.S.; the sites are111

depicted using filled circles in Figure 1.112

Our study is limited to the period 2003-2015. In spite of the one-in-three day planned sampling113

schedule, several sites had no data for some years, or if they had observations during a year, they114

had only a few, in some cases covering less than a half a year period. A few CSN sites had multiple115

non-consistent recordings for sulfate during the same year and none for nitrate; those CSN sites116
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during the respective years were omitted from the analysis. Our analysis is based on the remaining117

sites: 184 IMPROVE sites and 326 CSN sites. Most of these contain pollutant measurements for all118

13 years; however there are sites observed only one year during this time frame, a few years but not119

necessarily consecutive years, or they had very sparse recordings during a year. Some analyses of120

similar data sets have utilized weekly or biweekly averages to handle missing daily measurements121

(Smith et al., 2003; Sahu et al., 2006; Sampson et al., 2011). However, daily PM2.5 measurements122

are often used in studies as predictors for negative health outcomes (Bell et al., 2004; Dominici123

et al., 2006; Zanobetti et al., 2009). In these situations daily predictions for missing days would124

be beneficial. Further, by utilizing data on the daily scale we can avoid averaging over potentially125

unequal numbers of daily measurements.126

The nitrate levels vary between 0 and 71 µg/m3 and the sulfate levels vary between 0 and 41127

µg/m3 with higher values indicative of higher pollution levels. However, ∼ 0.5% of all nitrate128

levels are larger than 10 µg/m3 and ∼ 1% of all sulfate levels are larger than 10 µg/m3. To129

remove issues related to the skewness of the measurements, we take a log transformation. Because130

some measurements are close to zero we add a constant, 1, to each measurement before applying131

the log transformation. The right panel of Figure 1 depicts the CSN nitrate levels for a site in132

Winston-Salem, North Carolina.133

3. Modeling framework134

Environmental data often has a complex spatiotemporal dependence structure and modeling it135

poses many challenges. Let Yij(d) be the response (log-transformed nitrate or sulfate concentra-136

tion) at site i, year 13tij for tij ∈ {1/13, 2/13, . . . , 1}, day 365d, for d ∈ {1/365, 2/365, . . . , 1},137

and let si be the latitude/longitude of site i. We scale tij and d so they are both within the [0, 1]138
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interval. As d is a function of the day within year, we will often refer to d by day, with the139

understanding that the actual day within year is 365d. Similarly, we will refer to tij by year, corre-140

sponding to the years of study from 2003 to 2015, even though the true year is 13tij + 2002. We141

posit the following model142

Yij(d) = µ(d, si, tij) +
∑

k≥1 φk(d)ξkij + εij(d); (1)

where µ(d, si, tij) is the mean function which can depend on site, year or day specific covariates,143

the sum-term in the middle is the site-specific deviation from the overall mean and will be detailed144

next, and εij(·) is the site/time specific deviation. The term
∑

k≥1 φk(d)ξkij is a linear combination145

of year-time functions φk(·) that are assumed invariant across years and mutually orthogonal, in the146

sense that
∫ 1

0
φk(u)φk′(u) du = 1 if k = k′ and 0 otherwise. The basis coefficients ξkij quantify the147

dynamic variation over space (si) and time (tij) corresponding to the annual pattern represented by148

φk(·). It is assumed that the spatiotemporal process ξk(si, tij) = ξkij is independent from the noise149

measurement εij(·) for all k. Also for convenience we assume that the ξkij’s are independent across150

k. In practice we use a finite truncation K so that in model (1) the summation is for k = 1, . . . , K.151

Finally, we assume that εij(d) is the zero mean measurement error that is independent across i and152

j but possibly dependent over d.153

The model in (1) is inspired from Park and Staicu (2015) in the way it models the dynamic154

behavior over time using time-invariant orthogonal basis functions. Nevertheless, (1) is different155

from Park and Staicu (2015), who assumes that the time varying curves Yij(·) are independent over156

i and thus are solely dependent over j. We assume that ξkij vary according to the following model157

ξkij = aki + tijbki + ekij, (2)
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where aki and bki are the random intercept and random slope, respectively, for year tij and site158

si, and ekij is a nugget effect with variance denoted by σ2
k. We assume that aki and bki are inde-159

pendent Gaussian processes over k and furthermore are mutually independent; to account for the160

dependence of the curves over sites, it is assumed that the two processes are each dependent across161

i. The Gaussian processes have mean zero and covariances cov(aki, aki′) = σ2
kaρka(‖si − si′‖)162

and cov(bki, bki′) = σ2
kbρkb(‖si − si′‖); here σ2

ka and σ2
kb denote the variance of the intercepts and163

slopes corresponding to the kth component, while ρka(·) and ρkb(·) are corresponding autocor-164

relation functions. This model assumption yields a somewhat simpler spatiotemporal covariance:165

cov(ξkij, ξki′j′) = σ2
kaρka(‖si−si′‖)+tijti′j′σ

2
kbρkb(‖si−si′‖) for i 6= i′ or j 6= j′. However, even in166

this case, the implied dependence structure of the data is described by a non-trivial spatiotemporal167

covariance:168

cov{Yij(d), Yi′j′(d
′)} =

∑
k≥1

φk(d)φk(d
′){σ2

kaρka(‖si − si′‖) + tijti′j′σ
2
kbρkb(‖si − si′‖)}. (3)

This induced covariance model is non-separable in space and time (Schabenberger and Gotway,169

2004; Cressie, 1993), in the sense that the dependence across space varies based on time and the re-170

verse. The covariance model in (3) is isotropic in space (Schabenberger and Gotway, 2004), as the171

dependence across space depends solely on the distance between spatial locations. Isotropy, which172

represents a type of stationarity, may be an unreasonable assumption for PM2.5 data. However,173

Stein (1999) demonstrated that in many cases predictions are insensitive to a misspecification of174

the covariance function when neighboring observations are highly correlated. Additionally, Parker175

et al. (2016) and Reich et al. (2011) both found in simulation studies that nonstationary covari-176

ance models do not dramatically improve prediction performance. Thus, we make the simplifying177
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assumption of isotropy in our modeling approach.178

The model in (1) relies on an orthogonal basis {φk(·)}k in L2[0, 1]. One option is to use pre-179

specified basis functions, such as Fourier basis functions or wavelets. However, such an approach180

would require a possibly large number of basis functions in order to capture the variability in the181

data. An appealing alternative is to use data-driven basis functions that would allow for a more182

parsimonious representation. Following the ideas of Park and Staicu (2015) we select φk(d)’s as183

the eigenfunctions of the pooled covariance, obtained by ignoring the dependence across space and184

years. The resulting basis functions which will be the same across sites and years will then capture185

the key directions of variation within a year. More formally, denote the covariance function by186

c{(d, si, tij), (d′, si′ , ti′j′)} = cov{Yij(d), Yi′j′(d
′)} and let Σ(d, d′) be the weighted average across187

i and j; Σ(d, d′) =
∑13

j=1 P (T = tj)
∫
S c{(d, s, tj), (d

′, s, tj)}g(s)ds, where P (T = tj) is the188

relative frequency of the years tj ∈ {t1, t2, . . . , t13}, g(s) is the sampling density of the spatial189

locations and S is the spatial domain. For example, g(s) could be the number of sites per km2 in190

the U.S. for location s. Using similar arguments to Horváth and Kokoszka (2012), one can show191

that this function is a proper covariance function: see Section 5 in the Supplementary Materials192

for a full derivation. This covariance function is sometimes called the marginal covariance of an193

appropriate induced process and has been considered in the literature by other authors including194

Aston et al. (2016). Let Ξ(d, d) = Σ(d, d′) + Γ(d, d′), where Γ(d, d′) is the smooth covariance195

function of the error term of (1). We take {φk(·)}k as the eigenbasis of the covariance function196

Ξ(d, d). One simple approach to select the finite truncation K is using the percentage of explained197

variance of this covariance function.198

Several important advantages of this modeling framework are that it is parsimonious, com-199
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putationally efficient, and furthermore allows us to recover the trajectory for any spatial location200

and time in the domain under study. Specifically, once all the model components are estimated -201

the mean function µ(d, si, tij), the orthogonal functions φk(d)’s, the finite truncation K, and the202

covariance functions of processes ak(s) and bk(s) for all k = 1, . . . , K, the proposed methodol-203

ogy allows us to reconstruct Y (·; s, t) for any location s in the U.S. and year t between 2003 and204

2015 assuming the necessary covariate information is available. The following section describes205

the estimation of each of these terms in part as well as the prediction of full new trajectories.206

The methodology is illustrated on the nitrate data as recorded by the two networks, CSN and IM-207

PROVE.208

4. Estimation using U.S. nitrate concentrations from 2003-2015209

The estimation approach encompasses three main steps: (i) estimate the overall mean function210

µ̂(·); (ii) estimate the orthogonal functions {φ̂k(·)} and estimate the basis function coefficients ξ̃kij211

for each k separately; (iii) estimate the spatiotemporal covariance function for each k and predict212

ξk(s, t) for every s and t in the domain under study. In the following we discuss each step in turn;213

we use the nitrate data across the U.S. during 2003-2015 for illustration. Corresponding analysis214

for sulfate can be found in Section 1 of the Supplementary Materials.215

There are species-specific differences in levels of accuracy, biases, and precision, which thereby216

complicate comparability across the networks. In particular, for nitrate, several challenges are mea-217

surement error associated with volatility, interference from gaseous organic species, and limitations218

of analytical methods; the calibration standards vary across networks. Because of these sampling219

differences we separately analyze the two networks and compare the results.220
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4.1. Mean nitrate profile in the U.S.221

We consider the model framework in (1) to understand the variability of nitrate across the U.S.,222

as monitored separately by each of the two networks. We choose to exploit the autocorrelation in223

the data and model the mean only as a function of day within year, µ(d). This choice also leads to224

a simpler interpretation of the basis coefficients.225

To fix ideas, consider the nitrate data recorded by CSN monitors and assume that its variation is226

described by model (1); µ(d) denotes the overall nitrate level measured by CSN sites for day d. We227

assume that µ(·) is a smooth cyclic function defined on [0, 1]. One popular approach to estimate228

an unknown smooth function is to use penalized spline smoothing (Wood, 2006; Eilers and Marx,229

1996; Ramsay and Silverman, 2005). In particular let {B`(·)}1≤`≤L be a specified basis in [0, 1];230

to account for the periodicity of the underlying function, we assume that this basis is cyclic, and231

use cyclic cubic splines (Wood, 2006). Let µ(d) =
∑L

`=1B`(d)β` where L is the dimension of the232

basis and is specified by the number of knots. The choice of the basis dimension L, and thus the233

number of knots, is important in describing the smoothness of the mean function. A common way234

to bypass this is to select a relatively large value for L in order to capture the characteristics of235

the function and then penalize the basis coefficients. We consider the squared norm of the second236

derivative to describe the roughness of the function and use an additional parameter to control the237

size of the curvature relative to the model fit; see Wood (2006) among others.238

In the case of independent observations, the nonparametric literature suggests selecting the239

smoothing parameter, λ, using restricted maximum likelihood (REML) or generalized cross-validation240

(GCV). There is limited research on smoothness parameter selection when the data exhibits depen-241

dence across space and time; we select λ using REML which has been shown to be more robust to242
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data dependence (Krivobokova and Kauermann, 2007).243

For the data applications we use a cyclic cubic basis with 11 interior knots placed at equal244

time points in [0, 1]; this leads to L = 11. For the CSN-nitrate data, the smoothing parameter was245

estimated to λ = 114.63; let µ̂(d) =
∑L

`=1B`(d)β̂` denote the estimated, network specific, overall246

mean function. The estimated overall nitrate yearly profile in the U.S. on the log-scale is plotted247

in the leftmost panel of Figure 2. The result (shown in red) is compared with the estimated mean248

nitrate yearly profile for the IMPROVE network (blue color). The overall levels are higher for the249

CSN stations than for IMPROVE ones, and this is most likely because the majority of CSN sites250

are located in urban areas while the IMPROVE sites are primarily in rural locations, and pollution251

levels are typically higher in urban areas. Malm et al. (2004) noted this difference in nitrate levels252

for rural and urban locations as well.253

However, irrespective of the monitoring network the nitrate levels exhibit similar behavior: they254

are higher in the cold seasons (fall and winter) than in the warmer seasons (spring and summer).255

Specifically, the nitrate levels start to decline roughly around the beginning of March until the256

middle of summer. The decline rate appears to be slower for the IMPROVE stations than for the257

CSN ones. Also the nitrate levels for IMPROVE sites seem to stay lower slightly longer than those258

of CSN sites, though by middle October they too increase steadily.259
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Figure 2: Left panel: estimated mean function µ̂(d) corresponding to CSN (red) and IMPROVE (blue). Results are
shown on the log-scale. Middle and right panels: estimated eigenfunctions for nitrate variation, φ̂k(d), for CSN sites
(middle, K = 3) and IMPROVE sites (right, K = 3).

4.2. Main directions of annual variation across the U.S.260

Let Ỹij(d) = Yij(d)− µ̂(d) be the centered data; we use the centered data to estimate the data-261

driven orthogonal directions φk(d)’s. Following the earlier intuition, the directions are estimated262

by the eigenfunctions of the pooled covariance function by ignoring the dependence over i and j.263

In order to ensure that the directions are smooth, a smooth estimator of the pooled covariance is264

obtained first. However the annual-profiles are not observed for every day of the year; to account265

for this we borrow ideas from sparse functional principal components (Yao et al., 2005).266

Consider the pairwise product Gij,ll′ = Ỹij(dijl)Ỹij(dijl′) for every observed pair (dijl, dijl′)267

and note that its expected value, E[Gij,ll′ ] - which is equal to the covariance between Yij(dijl)268

and Yij(dijl′) - is smooth over (dijl, dijl′) when l 6= l′. When l = l′ this expected value may269

be inflated by some positive constant σ2
e ; this could be viewed as some noise variance. It fol-270

lows that we can obtain an estimator for the pooled covariance by using a bivariate smoother271

through the data {(dijl, dijl′), Gij,ll′ , i = 1, . . . , n, j = 1, . . . ,mi, l 6= l′} and a working indepen-272

dence assumption. Let {D`(d, d
′)}`≥1 be a bivariate basis defined on [0, 1] × [0, 1] and assume273
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that E[Gij,ll′ ] =
∑L

`=1D`(dijl, dijl′)γ`, where γ` are basis coefficients. We estimate the basis co-274

efficients by minimizing a penalized criterion that is similar to the one used for estimating the275

univariate smooth function µ(d), with the difference being that Yijl is replaced by Gij,ll′ and the276

basis representation as well as the penalty are replaced by the ones corresponding to this setting277

(Wood, 2006; Eilers and Marx, 2003). A computationally faster alternative is to first obtain an278

estimate of the pooled covariance, called a raw pooled covariance estimator, by averaging across279

i and j for all observed pairs and then obtain the final pooled covariance estimator by passing a280

bivariate smoother through this pooled raw covariance estimator; see Di et al. (2009) and Gold-281

smith et al. (2013) who used this approach for a covariance estimator of a sample of independent282

functional observations. We used 100 bivariate basis functions obtained from a tensor product of283

two univariate bases, each with 10 functions. As in Yao et al. (2005) and Staniswalis and Lee284

(1998) the final estimator is adjusted to be symmetric and positive semidefinite by zeroing all the285

negative eigenvalues; this estimation allows us to estimate the noise variance σ2
e . Let Ξ̂(d, d′) be286

the estimated pooled covariance and let {φ̂k(·), λ̂k}k be the pairs of eigenfunctions/eigenvalues287

corresponding to the spectral decomposition of this covariance. Denote by K the finite truncation288

determined by a percentage of explained variance equal to some fixed value. Common thresholds289

used in the literature are 90% or 95% (Di et al., 2009); we use a 95% threshold for the percentage290

of variation explained in our data application.291

Figure 2 shows the leading annual directions in which nitrate varies for the CSN sites (middle292

panel) and the IMPROVE sites (rightmost panel). The number of directions selected to explain293

95% of the variance is K = 3 for both CSN and for IMPROVE. Overall, for both the CSN and the294

IMPROVE network the top estimated directions seem to be related to the seasonality of the nitrate295
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variation; this seasonality-related variation is in agreement to previous findings in the literature296

that studied nitrate among other components of PM2.5 variation over time (Bell et al., 2007).297

The first direction accounts for 77% of the total variance for CSN-nitrate and 83% of the vari-298

ance for IMPROVE-nitrate. The first direction for CSN-nitrate is positive and roughly constant299

throughout the year with a decrease during the summer, and therefore generally represents a ran-300

dom effect for site within year. Sites with positive values for this direction tend to have an average301

annual nitrate level that is higher than that of the U.S. average. For the IMPROVE network, the302

first direction is positive and shows a more noticeable dip during the months from April to Octo-303

ber, implying that the sites with a positive coefficient for this direction tend to have higher average304

annual nitrate levels than the U.S.305

For both networks, the second direction looks similar and seems to indicate that the next most306

important direction of variation in nitrate is related to the contrast between the pollutant levels307

in the warm months and cold months. Specifically, it appears that sites with larger magnitude308

coefficients along this direction experience more seasonality - larger differences in the pollutant309

level between winter and summer - than the U.S. average corresponding to each network in part.310

The analysis of nitrate also depicts a third direction that is positive throughout the year except311

during the spring months implying a larger difference between the pollutant levels in the spring312

and those in the remaining months of the year.313

4.3. Spatiotemporal variation314

Once the mean function µ(d) and the orthogonal directions {φ1(d), . . . , φK(d)} are estimated315

in (1), the basis coefficients ξkij can be predicted by
∫ 1

0
{Yij(u) − µ̂(u)}φ̂k(u)du which can be316

approximated numerically if the curves Yij(·) are observed at fine grids of points. Nevertheless317
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as we specified in the beginning, the common protocol of sampling in our case is one every three318

days. However, there are many sites with considerably fewer, such as two or three, observations per319

year. To accommodate such designs, we predict ξkij in a mixed model framework-based approach.320

Specifically, consider the following model, Ỹij(d) =
∑K

k=1 φk(d)ξkij+eij(d) where we assume321

that the centered response Ỹij(d) is the outcome, φk(·) = φ̂k(·)’s are known, fixed quantities,322

ξkij ∼ N(0, λk) are unknown random variables modeled to be independent over i, j and k with323

known variance λk = λ̂k, and random noise eij(d) ∼ N(0, σ2
e) independent over i, j, d with324

known variance σ2
e = σ̂2

e . The assumption that the variance term eij(d) is independent over d is325

made for convenience; eij(d) should not be mistaken with the noise process εij(·) described by (1).326

The random components ξkij are predicted by conditional expectation ξ̃kij = E[ξkij|Ỹij]; a simple327

closed form expression is available by using independence and normality assumptions.328

Figure 3 shows the predicted basis coefficients for the first component, ξ̃1ij , for nitrate levels in329

2003 and 2015 for the CSN sites (left panels, using filled circles) and IMPROVE sites (right panels,330

using filled triangles). The absolute magnitude of these loadings is reflected by the dimension of331

the circle or triangle and their sign is depicted by color (red for + and blue for −). For CSN332

sites, there is a clear spatial trend in the sign of the coefficient values. We see generally positive333

coefficients in the Midwest and California, implying higher annual nitrate levels than the overall334

U.S mean at these CSN sites in 2003. By 2015, the region of positive coefficients for CSN has335

condensed indicating areas of possible decreasing trends in nitrate levels over this period. While336

the loadings of the CSN sites appear to be spatially correlated, the correlation is not nearly as strong337

for the IMPROVE sites. In fact this observation holds true for the loadings of the other directions338

that explain the nitrate variation across the U.S. We also note that the estimated variance of the339
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random noise σ̂2
e is 0.06 for the CSN and 0.02 for the IMPROVE network capturing the day-to-day340

specific variability in log-nitrate levels.341
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Figure 3: Preliminary predicted loadings for the first direction for nitrate variation in 2003 (top panels) and 2015
(bottom panels): CSN sites (left panels) and IMPROVE sites (right panels).

These preliminary estimates of ξ̃kij allow us to understand the variation of nitrate solely for the342

sites and the years at which observed data are available. This is a limitation as many sites in our343

data do not have nitrate level measurements for all the 13 years from 2003 to 2015. Therefore it is344

preferable to use an approach that would allow us to predict these coefficients for years and sites345

within the respective network that have not been observed. For this purpose we use ξ̃kij to gain346

insight into the space-time correlation in the data corresponding to each direction and in turn make347
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predictions for the locations and times at which data are not available.348

4.4. Prediction of annual nitrate349

For each k, consider the “pseudo” data {ξ̃kij, tij, si : j = 1, . . . ,mi, i = 1, . . . , n}. In other350

words, we now treat the scores and corresponding sites and years as a new data set. Assume a351

working normal distribution with zero-mean and space-time parametric covariance model, as de-352

tailed in Section 3. Specifically, for each k assume a spatiotemporal behavior for ξ̃kij as described353

by (2), using a random intercept and random slope, which comes down to assuming the following354

covariance model:355

cov(ξ̃kij, ξ̃ki′j′) = σ2
kaρka(‖si − si′‖) + tijti′j′σ

2
kbρkb(‖si − si′‖) + σ2

kI(i = i′, j = j′). (4)

Denote I(·) as the indicator variable that is equal to one if i = i′ and j = j′. Here σ2
ka and356

ρka describe the variance and spatial dependence of the intercept and σ2
kb and ρkb describe the357

same characteristics of the slope. The dependence between coefficients as described by (4) may358

be unnecessarily complex for larger k. We propose the use of an information criterion to select359

among nested covariance models.360

Before estimating the model parameters implied by (4), we conducted a preliminary investiga-361

tion to check the assumptions made about the temporal and spatial dependence. For example to362

check the assumption of isotropy, we considered the sample semivariograms of the ξ̃kij’s for dif-363

ferent angles between sites at fixed years. The results from 2003 for both networks are located in364

Figure 5 in the Supplementary Materials. The semivariograms for the IMPROVE network appear365

relatively consistent over different angles. However, there is some evidence of anisotropy for CSN.366

For this analysis we will continue to use the isotropic covariance model for CSN. The high spatial367

correlation between neighboring sites should lessen the potential effect of model misspecification.368
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In the future it could be helpful to consider using an anisotropic covariance function or incorpo-369

rating covariates into the covariance function for the CSN. Examination of the omnidirectional370

sample semivariograms for fixed years showed that it is reasonable to assume ρka(·) and ρkb(·) to371

be double exponential correlation functions (Rasmussen and Williams, 2006) with parameters δka372

and δkb respectively. For example, ρka(∆) = exp (−∆2/2δ2ka) where ∆ is the distance between373

sites measured in kilometers and the parameter δka is proportional to the spatial correlation range.374

Thus, larger values of δka or δkb indicate higher spatial correlation. Residuals from initial fits of375

this model also indicated that the assumption of independence for the ekij is reasonable.376

Maximum likelihood estimation is used to estimate the model parameters for each network and377

k in part; the parametric modeling framework also allows us to calculate standard errors of the378

estimates. For both networks, it appears that the dependence of the ξ̃kij’s for k = 3 is somewhat379

less complex than for k = 1, 2. Thus we consider gradually simpler covariance models: the first380

covariance model is described by (4); the second model assumes (4) with δkb = 0; finally a third381

model assumes (4) with δkb = 0 and σ2
kb = 0. If δkb = 0 it implies that the dependence of ξ̃kij ,382

cov(ξ̃kij , ξ̃ki′j′), for any two different locations, i and i′, remains constant over time. If in addition383

σ2
kb = 0 then the dependence of ξ̃kij is the same for any two different years.384

We use Akaike information criterion (AIC) for covariance model selection. For CSN, we adopt385

(4) for k = 1, 2 and then assume δkb = 0 for k = 3. For the IMPROVE network, we also use (4) for386

k = 1, 2 and assume δkb = 0. Details about the reduced models and results of the AIC comparison387

can be found in Section 3.1 of the Supplementary Materials.388

Table 1 shows the parameter estimates for the final covariance models and their associated389

standard errors in the case of nitrate for both networks and for each annual direction of variation.390
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The expression of the likelihood and its partial derivatives are not trivial; we use a numerical391

approximation of the Hessian to calculate the Fisher information matrix and thus estimate the392

standard deviations of the parameter estimates. We see that for the first direction (k = 1) the393

spatial correlation parameters are larger for the CSN than the estimates for the IMPROVE network394

implying more spatial dependence between CSN sites. In the Supplementary Materials, Section395

3.2 discusses the interpretation of the spatial correlation parameter in the context of our problem.396

For example, CSN sites within around 172 km of each other will have spatially correlated random397

intercepts. On the other hand, IMPROVE sites need to be within around 1 km of one another398

to exhibit any spatial correlation between random intercepts. This aligns with what we saw in399

Figure 3 where there are large clusters of similar loadings for the CSN sites whereas the clusters400

are much smaller for the IMPROVE sites in 2003. It is also interesting to note that when k = 1401

the variability of the intercepts and slopes is roughly equal for the IMPROVE and CSN sites.402

For CSN, the coefficients corresponding to the second and third principal directions of variation403

(k = 2 and k = 3) exhibit strong spatial correlation between random intercepts, though of course404

their variability decreases with k.405
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Network k σ̂2
ka δ̂ka σ̂2

kb δ̂kb σ̂2

CSN 1 0.07 43.39 0.03 427.51 0.01
(0.007) (2.940) (0.009) (56.824) (0.000*)

2 0.01 155.09 0.00* 288.55 0.00*
(0.001) (13.871) (0.001) (43.757) (0.000*)

3 0.00* 331.30 0.00* N/A 0.00*
(0.001) (31.430) (0.001) N/A (0.000*)

IMPROVE 1 0.09 0.00* 0.02 0.00* 0.01
(0.011) (0.000*) (0.002) (0.000*) (0.000*)

2 0.01 9.87 0.00* 27.72 0.00*
(0.001) (5.172) (0.001) (10.784) (0.000*)

3 0.00* 10.84 0.00* N/A 0.00*
(0.000*) (5.482) (0.000*) N/A (0.000*)

Table 1: Maximum likelihood estimates of the spatiotemporal covariance parameters separated by network and
direction for nitrate. Standard errors for the estimates are found below in parentheses. Values denoted with an asterisk
are rounded to zero, but their estimated values are not zero.

The estimated model covariance, obtained from the assumed covariance model with the esti-406

mated covariance parameters, and the normality assumption allow us to predict the basis coeffi-407

cients ξkij = ξk(si, tij) for unobserved locations and years within the time frame studied. Specif-408

ically, for each k separately and each specific network, Kriging is used to predict the values of409

ξk(s
∗, t∗) corresponding to new network site s∗ and year t∗ (Cressie, 1993; Wackernagel, 2003).410

Thus, if we denote ξ̂k(s, t) to be the predicted temporal basis coefficients for the spatial location s411

and time t we can predict the full profiles by412

Ŷ (·, s, t) = µ̂(·) +
K∑
k=1

φ̂k(·)ξ̂k(s, t). (5)

where µ̂(·) and the φ̂k(·) are as previously estimated in Sections 4.1 and 4.2.413

Figure 4 displays the observed and estimated trajectories on the log-scale for the first CSN site414

in the data set which is located in southern Alabama from 2003 to 2006 from left to right. While the415

estimated profiles do not capture all of the day-to-day variability in nitrate levels, they successfully416
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mimic the seasonal behavior of nitrate levels at this site.417
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Figure 4: Observed and estimated nitrate levels on the log-scale for a CSN site in Alabama from 2003 to 2006 (from
left to right).

Figure 4 highlights an important advantage of our approach. This site only has measurements418

from 2003 to 2006, and in that time period it was only observed for small portions of the year in419

2003 and 2006. To compare the annual or seasonal nitrate levels across the U.S. and within the420

network, many existing methods use annual or seasonal averages (Bell et al., 2007; Pitchford et al.,421

2009). If monitoring sites are missing observations, the averages will be over differing numbers of422

days. For the site in Alabama, the annual average for 2003 would only include the 15 observations423

at the end of the year, when nitrate levels are at their highest and the 2006 average would utilize424

11 observations at the beginning of the year. On the other hand, in 2004 and 2005 the annual425

average would include 49 and 59 observations, respectively, gathered over the entire year. Using426

our estimated trajectories we can avoid this issue and average over the entire annual profile. We427

investigated the prediction performance of our method in cases similar to 2006 in Figure 4, where428

the site was only observed for a portion of the year. Despite this lack of data for segments of the429

year, our trajectories still do a good job of predicting pollutant levels throughout the year. See430

Section 4.2 of the Supplementary Materials for description and results of this analysis.431
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Another feature of the data we investigated in the Supplementary Materials is potential non-432

stationarity and how this affects prediction. We tested for spatial stratified heterogeneity using a433

method proposed by Wang et al. (2016) based on the U.S. partition shown in Figure 7 of the Sup-434

plementary Materials. We found annual site averages over the period of study and conducted the435

test on the averages for each year. For all tests, we found evidence of spatial stratified heterogene-436

ity at an α = 0.05 significance level. Additionally, when we accounted for multiple testing and437

utilized a Bonferroni correction for these tests, we still rejected the null hypothesis for every year.438

The spatial stratified heterogeneity represents one type of nonstationarity that is present in the data.439

We also explored the potential differences in the correlation across these regions. For example, in440

the case of CSN nitrate, the regions differed in the number of estimated principal components. The441

Northwest region resulted in K = 4, while the Northeast and Southeast needed only K = 2. For442

additional comparison we constructed 95% confidence intervals for covariance parameters. Figure443

7 of the Supplementary Materials also shows the intervals for the spatial range parameter of the444

random intercepts for k = 1, δ1a, for the CSN nitrate data. While the uncertainty associated with445

these estimates varies across region due to the different sampling densities in each area, there are446

some noticeable regional differences in this range parameter. However, we investigated regional447

models in an analysis described in Section 4.4 of the Supplementary Materials, and in most cases448

the regional and overall models resulted in similar predictions.449

Due to the multi-step estimation procedure, standard errors for predictions are difficult to es-450

timate. However, we propose the use of a simplifying assumption to calculate standard errors for451

predictions. If we consider µ̂(d), φ̂k(d) and the estimated covariance parameters to be fixed quan-452

tities, then the variance of a daily prediction is solely a function of the variance of the predicted453

wjf
高亮

wjf
高亮

wjf
高亮
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scores and the errors. Specifically, the standard error for a prediction of Ŷ (d, s, t) for an unob-454

served site or year will be
√∑K

k=1 φ̂
2
k(d)V ar{ξ̂k(s, t)}+ σ2

ε where V ar{ξ̂k(s, t)} is the variance455

of the Kriging prediction for ξ̂k(s, t) (Cressie, 1993). We assume independence across k, so we do456

not have to account for covariance between ξ̂k(s, t) and ξ̂k′(s, t). Our pointwise prediction band457

will be calculated as458

Ŷ (·, s, t)± z1−α/2

√√√√ K∑
k=1

φ̂2
k(·)V ar{ξ̂k(s, t)}+ σ2

ε (6)

where z1−α/2 is the 1− α/2 quantile of a standard normal distribution. In the case of an observed459

site and year with missing daily measurements within the year, the prediction standard error for460

a given day would be the same except we would use V ar{ξ̃k(s, t)} as defined in (4) instead of461

V ar{ξ̂k(s, t)}. By ignoring some sources of estimation variability, we may underestimate the462

variance to a certain extent, but for large data sets the approximation should work fairly well.463

4.5. Method performance464

Using five-fold cross-validation, we can further assess the performance of our method for pro-465

file prediction. For each fold we use roughly 80% of the sites as training data and predict for the466

remaining 20% of sites. We are primarily interested in two settings: (1) prediction for a new, un-467

observed site and (2) prediction for a site that is observed one year but has no measurements for468

the remaining years of study. In the second case, we include the first year of measurements for469

the prediction sites in the training data and then predict for the remaining years at those sites. We470

calculate the mean-squared error (MSE) and mean absolute deviation (MAD) for daily predictions471

(Table 2) as well as seasonal average predictions (Table 3) on the log-scale. We include corre-472

sponding results for data on the original scale to aid interpretation, but in practice caution should473

be used when transforming predictions back to the original scale. For simplicity we divide each474
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year into four “seasons” of 91 or 92 days yielding slightly different segments than the traditional475

seasons. For example, the winter average will be the average taken over days 1-92 while the fall476

average is over days 275-365. When comparing our predicted seasonal averages to the observed477

data, we only include sites that have 20 or more measurements in a given season so that we have478

an accurate seasonal average.479

We compare our method (ST-FDA) to a k-nearest neighbors based approach (kNN) and a spa-480

tiotemporal Kriging method (STK). For a given prediction site s∗ and year t∗ the kNN approach481

takes the average annual profile of the k-closest sites to s∗ observed during year t∗. Due to the482

every third day sampling procedure we then compute a k-day moving average to yield a complete483

predicted profile. This is easily the fastest method, requiring a few seconds for each fold. We report484

results for k = 30 which yielded the best kNN results, but we initially considered other choices of485

k. To apply the STK approach we utilize the R package, gstat, and consider the full time series486

for each site as in Sampson et al. (2011). Specifically, each site has a single time series of daily487

measurements from 2003-2015. Using the training data we first estimate a smooth mean function488

using penalized splines with 150 knots and also include site latitude and longitude as covariates.489

Then with the centered data we employ spatiotemporal Kriging separately for each month to make490

computation feasible. For each month, we calculate the sample variogram and then estimate model491

parameters by minimizing the squared difference between the sample and model variogram sur-492

faces. After some initial investigation, we adopt a separable variogram model that is exponential493

in both space and time. Using the estimated variogram and training data for the current month,494

we then predict for the missing sites and days by Kriging. We primarily use the default settings495

of gstat, so it is possible the results for this method could be improved. Because calculating a496
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sample variogram is computationally costly, the STK approach is by far the slowest method, taking497

around five hours per fold. Meanwhile, our ST-FDA approach requires a more reasonable 40-50498

minutes per fold.499

New Site Site observed 1 year
Scale Network Method MSE MAD MSE MAD

Log CSN ST-FDA 0.18 0.31 0.15 0.29
kNN, k = 30 0.21 0.34 0.21 0.34

STK 0.24 0.36 0.24 0.36
IMPROVE ST-FDA 0.12 0.23 0.07 0.17

kNN, k = 30 0.12 0.22 0.12 0.22
STK 0.13 0.24 0.13 0.24

Original CSN ST-FDA 2.97 0.87 2.64 0.81
kNN, k = 30 3.52 0.93 3.50 0.92

STK 3.75 0.99 3.75 0.99
IMPROVE ST-FDA 1.19 0.41 0.74 0.33

kNN, k = 30 1.19 0.40 1.16 0.39
STK 1.19 0.42 1.19 0.42

Table 2: Average MSE and MAD for daily predictions for all folds on the log-scale and original scale for our method
(ST-FDA), k-nearest neighbors approach (kNN) and spatiotemporal Kriging (STK) under two settings of missing
observations

From Table 2 we see that our functional data analysis approach yields the smallest MSE and500

MAD of all the methods for CSN. This is especially true when we are predicting for a site at501

which we have measurements for one year. For prediction at a new site in the IMPROVE network,502

all methods perform about the same, but again we see our method benefits in the case when we503

observe data for one year and predict for the remaining years. However, as we saw in Figure 4,504

our daily predictions mimic the average behavior throughout the year and capture the day-to-day505

variability to a lesser extent.506
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New Site Site observed 1 year
Scale Network Method Win Spr Sum Fall Win Spr Sum Fall

Log CSN ST-FDA 0.07 0.03 0.02 0.05 0.03 0.01 0.01 0.02
kNN 0.12 0.05 0.03 0.07 0.11 0.05 0.03 0.07
STK 0.11 0.05 0.04 0.07 0.10 0.05 0.04 0.07

IMPROVE ST-FDA 0.13 0.03 0.02 0.08 0.02 0.02 0.01 0.01
kNN 0.12 0.03 0.01 0.08 0.12 0.03 0.01 0.08
STK 0.13 0.03 0.02 0.08 0.12 0.03 0.02 0.08

Table 3: MSE of seasonal site averages on the log-scale for our method (ST-FDA), nearest neighbors approach (kNN)
and spatiotemporal Kriging (STK) under two settings of missing observations.

Table 3 replicates the analysis in Table 2, but separately for each season; it shows the MSE507

for predicted seasonal averages for all the competing methods. For brevity we only include the508

results for the log-scaled data, but results on the original scale are included in Section 4.1 of the509

Supplementary Materials. Additionally, corresponding seasonal results for MAD are located in510

this section. On the log-scale, our method performs best for CSN and matches the kNN and511

STK approaches for IMPROVE when predicting for a new site. However when we return to the512

original data scale, the results do not indicate a uniform winner which is likely an effect of the513

transformation. Again ST-FDA noticeably improves in prediction accuracy when we observe one514

year of concentrations for a site of interest; see the block of columns under the label ‘Site observed515

1 year.’516

We also investigate the coverage of 90% prediction intervals for our method based on our517

proposed standard error estimation approach. The daily prediction intervals are slightly aggressive518

for CSN with coverages of 83% for new site prediction and 82% for prediction at a site observed519

one year. The corresponding average daily coverage for IMPROVE are 93% and 83%. The results520

for seasonal average prediction intervals are found in Table 4 and we generally maintain the desired521

coverage though there is some undercoverage as expected. These prediction intervals are calculated522
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for the log-scaled data as standard errors are not easily transformed.523

New Site Site observed 1 year
Network Win Spr Sum Fall Win Spr Sum Fall

CSN 0.91 0.90 0.94 0.91 0.89 0.91 0.94 0.89
(0.01) (0.03) (0.02) (0.02) (0.02) (0.01) (0.01) (0.03)

IMPROVE 0.93 0.94 0.94 0.94 0.88 0.83 0.86 0.91
(0.01) (0.01) (0.01) (0.01) (0.02) (0.03) (0.02) (0.02)

Table 4: 90% prediction interval coverage for seasonal average predictions on the log-scale. Corresponding standard
errors are listed below in parentheses.

4.6. Spatiotemporal trend analysis524

The model for ξkij in (2) includes a random intercept and random slope for each site. By fitting525

a random effects model to the scores with our estimated covariance model, we can gain a better526

understanding of the spatiotemporal trends in nitrate. Figure 5 contains the estimated random527

slopes for both networks for k = 1. In Figure 2 we noted that the first main direction of variation528

was positive and roughly constant throughout the year for both networks. All CSN sites have529

negative random slopes which indicates that nitrate levels at all sites in the network are decreasing530

to some extent from 2003-2015. For CSN, the smallest slopes are located at sites in California,531

coastal sites in the Northeast and sites in the Midwest, specifically those near Lake Michigan. Thus532

these sites experience the largest decreases in nitrate levels over the period of study. In their local533

analysis of the Bay Area of California, Fairley et al. (2011) also reported a decrease in nitrate levels534

from 2000 to 2009. For IMPROVE, most of the random slopes are also negative, but there are not535

strong regional trends.536
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Figure 5: Estimated random slopes for the first direction of nitrate variation for CSN sites (left panel) and IMPROVE
sites (right panel).

Predicting the annual level of additional pollutants across the U.S. at various times allows us to537

study the interplay between various pollutants over space and time in a more formalized manner.538

In particular by having the level of nitrate and sulfate at every day within the year, one can get a539

single number summary - such as annual average or average over a specific season - and calculate540

for each location and every year, the proportion of one pollutant relative to the combined pollutant541

level. Figure 6 depicts the average percentages of nitrate (blue color) at the state level for every542

year and every winter and summer for the CSN sites. The size of each pie reflects the combined543

pollutant level: larger pies correspond to states with higher average combined levels of nitrate and544

sulfate, while smaller pies correspond to states with lower average pollution levels of nitrate and545

sulfate. Generally, we see that the annual combined pollutant average of states decreases from546

2003 to 2015 for CSN. However, we do see an increase in 2005 in the Midwest, especially in the547

winter that was also noted by Pitchford et al. (2009). Sulfate tends to comprise the majority of548

pollution totals in the summer, whereas nitrate is more dominant in the winter, especially for states549

in the Midwest and Northeast. This is additional evidence of the seasonal behavior of nitrate and550
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sulfate found by Bell et al. (2007). The corresponding results for the IMPROVE sites are shown in551

Figure 7.552
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Figure 6: Annual (top panels) and seasonal (middle and bottom panels) average total (nitrate + sulfate) pollution
levels for each state from 2003 until 2015 for CSN. Totals are on the log-scale. The sections of the pie represent the
proportion of the total pollution accounted for by each pollutant. The radius of the circle represents the level of total
pollution and is scaled appropriately so we can compare levels between the years and seasons.
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Figure 7: Annual (top panels) and seasonal (middle and bottom panels) average total (nitrate + sulfate) pollution
levels for each state from 2003 until 2015 for IMPROVE. Totals are on the log-scale. The sections of the pie represent
the proportion of the total pollution accounted for by each pollutant. The radius of the circle represents the level of
total pollution and is scaled appropriately so we can compare levels between the years and seasons.
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5. Software implementation553

Our computational procedures can be divided into the three main estimation steps described554

at the beginning of Section 3. All of the analysis is carried out in R (R Core Team, 2013). To555

estimate the mean as discussed in Section 4.1 we utilize the mgcv package, specifically the flex-556

ible function, gam(). The gam() function allows us to fit the smooth mean function by using557

the function, s(), to define the smooth term for our model. Next we center the data and estimate558

the main directions of variation φk’s and corresponding coefficients ξ̃kij’s by pooling all the data559

together, ignoring the dependence over space and time using functional principal component anal-560

ysis tools implemented by the function fpca.sc() in the R package refund (Crainiceanu et al.,561

2014). Finally, while established software exists for the previous two steps, due to the complex562

nature of spatiotemporal data there are fewer resources to perform maximum likelihood estimation563

for covariance parameters and those that exist cannot accommodate our non-separable covariance564

function. Therefore, we had to develop our own code to carryout this procedure. Code for the565

complete analysis of nitrate can be found in the online supplementary materials.566

6. Final remarks567

This paper illustrates a functional data analysis methodology to gain insights into the variation568

of nitrate in the U.S. from 2003-2015, as measured by two main networks. The results for studying569

the variation of sulfate are included in the Supplementary Materials.570

We make several modeling choices when applying our method to the PM2.5 data. First, we opt571

to model the networks separately. Due to the similarity in the estimated eigenfunctions across the572

two networks, we also considered a joint model that assumes a network specific mean, a common573

eigenbasis across networks, and a common covariance model for the basis coefficients. It does574
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allow for separate network monitoring errors. However, cross-validation analysis showed that the575

current modeling approach yielded more accurate predictions likely due to the differing levels of576

spatial correlation within the two networks. Details about this model and results of the analysis577

are included in Section 4.3 of the Supplementary Materials. Additionally, although there is some578

evidence of anisotropy or potential regional differences in PM2.5 behavior, we choose to continue579

with our model for the entire continental U.S. with an isotropic covariance. In Section 4.4 of580

the Supplementary Materials we detail a cross-validation analysis in which we consider modeling581

regions separately. For the CSN, daily sulfate level predictions could be improved with a regional582

model in the Northeast and Southeast. However, in most cases the regional analysis resulted in583

similar prediction accuracy. Finally, we model the mean function only in terms of day within year,584

but including additional covariates could improve our approach.585

Because of the health risks associated with PM2.5, understanding the spatiotemporal behav-586

ior of nitrate and sulfate levels in the U.S. could help mitigate these key contributors to PM2.5587

concentrations. We presented a new approach to analyzing the PM2.5 variability and change over588

space and time; the conclusions are consistent to other literature published in this area (Bell et al.,589

2007; Malm et al., 2004; Pitchford et al., 2009; Hand, 2011). However, our approach allows us590

to reconstruct the annual profile of the pollutants for every year under study and for any location591

in the continental U.S., allowing for a better understanding of the temporal trends in nitrate and592

sulfate levels. In addition, investigation of these complete estimated site profiles can potentially593

yield further insights about the various spatiotemporal trends in the behavior of pollutants in the594

U.S. While the PM2.5 data represents one case where this functional data analysis approach could595

be beneficial, this process could also be applied to other similar data sets.596
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The proposed methodology allows us to analyze the variation of the pollutants across space and597

time. The precision of the estimates varies across the U.S. due to the differing densities of sites598

in each network. Regions where we have many sites will yield more precise estimates, whereas599

the standard error for a site average in an area with few neighboring sites would be larger. Much600

like Sampson et al. (2011), our multi-step estimation procedure complicates the estimation of601

standard errors. While we considered an approach to estimate standard errors, future work could602

focus on improving this effort by accounting for the lower bound of PM2.5 concentrations and the603

uncertainty in each estimation step.604
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Highlights for “A Functional Data Analysis of Spatiotemporal Trends and Variation in 
Fine Particulate Matter 

• A functional data analysis approach for spatiotemporal functional data is proposed 
• The approach allows for complete profile prediction for sites or times without 

data 
• The technique offers dimension reduction for easier data visualization 
• The method confirms existing findings and yields new insights about PM2.5 

variation 


	AEA_15934.pdf
	Introduction
	Data description
	Modeling framework
	Estimation using U.S. nitrate concentrations from 2003-2015
	Mean nitrate profile in the U.S. 
	Main directions of annual variation across the U.S.
	Spatiotemporal variation
	Prediction of annual nitrate
	Method performance
	Spatiotemporal trend analysis

	Software implementation
	Final remarks


	0: 
	0: 
	1: 
	2: 
	3: 
	4: 
	5: 
	6: 
	7: 
	8: 
	9: 
	10: 
	11: 
	12: 
	EndLeft: 
	StepLeft: 
	PauseLeft: 
	PlayLeft: 
	PlayPauseLeft: 
	PauseRight: 
	PlayRight: 
	PlayPauseRight: 
	StepRight: 
	EndRight: 
	Minus: 
	Reset: 
	Plus: 

	anm0: 
	1: 
	0: 
	1: 
	2: 
	3: 
	4: 
	5: 
	6: 
	7: 
	8: 
	9: 
	10: 
	11: 
	12: 
	EndLeft: 
	StepLeft: 
	PauseLeft: 
	PlayLeft: 
	PlayPauseLeft: 
	PauseRight: 
	PlayRight: 
	PlayPauseRight: 
	StepRight: 
	EndRight: 
	Minus: 
	Reset: 
	Plus: 

	anm1: 
	2: 
	0: 
	1: 
	2: 
	3: 
	4: 
	5: 
	6: 
	7: 
	8: 
	9: 
	10: 
	11: 
	12: 
	EndLeft: 
	StepLeft: 
	PauseLeft: 
	PlayLeft: 
	PlayPauseLeft: 
	PauseRight: 
	PlayRight: 
	PlayPauseRight: 
	StepRight: 
	EndRight: 
	Minus: 
	Reset: 
	Plus: 

	anm2: 
	3: 
	0: 
	1: 
	2: 
	3: 
	4: 
	5: 
	6: 
	7: 
	8: 
	9: 
	10: 
	11: 
	12: 
	EndLeft: 
	StepLeft: 
	PauseLeft: 
	PlayLeft: 
	PlayPauseLeft: 
	PauseRight: 
	PlayRight: 
	PlayPauseRight: 
	StepRight: 
	EndRight: 
	Minus: 
	Reset: 
	Plus: 

	anm3: 
	4: 
	0: 
	1: 
	2: 
	3: 
	4: 
	5: 
	6: 
	7: 
	8: 
	9: 
	10: 
	11: 
	12: 
	EndLeft: 
	StepLeft: 
	PauseLeft: 
	PlayLeft: 
	PlayPauseLeft: 
	PauseRight: 
	PlayRight: 
	PlayPauseRight: 
	StepRight: 
	EndRight: 
	Minus: 
	Reset: 
	Plus: 

	anm4: 
	5: 
	0: 
	1: 
	2: 
	3: 
	4: 
	5: 
	6: 
	7: 
	8: 
	9: 
	10: 
	11: 
	12: 
	EndLeft: 
	StepLeft: 
	PauseLeft: 
	PlayLeft: 
	PlayPauseLeft: 
	PauseRight: 
	PlayRight: 
	PlayPauseRight: 
	StepRight: 
	EndRight: 
	Minus: 
	Reset: 
	Plus: 

	anm5: 


