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Abstract
The eutrophication of the coastal waters of Zhejiang Province has become one of the main contamination

threats to the region’s coastal marine ecosystems. Accordingly, the comprehensive characterization of the eutro-
phication status in terms of improved quantitative methods is valuable for local risk assessment and policy mak-
ing. A novelty of this work is that the spatial distributions of chemical oxygen demand, dissolved inorganic
nitrogen, and dissolved inorganic phosphorus were estimated across space by the Bayesian maximum entropy
(BME) method. The BME estimates were found to have the best cross-validation performance compared to ordi-
nary kriging and inverse distance weighted techniques. Based on the BME maps, it was found that about
25.95%, 19.18%, 20.53%, and 34.34% of these coastal waters were oligotrophic, mesotrophic, eutrophic, and
hypereutrophic. Another novelty of the present work is that comprehensive stochastic site indicators (SSI) were
introduced in the quantitative characterization of the eutrophication risk in the Zhejiang coastal waters under
conditions of in situ uncertainty. The results showed that the level of the eutrophication index (EI) increased
almost linearly with increasing threshold values; and that 71%, 51%, and 19% of coastal locations separated by
various spatial lags experience considerable mesotrophic, eutrophic, and hypereutrophic risks, respectively. The
average EI values over the subregions of the Zhejiang coastal waters graded as “oligotrophic or higher,” “eutro-
phic or higher,” and “hypereutrophic” were about 11.14, 14.28, and 25.34, respectively. Our results also
revealed that the joint eutrophication strength between coastal locations in the Zhejiang region was consis-
tently greater than the combined strength of independent eutrophications at these locations (we termed this sit-
uation “positive quadrant eutrophication dependency”). It was found that a critical eutrophication threshold
ζcr ≈ 8.38 exists so that below ζcr the spatial eutrophication dependency in the Zhejiang coastal waters increases
with ζ, whereas above ζcr the opposite is true. Moreover, the eutrophication dependency decreases as the separa-
tion distance δs increases. Interestingly, at distances δs smaller than a critical distance δscr ≈ 15 km, the eutro-
phication locations are concentrated in the coastal waters of the Zhejiang province rather than being dispersed
(this observation holds even for large thresholds ζ). Elasticity analysis of eutrophication indicators offered a
quantitative measure of the excess eutrophication change in the Zhejiang coastal waters caused by a threshold
change (the larger the elasticity is, the more sensitive eutrophication is to threshold changes). The above find-
ings can contribute to an improved understanding of seawater quality and provide a practical approach for the
identification of critical coastal water regions.

Eutrophication is a type of contamination initially defined as
the increase of nutritive substances in a lake (Naumann 1919;
Hutchinson 1967), was subsequently adopted in marine waters to
characterize water enrichment in nutrients (particularly nitrogen

and phosphorus) that leads to increased algae growth (Postma
1966; Vollenweider 1992). Eutrophication of coastal waters can
directly and indirectly threaten marine ecosystems with various
adverse effects, such as dissolved oxygen consumption, degraded
water quality, and changes in species compositions (Heip 1995;
Smith 2006; Xiao et al. 2007; Liu et al. 2015). With the rapid eco-
nomic development of coastal areas in China, eutrophication in
marine waters became more severe in coastal regions with high
population densities and industrial activities. The last two
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characteristics result to an increasing flow of anthropogenic nutri-
ents into rivers and accumulation in estuaries and harbors (Chen
et al. 2016; Kong et al. 2017; Zhang et al. 2017). Assessment of
the eutrophication status is indispensable for environmental con-
servation management and policy making purposes.

Multiple statistical methods have been used to assess eutrophi-
cation, including correlation and regression analysis (Nikolaidis
et al. 2006), principal component analysis (PCA; Primpas
et al. 2010), and cluster analysis (CA; Lundberg et al. 2009). These
data analysis methods and the relevant eutrophication indices
rely mainly on the discrete sampling of sites with many water
quality parameters such as chemical oxygen demand, dissolved
oxygen, nitrogen, phosphorous, and phytoplankton biomass.
Although considerable uncertainty may exist for the entire study
region, field sampling is often costly and sparsely distributed. Spa-
tial interpolation methods (e.g., inverse distance weighted, and
kriging methods), which can generate predictive nutrient maps
throughout the study area, have proved very useful tools in the
study of coastal marine eutrophication (Kitsiou et al. 2000; Liu
et al. 2014; Ren et al. 2016).

This work recognizes the importance of accurate seawater
quality mapping in the effective eutrophication assessment
and control of the coastal regions in China. This mapping is
based on datasets with considerable uncertainty that can
affect eutrophication assessment. Accordingly, the Bayesian
maximum entropy method of geostatistics will be used to
study the severely contaminated by eutrophication coastal
waters of Zhejiang province. This method will allow the assim-
ilation of various data sources under conditions of uncer-
tainty, and will generate accurate seawater quality maps across
space. Another novelty of the present work is that stochastic
site indicators (SSI) will be calculated and used to improve the
quantitatively characterization of the eutrophication risk in
the Zhejiang coastal waters.

Materials and methods
Study area and data sources

The study region covers an area of 44.4 thousand km2

(27.0
�
–31.0

�
N, 120.4

�
–123.5

�
E) of Zhejiang coastal waters

along East China Sea. This region was selected according to
administrative division procedures (Fig. 1). The study region is
located near the Yangtze River and Qiantang River estuaries
with developed shipping industry and fishery. Large amounts
of anthropogenic nutrients flow into this area, resulting in
severe eutrophication, frequent red tides, and deterioration of
water quality. As a result, serious concerns have been
expressed by both the public and the government. In the pre-
sent study, samples at 116 monitoring sites during August
2015 were downloaded from China Marine Environmental
Monitoring site (www.chmem.cn). Another 205 samples were
collected during the same period by the Marine Monitoring
and Forecasting Center of Zhejiang Province. Monitoring indi-
cators include many water quality attributes, such as pH,

chemical oxygen demand (COD), dissolved inorganic nitrogen
(DIN, the sum value of NO2-N, NO3-N, and NH3-N), and dis-
solved inorganic phosphorus (DIP). The analysis methods for
parameter concentration assessment followed China’s
national standards, GB17378-2007 (www.soa.gov.cn). In this
work, we focused on COD, DIN, and DIP, because they are
important eutrophication indicators related to algal blooms
and the water ecological cycle.

Spatial mapping of seawater quality indices by Bayesian
maximum entropy

The Bayesian maximum entropy (BME) method proposed by
Christakos (1990, 2000) was used in this work to map the spatial
distributions of water quality attribute concentrations (COD,
DIN, and DIP) in the study area. BME has been applied success-
fully in many fields including air pollution (Yu et al. 2011; Yang
and Christakos 2015), soil pollution (Modis et al. 2013), and fecal
pollution (Coulliette et al. 2009). In the BME modeling context, a
water quality attribute is represented as the spatial random field
X(s), where the vector s = (s1, s2) denotes spatial location. Then,
BME generates accurate estimates of water quality attribute con-
centrations by assimilating knowledge bases (KB) from different
sources, such as the core or general (G) and the site-specific
(S) KB (as described, e.g., in He and Kolovos 2017). The basic
BME equations are.

ð
dx g −gð ÞfG =0, ð1Þ
ð
dxξS−af K = 0, ð2Þ

where the bar denotes average value, the x represents realiza-
tions of the concentrations of a water quality attribute X(s)
(COD, DIN, and DIP) with probability of occurrence deter-
mined by the corresponding probability density function
(pdf ) of the three attributes, the g is a vector function describ-
ing the components of the available G-KB, ξs denotes the
available S-KB, fG and fK denote the pdf describing probabilisti-
cally the prior (G) KB and the posterior (combined G and S)
KB, respectively, and a is a normalization parameters (more
technical details can be found in the relevant BME literature).

In this work, the G-KB included the theoretical mean and
covariance models of the COD, DIN, and DIP distributions
(the theoretical models are shown in Supporting Information
Fig. S1 together with the empirical correlation values). And
the S-KB consisted of (1) the national sample data mentioned
earlier, which was treated as hard data, and (2) the soft data
represented by Gaussian probability functions with means
and variances obtained by linear regression between the
national and the regional samples. Data processing and the
BME method were implemented in terms of, respectively, the
software R-version 3.3.3 and the Spatiotemporal Epistemic
Knowledge Synthesis Graphical User Interface library (SEKS-
GUI, Yu et al. 2007).
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To evaluate the quality of the COD, DIN, and DIP maps
obtained by the BME method, the ordinary kriging
(OK) and the inverse distance weighted (IDW) mapping
techniques were also used for comparison purposes. The
cross-validation procedure comparing the results of these
techniques: (1) divided the dataset into a training set (70%
of the samples) and a test set (30% of the samples), and
(2) involved two accuracy indicators, the mean absolute
error (MAE) and the root mean square error (RMSE); see
below, section on Results and Discussion.

Eutrophication index
The eutrophication index (EI) is a critical eutrophication

level that defines the trophic eutrophication status. This index,
which is widely used by the State Oceanic Administrative of

China (SOA), has been implemented in many earlier studies
(e.g., Quan et al. 2005; Yu et al. 2013; Zhang et al. 2017). Using
the COD, DIN, and DIP concentration maps generated by BME
over the entire study region, the corresponding EI was calcu-
lated by.

EI =
CCODCDINCDIP

4500
106, ð3Þ

where CCOD, CDIN, and CDIP denote, respectively, the COD,
DIN, and DIP concentrations of surface seawater; and EI is a
unitless indicator used in the classification of the eutrophica-
tion level. The water body is considered oligotrophic when
EI < 1, mesotrophic when 1 ≤ EI ≤ 3, eutrophic when 3 < EI ≤
9, and hypereutrophic when EI > 9.

Fig. 1. Study region (coastal waters of Zhejiang province) and sample locations.
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Stochastic site indicators
The stochastic site indicators (SSI) proposed by Christakos

and Hristopulos (1996a,b, 1997) were used in this work to
characterize nitrate and phosphate contamination in the
coastal waters of Zhejiang province. Let EI(s) be the random
field model representing mathematically the variation of the
eutrophication index in the Zhejiang coastal water region
denoted as D (in this case, the focus of the BME Eqs. 1, 2
above should be EI(s)). Then, a binary random field, termed
the binary EI characteristic, can be defined in terms of EI(s) as.

IEI s,ζð Þ= 1 EI sð Þ ≥ ζ
0 otherwise,

�
ð4Þ

where ζ is a specified threshold (in this work, ζ denotes the EI
range), and the IEI(s, ζ) offers a spatial characterization of the
excess eutrophication index in the study region D (i.e., it
focuses on the EI values that exceed the specified ζ). Notice-
ably, while EI(s) is a function of the location s, the IEI(s, ζ) is a
function of both s and ζ. The SSI-based eutrophication (con-
tamination) characterization involves the pair {EI(s), IEI(s, ζ)}.

The SSI of the EI distribution, including one-point and
two-point indicators, are listed in Table 1. Two regional spatial
domains were distinguished: the entire Zhejiang coastal region

is denoted as D, and its subregion Θ is characterized as the
contaminated part D. This means that Θ is defined so that for
all locations s 2 Θ it is true that EI(s) > ζ, and that Θ � D.
Moreover, for any selected eutrophication threshold ζ, the fol-
lowing quantitative limits and relationships hold,

REI ∞ð Þ=0≤REI ζð Þ≤REI 0ð Þ=1,
PD
EI ∞ð Þ=0≤PD

EI ζð Þ ≤PD
EI 0ð Þ=EI sð Þ,

PΘ
EI 0ð Þ=EI sð Þ ≤PΘ

EI ζð Þ,
LD
EI ∞ð Þ=0 ≤LD

EI ζð Þ ≤LD
EI 0ð Þ=EI sð Þ,

as regards the one-point SSI of eutrophication status
(Table 1).

The one-point SSI may be assigned more than one interpre-
tations that offer alternative perspectives of the global eutro-
phication status. The RAEC indicator may be viewed as the
probability that a location chosen at random belongs to the
contaminated subregion Θ. It may be also seen as the fraction
of the region of interest D in which threshold ζ-exceeding
eutrophication incidences occur (i.e., RAEC is a topological
indicator that focuses on the occurrence of ζ-exceeding eutro-
phication incidences rather than on the eutrophication

Table 1. One-point and two-point SSI.

One-point SSI Definition Interpretation

Relative area of excess contamination (RAEC) REI ζð Þ= IEI s,ζð Þ Areal fraction where ζ-exceeding

eutrophication incidences occur

Mean excess contamination (MEC) PD
EI ζð Þ= EI sð ÞIEI s,ζð Þ Average ζ-exceeding eutrophication

value over a region

Mean excess differential contamination (MEDC) LDEI ζð Þ= EI sð Þ−ζ½ �IEI s,ζð Þ Average ζ-differential EI value over

a region

Conditional MEC (CMEC) PΘ
EI ζð Þ= EI sð Þ j EI sð Þ≥ ζ Conditional ζ-exceeding EI value over

a contaminated subregion

Contaminant indicator dispersion (CID)
Ψ EI =

LDEI ζð Þ
EI

Average ζ-differential EI spread over

a region

Two-point SSI Definition (δs = s
0
− s) Interpretation

Noncentered indicator covariance (NIC) cI δs;ζð Þ= IEI s,ζð ÞIEI s0,ζð Þ Covariation strength of joint eutrophication

incidences across space

Centered indicator covariance (CIC) ec I δs;ζð Þ= cI δs;ζð Þ−R2EI ζð Þ Covariation strength of joint eutrophication

incidences across space vs. strength of

independent eutrophication incidences across space

Contaminant interaction ratio (CIR) GEI δs,ζð Þ= cI δs;ζð Þ
2REI ζð Þ−cI δs;ζð Þ Covariation strength of joint eutrophication

incidences across space vs. covariation strength of

alternate eutrophication incidences across space

Noncentered excess covariance (NEC) PD
EI δs;ζð Þ= EI sð ÞEI s0ð ÞIEI s,ζð ÞIEI s0,ζð Þ Spatial correlation between ζ-exceeding EI values

Excess differential covariance (EDC) LDEI δs;ζð Þ= EI sð Þ−ζ½ � EI s0ð Þ−ζ½ �IEI s,ζð ÞIEI s0,ζð Þ Spatial correlation between differential EI values

Conditional excess covariance (CEC) PΘ
EI δs;ζð Þ= EI sð ÞEI s0ð Þ j EI sð Þ,EI s0ð Þ≥ ζ Conditional correlation among ζ-exceeding

EI values across space
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values). On the other hand, the MEC, MEDC and CMEC indi-
cators provide different measures of areal eutrophication
values, i.e., they are substantive indicators. In particular, MEC
is the average of the EI values exceeding the selected eutrophi-
cation threshold ζ over the study region (D). The MEDC calcu-
lates the average ζ-differential EI value (i.e., EI − ζ) over the
same region, whereas the CMEC is the ζ-exceeding EI averaged
over the contaminated subregion (Θ) only. Last, the CID indi-
cator, ΨEI, measures the average ζ-differential EI spread over
the study region. It has convenient analytical expressions in
the rather commonly encountered cases that the distribution
of the EI follows one of the well-known probability laws. In
particular,

ΨEI =

σEIffiffiffi
π

p
EI

if EI sð ÞeGaussian law,

2GEI
σEIffiffiffi
2

p
EI

� �
−1 if EI sð ÞeLognormal law,

1
2

if EI sð ÞeExponential law

8>>>>><
>>>>>:

ð5a-cÞ

where GEI denotes the Gaussian probability law, and EI sð Þ and
σEI denote, respectively, the spatial mean and the standard
deviation of the eutrophication index.

While the one-point (global) SSI in Table 1 are generally
functions of the threshold ζ and evaluate global eutrophica-
tion averages, spatial relationships or dependencies can be
assessed by two-point SSI that are functions of both the ζ and
the distance δs = s

0
− s between locations s and s

0
(i.e., the

two-point SSI account for the eutrophication direction and its
anisotropic features). The two-point SSI, which are also listed
in Table 1, take advantage of the useful property that the
probability law of the EI(s) distribution is expressed in terms
of the spatial statistics of the corresponding binary characteris-
tic IEI(s, ζ) distribution of Eq. 4.

The joint occurrence of ζ-exceeding eutrophication inci-
dences at different locations is a considerable ecoregional risk
factor. Accordingly, the two-point SSI can be arranged into
two main groups: (1) Since a better understanding of the
dependence between eutrophication incidences across space is
crucial to contamination risk assessment, the NIC, CIC, and
CIR indicators have been developed to describe quantitatively
this dependence (this is a group of topological indicators,
because they focus on the regional distribution of eutrophica-
tion incidences rather than on the eutrophication values).
(2) The NEC, EDC, and CEC indicators, on the other hand,
represent the spatial correlation structure of the eutrophica-
tion values associated with these incidences (which is why
they are characterized as substantive).

Like the one-point SSI considered above, the two-point SSI
too may be assigned alternative interpretations that look at the
eutrophication situation from different perspectives. Particu-
larly, a two-point SSI could be interpreted in regional correla-
tion terms as well as in probability terms. In this setting, the

NIC indicator, cI(δs; ζ), expresses the correlation strength of
ζ-exceeding EI incidences in terms of the covariance of the
eutrophication characteristic IEI. In probability terms, the NIC
assesses the joint probability of eutrophication incidences at
both locations s and s

0
= s + δs (that is, the NIC measures how

eutrophication incidences at different locations covary when
they both exceed the specified threshold ζ).

The CIC indicator, ecI δs;ζð Þ, expresses the covariation
strength of ζ-exceeding eutrophication incidences centered
around the one-point RAEC indicator. As such, CIC measures
how the eutrophication incidences covary across space (i.e., how
they behave together when they simultaneously exceed the
threshold ζ) compared to how these eutrophication incidences
vary in separation (i.e., how they behave when they indepen-
dently exceed ζ). More precisely, CIC measures the strength of
eutrophication dependency across space as the difference of “the
joint probability of ζ-exceeding eutrophication at both coastal
locations s and s

0
” minus the product of “the probability of

ζ-exceeding eutrophication at location s” times “the probability
of ζ-exceeding eutrophication at location s

0
.”

A useful distinction can be then made as regards the possi-
ble ranges of CIC values: (1) If ecI δs;ζð Þ ≥0, the spatial depen-
dency will be termed positive quadrant eutrophication
dependency (PQED). PQED occurrence implies that eutrophi-
cation incidences at two locations are more closely dependent
when they are considered simultaneously than when they are
considered independent of each other. Accordingly, the eutro-
phication incidences at these locations are PQED if the proba-
bility that they simultaneously exceed threshold ζ is at least as
large as it would be if the incidences were independent.
(2) The case ecI δs;ζð Þ≤0 will be termed a negative quadrant
eutrophication dependency (NQED), which implies that
eutrophication incidences at two locations are more closely
dependent when they are considered separately than when
they are considered simultaneously. Accordingly, eutrophica-
tion will be characterized as NQED if the probability of simul-
taneous ζ-exceedance is at most as large as it would be if the
incidences were independent.

On the basis of the above distinction, other useful compari-
sons could be made. If ecI δs;ζð Þ≥ecI δs;ζ0ð Þ ≥0, the ζ-exceeding
eutrophication dependency in a region is more PQED than
the ζ

0
-exceeding dependency. Similarly, if ecI δs;ζð Þ ≥ecI δs0;ζð Þ ≥0,

the eutrophication dependency at separation distance δs is
more PQED than the dependency at distance δs

0
.

The CIR indicator, GEI(δs, ζ), compares the covariation
strength of different distributions of eutrophication incidences
across space. In particular, it compares how the eutrophication
incidences at two locations covary when they simultaneously
exceed threshold ζ compared to how these eutrophication
incidences covary when either one of them exceeds ζ. As such,
CIR may be calculated as the probability ratio of joint over
alternate ζ-exceeding eutrophication incidences across space.

The substantive NEC indicator, PD
EI δs;ζð Þ, measures the cor-

relation between eutrophication values at locations s and s
0
in
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which EI exceeds the specified threshold. The EDC, LD
EI δs;ζð Þ,

measures the connectivity between ζ-differential eutrophica-
tion values (i.e., EI − ζ) between contaminated locations at
distance δs = s

0
− s apart. Last, the CEC, PΘ

EI δs;ζð Þ, measures
the conditional eutrophication variation between locations s
and s

0
given that both locations exceed ζ. In this work, the

presentation of the practical implementation and numerical
results of the two-point SSI in the study of the Zhejiang
coastal waters was divided into two parts: the implementation
and results of the NIC, CIC, and CIR indicators are presented
below, whereas the implementation and results of the NEC,
CEC, and EDC indicators are discussed in the Supporting
Information section.

Last, an additional water quality indicator was calculated,
namely, the contaminant indicator elasticity (CIE) of an eutro-
phication SSI (SSIEI) to changes in threshold ζ, where SSI may
denote any of the indicators of Table 1. The CIE is defined as

QSSI ζð Þ=
dSSIEI ζð Þ
SSIEI ζð Þ

dζ
ζ

, ð6Þ

i.e., the ζ-elasticity of SSIEI in Eq. 6 is a measure of the respon-
siveness of SSIEI to changes in ζ. Hence, QSSI calculates how
fast the SSIEI changes compared to how fast the environmen-
tal threshold changes (or, equivalently, the percent change in
SSIEI caused by an 1% c in ζ). In practice, three possibilities
may be considered: if 0 < QSSI(ζ) < 1, then SSIEI increases
slower than ζ; if QSSI(ζ) > 1, then SSIEI increases faster than ζ;
and if QSSI(ζ) < 0, then SSIEI decreases with increasing ζ.

An obvious implication of eutrophication elasticity analysis in
practice is that, the larger the elasticity QSSI of the eutrophication
indicator SSIEI is, the more sensitive the indicator is to environ-
mental threshold changes. For illustration, consider the case of
the MEDC eutrophication indicator, i.e., let SSIEI ζð Þ=LD

EI ζð Þ. The
corresponding CIE, QLD

EI
, measures the percent change of

differential eutrophication over the Zhejiang coastal waters
per unit ζ change. Hence, if the threshold changes by dζ, then

the MEDC change, dLD
EI ζð Þ

LD
EI ζð Þ , will be given by QLD

EI
ζð Þdζζ . Later, we

will discuss some more CIE elasticity expressions that are use-
ful in the calculation of QLD

EI
in practice.

Results and discussion
Descriptive statistics

Figure 2 displays the histograms of the COD, DIN, and DIP
concentrations at the sampling sites during August 2015. The
mean COD, DIN, and DIP concentrations were, respectively,
1.22 mg/L (with a range 0.23–3.81 mg/L), 0.644 mg/L
(0.059–2.075 mg/L), and 0.0405 mg/L (0.0021–0.0818 mg/L).

The maximum COD concentration was below the 2nd grade
of water quality standard (GB3097-1997), whereas DIN and
DIP were far beyond the 4th grade. And, the COD and DIN
concentrations showed a deviation to left with most values
less than 2.0 mg/L and 1.0 mg/L, respectively. Last, the DIP
concentrations exhibit a relatively uniform distribution
(Kolmogorov–Smirnov test, p > 0.05).

Water quality maps and cross-validation results
The COD, DIN, and DIP concentration maps generated by

the IDW, OK, and BME methods are presented in Fig. 3. The
results show that although considerable local differences exist
between the water quality maps generated by the three map-
ping methods, similar COD, DIN, and DIP distribution trends
emerge across space (all spatial maps of the COD, DIN, and
DIP concentrations show a global decreasing trend from the
coastal estuary to the open sea). The COD concentrations are
generally larger than the DIN concentrations, and much larger
than the DIP concentrations (all mg/L).

In particular, it is worth-noticing that Hangzhou Bay,
where there are many coastal factories and abundant human
activities, shows significantly higher nitrate and phosphate
concentrations than other areas. Moreover, extremely high

Fig. 2. Descriptive statistics of the COD, DIN, and DIP concentrations in the coastal waters of Zhejiang province.
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Fig. 3. COD (a), DIN (b), and DIP (c) maps obtained by the IDW, OK, and BME interpolation techniques.
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values were found in estuaries characterized by increasing
human disturbances and pollutant accumulations from the
upstream freshwater. Note that nitrogen and phosphorus
levels are generally expected to increase as the original forest-
land and grassland decline, which is why the original forest-
land and urban land are often identified as land-uses closely
linked to water quality changes. Also, excessive fertilization
and land fragmentation contribute significantly to increasing
nutrient loads observed in rivers, which, in turn, may increase
the extent of coastal water eutrophication. Nutrient maps,
such as those in Fig. 3, may also help chose spatial indicators
that can identify the most sensitive water quality indicators
exhibiting the closest relationship to coastal water eutrophica-
tion, and consistently link water quality with key factors like
land-use and cover-change. Last, these maps could be very
useful in decision-making regarding the optimal choice of spa-
tial monitoring stations.

For comparative analysis purposes, three different interpo-
lation techniques were used in the present study to generate
water quality maps in the Zhejiang region (spatial variations
of COD, DIN, and DIP concentrations):

a. The IDW technique (e.g., Siu-Nganlam 1983) is the sim-
plest among the three techniques. It is a deterministic inter-
polator with predefined weights, i.e., ID assigns values to
unsampled locations of the Zhejiang coastal waters in terms
of a weighted average of concentrations at the sample
points with weights proportional to the inverse distances
between the interpolated point and each sample point (the
effect of the inverse distance weights can be determined ad
hoc by varying the power that the inverse distance is raised
to). No determination of spatial correlation (covariance) is
account for by IDW. Instead, only samples and distance
weights are used to derive estimates at unsampled mapping
points.

b. The OK technique (e.g., Olea 1999) is a linear interpolator
that generates concentration estimates at unsampled loca-
tions based on the unbiased minimization of the interpola-
tion error variance (i.e., unlike IDW, OK uses a statistical
model). OK calculates spatial correlations between points
as a function of their separation distances and uses this cal-
culation to determine the interpolation weights to be
applied at these distances. OK assumes a normal (Gaussian)
distribution of the COD, DIN, and DIP concentrations.

Among the OK advantages over IDW are that OK does not
predetermine the form of the interpolation weights, and it
provides an assessment of interpolation accuracy in terms
of the OK error. Hence, the use of OK is more appropriate
than IDW when the data are spatially correlated and/or
there is a directional bias (anisotropy) in the data.

c. The BME technique (introduced earlier) is a considerable
improvement over the previous two techniques. BME shares
the attractive features of OK (it provides an interpolation
accuracy assessment etc.), but it is considerably more versa-
tile than OK (and several other types of Kriging, for that mat-
ter). Unlike OK, BME makes no restrictive assumptions
concerning both the linearity of the interpolator and the
normal probability distribution of the samples (i.e., the more
general nonlinear interpolators and non-normal probability
distributions are automatically incorporated in BME). In
addition to the conditional mean-based maps (also provided
by OK), BME can produce other kinds of maps, like median
and mode-based maps, if more appropriate. Compared to
the IDW and OK maps, the BME maps reveal not only the
global contamination trends throughout the Zhejiang
coastal waters, but they also depict the small-scale variations
of COD, DIN, and DIP concentrations. This is possibly due
to BME’s ability to avoid the limiting assumptions men-
tioned above and to process information from different
sources (in addition to the commonly used hard data, soft
information of various types can be also processed by BME).

In this work, the theoretical superiority of BME was tested
in computational terms. For illustration, the numerical cross-
validation results in Table 2 demonstrated that the BME tech-
nique consistently exhibited the best performance among the
three techniques, with the lowest mean absolute error (MAE)
and root mean square error (RMSE) values for the water qual-
ity (COD, DIN, and DIP prediction) tests. Furthermore, point-
based cross-validation results (Supporting Information Fig. 2)
showed that BME predictions are closer to the actual (in situ)
concentration data. Accordingly, the most accurate BME water
quality maps were used in subsequent eutrophication assess-
ment and SSI calculations in this work.

Eutrophication assessment and classification maps
Table 3 summarizes the areal percentages of each seawater

quality attribute in the Zhejiang coastal waters together with
the calculated eutrophication index (EI). The COD concentra-
tions met the seawater quality standards (Supporting Informa-
tion Table 1) with about 99.3% of the study region being
under the 1st grade (COD ≤ 2 mg/L). The region was heavily
contaminated by nitrogen and phosphorus, with 43.06% and
32.4% of the study area exceeding the 4th grade (N > 0.5 mg/
L, and p > 0.045 mg/L, respectively). The average EI value was
found to be 8.38, with a range from 0.04 to 103.3. According
to the EI maps, about 25.95%, 19.18%, 20.53%, and 34.34%
of the study region were characterized as oligotrophic,

Table 2. Cross-validation results of the three different interpola-
tion techniques (IDW, OK, and BME).

COD (mg/L) DIN (mg/L) DIP (mg/L)

MAE RMSE MAE RMSE MAE RMSE

IDW 0.3305 0.4144 0.1593 0.2109 0.0117 0.0141

OK 0.3275 0.4080 0.1063 0.1424 0.0114 0.0140

BME 0.3127 0.3924 0.0836 0.1060 0.0099 0.0119
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mesotrophic, eutrophic, and hypereutrophic, respectively. It
was found that the Zhejiang coastal water area dominated by
1st grade nitrogen concentrations is much larger than the cor-
responding area dominated by phosphorus concentrations.
Nitrogen controls should be recognized in alleviating coastal
eutrophication, while both nitrogen and phosphorous loading
reduction are required (Howarth and Marino 2006; Conley
et al. 2009). Furthermore, we found that the area dominated
by 5th grade nitrogen concentrations is two times larger than
the area of 4th grade nitrogen concentrations.

The EI classification map of Fig. 4 demarcates the spatial
distribution of domains with different eutrophication levels
(oligotrophic, mesotrophic, eutrophic, and hypereutrophic).
This kind of map is useful for contamination management
purposes. It is also noticed that the spatial EI classification pat-
tern in Fig. 4 is similar to the spatial DIN and DIP concentra-
tion patterns in Fig. 3, which also exhibited decreasing trends
from the estuary to the open sea, and indicated the serious
eutrophication status and trend in Hangzhou Bay.

Moreover, the q-statistic (Wang et al. 2016) was employed
to test the spatial stratified heterogeneity of the classification
results. It was calculated by GeoDetector (Wang et al. 2010)
and defined as

q=1−
PL

h =1Nhσ2h
Nσ2

,

where N is the total number of samples, and σ2 and σ2h are the
variances of the entire study region and each sub-region
(h = 1, 2, …, L), respectively. In theory, the value of the
q-statistic varies within the interval [0,1], and it increases
monotonically with increasing stratified heterogeneity. In this
study, the q values are 0.09, 0.60, 0.89, and 0.59 for COD,
DIN, DIP, and EI, respectively. At the statistical significance
level, all p-values are < 0.01 demonstrating a reasonable classi-
fication (except for COD with a low q value).

Calculation of eutrophication SSI in the Zhejiang coastal
waters
One-point SSI

Based on the maps obtained by the BME method above, valu-
able information was obtained in terms of the corresponding SSI

characterizing eutrophication in the coastal waters of the Zhe-
jiang province. The one-point SSI indicators, i.e., RAEC, MEC,
MEDC, and CMEC, were first plotted in Fig. 5a. As is shown in
this figure, the RAEC, MEC, and MEDC indicators are all decreas-
ing functions of the threshold ζ, whereas the CMEC indicator is
an increasing function of ζ (these SSI offer different local

Table 3. Classification of COD, DIN, and DIP concentrations estimated by BME, and associated EI values. The q-statistic was used to
test spatial stratified heterogeneity; the p-value is the probability of q-statistic.

Percentage of coastal area (%) Spatial stratified heterogeneity

I II III IV Over IV q-statistic p-value

COD 99.3 0.69 0.01 0 0 0.09 1.9×10−9

DIN 21.42 10.15 11.97 13.39 43.06 0.60 8.2×10−10

DIP 9.34 23.48 34.78 32.4 0.89 1.9×10−10

EI Oligotrophic Mesotrophic Eutrophic Hypereutrophic 0.59 1.3×10−9

25.95 19.18 20.53 34.34

�

�

�

�

�

Fig. 4. Spatial map of eutrophication index (EI) distribution in the
study region.
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measures of excess marine contamination). Specifically, the fol-
lowing sections.

The RAEC of Zhejiang coastal waters eutrophication
The RAEC indicator, REI(ζ), measures the ratio of eutrophi-

cated water body over the total area D of the Zhejiang coastal
waters. Its plot in Fig. 5a describes the fast decrease of the size
of the coastal water area in which the EI exceeded the ζ

threshold (i.e., EI > ζ) as a function of ζ. RAEC varies between
0 and 1. For ζ = 3.5, it is found that RAEC = 0.5, indicating
that in half of the coastal area, the eutrophication index is
higher than 3.5. In other words, 3.5 is the median eutrophica-
tion index value in the study region. In addition, when
ζ = 20, it is found that RAEC = 0.11, which indicates that the
EI values are less than 20 in about 9/10 of the coastal area
(i.e., 1-RAEC = 0.89 ≈ 0.9).

The MEDC of Zhejiang coastal waters eutrophication
The MEDC indicator LD

EI ζð Þ measures the spatial average of
the difference between excess EI(s) and ζ (i.e., EI(s) − ζ) over
the entire area D of the Zhejiang coastal waters. Its plot in
Fig. 5a is a convex and decreasing function of the eutrophica-
tion threshold ζ; and the MEDC range is between 0 (at the
maximum ζ value) and the EI = 8:38 (at ζ = 0). MEDC
decreases slower than RAEC as a function of ζ, implying that
with increasing ζ the differential eutrophication value over
the contaminated subregion of the Zhejiang coastal waters
decreases slower than the area of the same subregion (which
makes it possible that disproportionally large eutrophication
values may exist in very small areas).

The MEC of Zhejiang coastal waters eutrophication
The MEC indicator PD

EI ζð Þ of the Zhejiang coastal waters
offers a global assessment of the expected over contamination
in the fraction of the coastal region D where the eutrophication
index exceeds the threshold ζ. The MEC plot in Fig. 5a is a posi-
tive, continuous and decreasing function of ζ. It starts at MEC =
8.38, meaning that the mean eutrophication index value in
the study region is equal to 8.38. Just as MEDC, the MEC range
is between zero (at the maximum ζ) and EI = 8:38 (at ζ = 0), but
MEC decrease slower than both MEDC and RAEC.
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Fig. 5. (a) One-point SSI (RAEC, MEC, MEDC, and CMEC) in the Zhejiang coastal waters as functions of the eutrophication index threshold ζ.
(b) Is a detailed plot of section ζ < 20 of the red box of plot (a); in plot (b) the MEC, MEDC, and CMEC are normalized by the mean eutrophica-
tion index value, EI.
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The CMEC of Zhejiang coastal waters eutrophication
On the contrary, the CMEC indicator PΘ

EI ζð Þ is an increasing
function of ζ, since it measures the average of regional eutro-
phication index values exceeding threshold ζ. We recall that Θ
was defined in Table 1 as the substantially contaminated sub-
region of the entire coastal region D. In this context, the
CMEC is concerned with the contaminated coastal subregion
Θ, whereas the MEC refers to the entire coastal region D.
When ζ < 20, the CMEC increased approximately linearly
with threshold ζ (Fig. 5b), and when ζ > 20, the increasing
became flatter than before.

The CID of Zhejiang coastal waters eutrophication
The CID indicator ΨEI is the ratio of excess eutrophication

dispersion over the mean EI(s). In the case of the Zhejiang
coastal waters it was found that CID = 0.24, indicating that
the average excess EI(s) dispersion is a small percentage of the
mean eutrophication index.

The CIE of Zhejiang coastal waters eutrophication
An additional characterization of the eutrophication status

is obtained by the elasticity of the MEDC indicator LD
EI ζð Þ with

respect to threshold ζ, i.e., CIE is a measure of the effect on
MEDC of changes in ζ (when all other factors that affect
MEDC are unchanged). The CIE can be expressed as.

QLD
EI
ζð Þ= −

REI ζð Þ
LD
EI ζð Þζ = −

ζ

PΘ
EI ζð Þ−ζ , ð7Þ

which means that the ζ-elasticity of MEDC is negative
(i.e., a MEDC increase of, say, −5% is a positive MEDC
decrease of 5%). The elasticity QLD

EI
ζð Þ is proportional to ζ with

the proportionality coefficient being equal to the ratio − RAEC
MEDC

or, equivalently, the ratio − 1
CMEC−Threshold. Accordingly, in

practice the CIE can be computed either from the previously

calculated RAEC and MEDC indicators or directly from the
previously calculated CMEC indicator.

The elasticity of the MEDC indicator is plotted in Fig. 6 as a
function of the eutrophication threshold ζ. It can be observed
that: (1) As the ζ increases, the MEDC elasticity increases neg-
atively (i.e., the MEDC decreases in magnitude). (2) Elasticity
shows a peak at ζ ≈ 55, and starts dropping toward zero after
that. (3) The larger the MEDC elasticity is, the more sensitive
the eutrophication is to ζ changes (the elasticity plot starts
from a zero value, i.e., QLD

EI
= 0 when ζ = 0, and increases expo-

nentially with ζ). (4) In the CMEC plot of Fig. 5a, we noticed
that PΘ

EI ζð Þ> ζ, which implies that QLD
EI
< 0. This is, indeed, con-

firmed in the CIE plot of Fig. 6 (MEDC elasticity keeps decreas-
ing up to ζ = 57, and then starts increasing).

Two-point SSI
The two-point SSI of the present Zhejiang coastal waters

study are plotted in Fig. 7a–c. It is noticed that the NIC, CIC,
and CIR indicators exhibit decreasing trends with increasing
threshold ζ (a similar discussion regarding the NEC, CEC and
EDC indicators is presented in the Supporting Information
section and Figs. 3–5). Specifically, the following sections.

The NIC of Zhejiang coastal waters eutrophication
The NIC is a bivariate eutrophication indicator, cI(δs; ζ),

that depends on both the separation distance δs between any
two locations in the Zhejiang coastal waters and on the eutro-
phication threshold ζ. As is shown in Fig. 7a, the regional NIC
decreases significantly with increasing ζ, implying that the
probability of threshold-exceeding eutrophication (i.e., EI
(s) > ζ) at both coastal locations separated by δs decreases with
increasing ζ. For smaller ζ values, the NIC is high, indicating a
stronger threshold-exceeding eutrophication correlation across
space, i.e., a stronger connectivity exists between the inci-
dences “EI(s) > ζ at location s” and “EI(s + δs) > ζ at location
s + δs”. For numerical illustration, when the values of the

Fig. 7. (a–c) Plots of the NIC, CIC, and IR indicators in the Zhejiang coastal waters as functions of the EI threshold and the spatial distance between
locations.
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threshold ζ are equal to 1, 3, and 9, the corresponding mean
NIC eutrophication values (probabilities) at spatial lags
5–50 km are 0.71, 0.51, and 0.19, respectively (alternative,
these numbers may be interpreted as the probabilities that the
eutrophication level does not cross the threshold ζ when it
moves from coastal location s to s + δs; or, as the correspond-
ing probabilities that both locations s and s + δs fall within
the contaminated subregion of the Zhejiang coastal waters).
The ecological interpretation of this finding is of significant
consequence: it implies that 71%, 51%, and 19% of the loca-
tions of the Zhejiang coastal waters separated by these spatial
lags experience mesotrophic, eutrophic, and hypereutrophic
risks, respectively. In addition, when the threshold ζ > 20, the
eutrophication NIC shows a rather slow decrease with increas-
ing distance, indicating that, for this threshold range, the dis-
tance between any two coastal locations has little effect on
the corresponding NIC value.

The CIC of Zhejiang coastal waters eutrophication
The CIC indicator, ecI δs;ζð Þ, measures the strength of

threshold-exceeding eutrophication dependency in the Zhe-
jiang coastal waters in terms of the magnitude of the quantity.

P EI sð Þ> ζ and EI s+ δsð Þ> ζ½ �−P EI sð Þ> ζ½ �P EI s+ δsð Þ> ζ½ �:

Since the CIC value is non-negative for all thresholds and sep-
aration lags considered (see, Fig. 7b), the eutrophication depen-
dency in the Zhejiang coastal waters is characterized as PQED
(i.e., ζ-exceeding eutrophication incidences are probabilistically
associated with other ζ-exceeding incidences). Also, when the ζ

value is approaching the maximum or the minimum EI value,
the regional CIC indicator tends to 0. The ecological meaning of
this result is that for very large thresholds the spatial eutrophica-
tion dependency, as defined above, becomes negligible, and the
incidences “EI(s) > ζ” and “EI(s + δs) > ζ” may be considered as

independent from each other. On the other hand, it is worth
noticing that when ζ ≈ 8.38 (i.e., the selected threshold is equal
to the mean EI value over the Zhejiang coastal waters), the CIC
indicator calculated at various spatial lags consistently reach its
maximum value. The interpretation of this result is that the
strongest eutrophication dependency occurs when ζ ≈ 8.38.
Otherwise said, if ζ ≈ 8.38 is used to divided the Zhejiang coastal
waters region into contaminated and noncontaminated subre-
gions, the corresponding polygons will be more fragmentized
than those divided based on other ζ values.

The ζ ≈ 8.38 is also a critical value in the sense that for
ζ < 8.38, the CIC indicator increases with ζ, implying that the
eutrophication dependency between any locations separated
by a certain distance δs increases as a function of ζ; whereas
for ζ > 8.38 the opposite is true, i.e., the CIC indicator
deceases with ζ, implying that the eutrophication dependency
between any locations separated by δs decreases withζ. Last,
for any given ζ-value the CIC decreases with δs, implying that
eutrophication dependency between any locations separated
by δs decreases with δs.

The CIR of Zhejiang coastal waters eutrophication
The CIR indicator, GEI(δs, ζ), introduces a comparative rela-

tionship between the probability that the EI exceeds the selected
eutrophication threshold ζ at both locations separated by the dis-
tance δs within the Zhejiang coastal waters region, on the one
hand, and the probability that EI exceeds the threshold ζ at
either one of these two locations, on the other. More specifically,
the CIR calculates what percentage of the “either-or” probability
P[either EI(s) > ζ or EI(s + δs) > ζ] is the “and” probability
P[EI(s) > ζ and EI(s + δs) > ζ] (recall that CIR ≤ 100% or 1).
As is shown in Fig. 7c, the CIR decreases from its maximum
value (equal to 1) as a function of the threshold ζ. This means
that the larger the selected eutrophication threshold is, the
smaller the fraction of the “either-or” eutrophication proba-
bility that belongs to the “both” probability. However, at dis-
tances smaller than the critical distance δscr ≈ 15 km, the CIR
value remains large (this observation holds even if the selected
threshold is large), indicating that the locations with high EI
values are concentrated in the coastal waters of the Zhejiang
province rather than being dispersed.

Eutrophication mechanisms and management in the
Zhejiang coastal waters

The coastal zone of Zhejiang province is densely populated
and has China’s biggest fishery (particularly, in the Zhoushan
island waters), which may worsen water contamination due to
industrial point sources and agricultural nonpoint sources.
This coastal zone has suffered from considerable anthropo-
genic influences in recent decades. With abundant nutrients
(such as N and P) discharged into Hangzhou Bay and the East
China Sea by point or nonpoint source contamination, the
study area has the highest frequency of red tides in China (Liu
et al. 2013). Aquatic eutrophication directly leads to rapid

Table 4. Water quality grades wth corresponding one-point SSI
values, and two-point SSI values between locations at δs = 10 km
distance apart.

ζ 0 1 3 9 60

RAEC 1 0.7405 0.5487 0.2456 0.0029

MEC 8.3784 8.2483 7.8356 6.2216 0.1882

MEDC 8.3784 7.5078 6.1896 4.0115 0.0119

CMEC 8.3784 11.1390 14.2807 25.3365 64.0597

CIE(MEDC) 0 −0.0986 −0.2659 −0.5509 −14.7795

NIC 1 0.7188 0.5210 0.2189 0.0002

CIC 0 0.1692 0.2138 0.1617 0.0001

CIR 1 0.9410 0.8868 0.8378 0.0292

Grade Oligotrophic

Mesotrophic

Eutrophic

Hypereutrophic
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increase of algal biomass, which can cause not only reductions
in dissolved oxygen levels, but also accumulations of toxic
metabolites (Conley et al. 2009; Xiao et al. 2017). Conse-
quently, the deterioration of water quality will damage the
marine ecosystems, prevent recovery of fish stocks and
threaten public health. The spatial spread of aquatic eutrophi-
cation directly leads to rapid increases of algal biomass that
covers aquatic organisms and plants, thus reducing water
transmittance and hindering the photosynthesis of the plants.
Accordingly, this process can cause reductions in dissolved
oxygen levels, as well as accumulations of toxic metabolites in
seawater (Conley et al. 2009; Xiao et al. 2017).

Nitrogen and phosphorus concentrations in the Zhejiang
coastal waters severely exceeded the regional standards (note
that SSI were also calculated for N and P, see Supporting Infor-
mation Figs. 6–S8). This situation was caused by large amounts
of nutrients from freshwater and anthropogenic impacts, such
as industrial activities, transport, and tourism. About 43.06%
and 32.6% of the coastal waters exceeded the 4th grade stan-
dard for nitrogen concentration (0.5 mg/L) and phosphorous
(0.045 mg/L), respectively. The average eutrophication index
is 8.38, which is much larger than 3, indicating severe eutro-
phication in the region. Those high values are mainly found
around estuaries, especially Hangzhou Bay, where large amount
of nutrients come from freshwater runoff.

For water quality management purposes, some interesting
observations can be made based on Table 4, as follows:

i. Based on the RAEC values of Table 4, it is inferred that in
75.05% of the Zhejiang coastal waters the water quality
grade is oligotrophic or higher, in 54.87% the grade is eutro-
phic or higher, and in 24.56% the grade is hypereutrophic).

ii. By calculating the RAEC differences for the thresholds 1, 3,
and 9 of the EI classification standards (“Eutrophication
index” section above), it is found that in 25.95% of the
Zhejiang coastal waters the quality grade is oligotrophic, in
19.18% mesotrophic, in 30.31% eutrophic, and in 24.17%
hypereutrophic. Interestingly, these numbers coincide with
the corresponding area percentages of the EI map in Fig. 4
(see, also, discussion in “Eutrophication assessment and
classification maps” section above), a fact that further con-
firms the validity of the RAEC-based results.

iii. From the MEC values of Table 4, we find that the average
EI over the Zhejiang coastal waters region is 8.3784, and
the EI > 1, EI > 3, and EI > 9 values averaged over the
same region are 8.2483, 7.8356, and 6.2216, respectively.

iv. Based on the CMEC values, it is concluded that the aver-
age EI value over the subregion of the Zhejiang coastal
waters graded as “oligotrophic or higher” is 11.139, the
average EI over the subregion graded as “eutrophic or
higher” is 14.2807, and the average EI over the subregion
graded as “hypereutrophic” is 25.3365.

v. The MEDC values indicate that the average EI-1, EI-3, and
EI-9 values over the Zhejiang coastal waters region are,

respectively, 7.5078, 6.1896, and 4.0115. Remarkably, the
elasticity of the MEDC indicator is several times larger for
the eutrophic grade than for the oligotrophic and mesotro-
phic grades (compare, e.g., CIE = −0.5509 vs. −0.0986
and − 0.2659).

vi. Based on the NIC values of Table 4, the probability of
threshold-exceeding EI at both coastal locations separated
by, say, δs = 10 km is higher in the oligotrophic subregion,
and then reduces gradually as we move to the mesotrophic,
then to the eutrophic and, finally, to the hypereutrophic
domains.

vii. The CIC values indicate that EI dependency between
pairs of locations (PQED) increases as we move from the
oligotrophic to the mesotrophic domain, and then
reduces as we move to the eutrophic and hypereu-
trophic domains.

viii. The CIR values imply that the ratio of the “and” EI
dependence probability over the “either-or” dependence
probability is higher in the oligotrophic domain, and
then reduces gradually as we move to the mesotrophic,
then to the eutrophic and, finally, to the hypereutrophic
domains.

For the ecological remediation of eutrophication in the
coastal waters of Zhejiang province, the effective management
of anthropogenic activities is currently considered a feasible
approach for reducing the N and P input (in this respect, the
findings and results of this work, including the EI classifica-
tion map of Fig. 4 and the numerical results of Table 4, may
be useful for management purposes). A more extensive moni-
toring of the region is needed for a continuously improving
water contamination assessment.

Conclusions
In this study, the eutrophication status and changing trend

of the Zhejiang coastal waters were characterized quantita-
tively based on seawater quality monitoring data during
August 2015. Overall, it was found that this region experi-
ences severe eutrophication, especially inside the Hangzhou
Bay. The main reasons for eutrophication include excessive
nutrient loading into coastal waters, intense human activities,
and low environmental protection awareness.

We used the BME technique for water quality maps and
stochastic site indicators for the subsequent eutrophication
assessment and characterization of the Zhejiang coastal waters
region. Based on its ability to account for in situ uncertainty
and assimilate different information sources without making
restrictive modeling assumptions, BME generated the most
accurate and informative maps of water quality attributes
compared to the mainstream IDW and OK techniques. Specifi-
cally, the cross-validation results showed that BME generated
water quality maps (COD, DIN, and DIP) with the smallest
MAE and RMSE values compared to the other two techniques.
Based on the BME maps, an eutrophication index (EI) was
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adopted for further water quality assessment. The results showed
that about 25.95%, 19.18%, 20.53%, and 34.34% of the coastal
waters in Zhejiang Province were oligotrophic, mesotrophic,
eutrophic, and hypereutrophic, respectively. That is, more than
half of the marine water areas were in serious eutrophication
status and showed a decreasing trend from estuary to open sea.

Moreover, the one-point and two-point stochastic site
indicators were used to improve eutrophication characteri-
zation in the Zhejiang coastal waters. Specifically, the
RAEC, MEC, and MEDC indicators decreased sharply for
threshold ζ values below 20, whereas the CMEC indicator
showed an approximately linearly increase as a function of
ζ. For ζ = 3.5 it was found that RAEC = 0.5, indicating that
in half of the study region the EI was larger than 3.5. And
when the ζ values are equal to 1, 3, and 9, the NIC values at
various spatial lags are equal to 0.71, 0.51, and 0.19, respec-
tively, indicating that 71%, 51%, and 19% of location pairs
separated by these lags experience mesotrophic, eutrophic,
and hypereutrophic risks, respectively. The CIC indicator
values designate that the contamination status of the Zhejiang
coastal waters is characterized by its positive quadrant eutrophi-
cation dependency (i.e., the strength of joint eutrophication
between any two coastal locations is consistently greater than
the combined strength of independent eutrophications at these
locations). In fact, a critical eutrophication threshold ζcr ≈ 8.38
exists for the Zhejiang coastal waters region such that for ζ < ζcr
the spatial eutrophication dependency increases with ζ, whereas
for thresholds above ζ > ζcr the opposite is true. Moreover, spatial
eutrophication dependency decreases with separation distance δs,
and a critical distance δscr ≈ 15 km was determined for δs < δscr
the excess eutrophication locations are concentrated in the coastal
waters of the Zhejiang province rather than being dispersed.

Elasticity analysis of the eutrophication MEDC indicator
provided a useful measure of the mean excess eutrophication
change in Zhejiang coastal waters caused by an environmental
threshold change. In this context, it was found that the larger
the elasticity of the eutrophication MEDC indicator is, the
more sensitive eutrophication is to threshold changes. Eutro-
phication control measures of the Zhejiang coastal waters are
strongly suggested, such as combining pollutant source con-
trol (e.g., reducing the amount of nutrients and controlling
endogenous contamination) with ecological restoration
(e.g., coastal zone formation and protection), and regulatory
management of human activities.

References
Chen, C. W., Y. R. Ju, C. F. Chen, and C. D. Dong. 2016. Eval-

uation of organic pollution and eutrophication status of
Kaohsiung Harbor, Taiwan. Int. Biodeterior. Biodegradation
113: 318–324. doi:10.1016/j.ibiod.2016.03.024

Christakos, G. 1990. A Bayesian maximum-entropy view to
the spatial estimation problem. Math. Geol. 22: 763–777.
doi:10.1007/BF00890661

Christakos, G. 2000. Modern spatiotemporal geostatistics.
Oxford Univ. Press.

Christakos, G., and D. T. Hristopulos. 1996a. Characterization of
atmospheric pollution by means of stochastic indicator param-
eters. Atmos. Environ. 30: 3811–3823. doi:10.1016/1352-2310
(96)00083-0

Christakos, G., and D. T. Hristopulos. 1996b. Stochastic indi-
cators for waste site characterization. Water Resour. Res.
32: 2563–2578.

Christakos, G., and D. T. Hristopulos. 1997. Stochastic
indictor analysis of contaminated sites. J. Appl. Probab. 34:
988–1008. doi:10.2307/3215012

Conley, D. J., H. W. Paerl, R. W. Howarth, D. F. Boesch, S. P.
Seitzinger, K. E. Havens, C. Lancelot, and G. E. Likens.
2009. Ecology. Controlling eutrophication: nitrogen and
phosphorus. Science 323: 1014. doi:10.1126/science.1167755

Coulliette, A. D., E. S. Money, M. L. Serre, and R. T. Noble.
2009. Space/time analysis of fecal pollution and rainfall in
an eastern North Carolina estuary. Environ. Sci. Technol.
43: 3728–3735. doi:10.1021/es803183f

He, J., and A. Kolovos. 2017. Bayesian maximum entropy
approach and its applications: A review. Stoch. Environ.
Res. Risk Assess. 6: 1–19.

Heip, C. 1995. Eutrophication and zoobenthos dynamics.
Ophelia 41: 113–136.

Howarth, R. W., and R. Marino. 2006. Nitrogen as the limiting
nutrient for eutrophication in coastal marine ecosystems:
Evolving views over three decades. Limnol. Oceanogr. 51:
364–376. doi:10.4319/lo.2006.51.1_part_2.0364

Hutchinson, G. E. 1967. A treatise on limnology. Introduction to
lake biology and the limnoplankton, v. v. II. John Wiley &
Sons.

Kitsiou, D., and M. Karydis. 2000. Categorical mapping of
marine eutrophication based on ecological indics. Sci. Total
Environ. 255: 113–127.

Kong, X., Y. Sun, R. Su, and X. Shi. 2017. Real-time eutrophi-
cation status evaluation of coastal waters using support vec-
tor machine with grid search algorithm. Mar. Pollut. Bull.
119: 307–319. doi:10.1016/j.marpolbul.2017.04.022

Siu-Nganlam, N. 1983. Spatial interpolation methods: A
review. The American Cartographer 10: 129–150.

Liu, L., J. Zhou, B. Zheng, W. Cai, K. Lin, and J. Tang.
2013. Temporal and spatial distribution of red tide out-
breaks in the Yangtze River Estuary and adjacent
waters, China. Mar. Pollut. Bull. 72: 213–221. doi:
10.1016/j.marpolbul.2013.04.002

Liu, R. M., Y. X. Chen, C. C. Sun, P. P. Zhang, J. W. Wang,
W. W. Yu, and Z. Y. Shen. 2014. Uncertainty analysis of
total phosphorous spatial-temporal variations in the Yang-
tze river estuary using different interpolation methods. Mar.
Pollut. Bull. 86: 68–75. doi:10.1016/j.marpolbul.2014.
07.041

Liu, T. K., P. Chen, and H. Y. Chen. 2015. Comprehensive
assessment of coastal eutrophication in Taiwan and its

Jiang et al. Assessing the severe eutrophication status

14

info:doi/10.1016/j.ibiod.2016.03.024
info:doi/10.1007/BF00890661
info:doi/10.2307/3215012
info:doi/10.1126/science.1167755
info:doi/10.1021/es803183f
info:doi/10.4319/lo.2006.51.1_part_2.0364
info:doi/10.1016/j.marpolbul.2017.04.022
info:doi/10.1016/j.marpolbul.2013.04.002
info:doi/10.1016/j.marpolbul.2014.07.041
info:doi/10.1016/j.marpolbul.2014.07.041


implications for management strategy. Mar. Pollut. Bull.
97: 440–450. doi:10.1016/j.marpolbul.2015.05.055

Lundberg, C., B. M. Jakobsson, and E. Bonsdorff. 2009. The
spreading of eutrophication in the eastern coast of the Gulf
of Bothnia, northern Baltic Sea—an analysis in time and
space. Estuar. Coast Shelf Sci. 82: 152–160. doi:10.1016/j.
ecss.2009.01.005

Modis, K., K. I. Vatalis, and C. Sachanidis. 2013. Spatiotem-
poral risk assessment of soil pollution in a lignite mining
region using a Bayesian maximum entropy (BME)
approach. Int. J. Coal Geol. 112: 173–179. doi:10.1016/j.
coal.2012.11.015

Naumann, E. 1919. Nagra synpunkter angaende limnoplank-
tons okologi med sarskild hansyn till fytoplankton. Sven.
Bot. Tidskr. 13: 129–163.

Nikolaidis, G., D. P. Patoucheas, and K. Moschandreou. 2006.
Estimating breakpoints of chl-a in relation with nutrients
from Thermaikos Gulf (Greece) using piecewise linear
regression. Fresen. Environ. Bull. 15: 1189–1192.

Olea, R. A. 1999. Geostatistics for engineers and earth scien-
tists. Kluwer.

Postma, H. 1966. The cycle of nitrogen in the Wadden Sea
and adjacent areas. Neth. J. Sea Res. 3: 186–221.

Primpas, I., G. Tsirtsis, M. Karydis, and G. D. Kokkoris. 2010.
Principal component analysis: Development of a multivari-
ate index for assessing eutrophication according to the
European water framework directive. Ecol. Indic. 10:
178–183. doi:10.1016/j.ecolind.2009.04.007

Quan, W. M., X. Q. Shen, and J. D. Han. 2005. Analysis and
assessment on eutrophication status and developing trend
in Changjiang Estuary and adjacent sea (in Chinese). Mar.
Environ. Sci. 24: 13–16.

Ren, J., B. B. Gao, H. M. Fan, Z. H. Zhang, Y. Zhang, and J. F.
Wang. 2016. Assessment of pollutant mean concentrations
in the Yangtze estuary based on msn theory. Mar. Pollut.
Bull. 113: 216. doi:10.1016/j.marpolbul.2016.09.021

Smith, V. H. 2006. Responses of estuarine and coastal marine phy-
toplankton to nitrogen and phosphorus enrichment. Limnol.
Oceanogr. 51: 377–384. doi:10.4319/lo.2006.51.1_part_2.0377

Vollenweider, R. A. 1992. Coastal marine eutrophication: Princi-
ples and control, p. 1–20. In R. A. Vollenweider, R. Marchetti,
and R. Viviani [eds.], Marine coastal eutrophication. Elsevier.

Wang, J. F., X. H. Li, G. Christakos, Y. L. Liao, T. Zhang, X. Gu,
and X. Y. Zheng. 2010. Geographical detectors-based health
risk assessment and its application in the neural tube defects
study of the Heshun region, China. Int. J. Geogr. Inf. Sci. 24:
107–127. doi:10.1080/13658810802443457

Wang, J. F., T. L. Zhang, and B. J. Fu. 2016. A measure of spa-
tial stratified heterogeneity. Ecol. Indic. 67: 250–256. doi:
10.1016/j.ecolind.2016.02.052

Xiao, X., and others 2017. A novel single-parameter approach
for forecasting algal blooms. Water Res. 108: 222–231. doi:
10.1016/j.watres.2016.10.076

Xiao, Y., J. G. Ferreira, S. B. Bricker, J. P. Nunes, M. Zhu, and
X. Zhang. 2007. Trophic assessment in Chinese coastal
system-review of methods and application to the chang-
jiang (Yangtze) estuary and Jiaozhou Bay. Estuaries Coast.
30: 901–918. doi:10.1007/BF02841384

Yang, Y., and G. Christakos. 2015. Spatiotemporal characteri-
zation of ambient PM2.5 concentrations in Shandong prov-
ince (China). Environ. Sci. Technol. 49: 13431–13438. doi:
10.1021/acs.est.5b03614

Yu, C. Y., and others. 2013. Study on eutrophication status
and trend in Bohai Sea (in Chinese). Mar. Environ. Sci. 32:
175–177.

Yu, H. L., A. Kolovos, G. Christakos, J. C. Chen, S.
Warmerdam, and B. Dev. 2007. Interactive spatiotemporal
modeling of health systems: The SEKS-GUI framework.
Stoch. Environ. Res. Risk Assess. 21: 555–572. doi:10.1007/
s00477-007-0135-0

Yu, H. L., C. H. Wang, M. C. Liu, and Y. M. Kuo. 2011. Estimation
of fine particulate matter in Taipei using land use regression
and Bayesian maximum entropy methods. Int. J. Environ. Res.
Public Health 8: 2153–2169. doi:10.3390/ijerph8062153

Zhang, F., X. Sun, Y. Zhou, C. Zhao, Z. Du, and R. Y. Liu.
2017. Ecosystem health assessment in coastal waters by
considering spatio-temporal variations with intense anthro-
pogenic disturbance. Environ. Model. Softw. 96: 128–139.
doi:10.1016/j.envsoft.2017.06.052

Acknowledgments

This research was supported by the National Science Foundation of
China (Grant No. 41671399) and the China Scholarship Council
(201706320278).

Conflict of Interest

None declared.

Submitted 14 November 2017

Revised 5 May 2018

Accepted 29 June 2018

Associate editor: Josette Garnier

Jiang et al. Assessing the severe eutrophication status

15

info:doi/10.1016/j.marpolbul.2015.05.055
info:doi/10.1016/j.ecss.2009.01.005
info:doi/10.1016/j.ecss.2009.01.005
info:doi/10.1016/j.coal.2012.11.015
info:doi/10.1016/j.coal.2012.11.015
info:doi/10.1016/j.ecolind.2009.04.007
info:doi/10.1016/j.marpolbul.2016.09.021
info:doi/10.4319/lo.2006.51.1_part_2.0377
info:doi/10.1080/13658810802443457
info:doi/10.1016/j.ecolind.2016.02.052
info:doi/10.1016/j.watres.2016.10.076
info:doi/10.1007/BF02841384
info:doi/10.1021/acs.est.5b03614
info:doi/10.1007/s00477-007-0135-0
info:doi/10.1007/s00477-007-0135-0
info:doi/10.3390/ijerph8062153
info:doi/10.1016/j.envsoft.2017.06.052
wjf
高亮

wjf
高亮


	 Assessing the severe eutrophication status and spatial trend in the coastal waters of Zhejiang Province (China)
	Materials and methods
	Study area and data sources
	Spatial mapping of seawater quality indices by Bayesian maximum entropy
	Eutrophication index
	Stochastic site indicators

	Results and discussion
	Descriptive statistics
	Water quality maps and cross-validation results
	Eutrophication assessment and classification maps
	Calculation of eutrophication SSI in the Zhejiang coastal waters
	One-point SSI
	The RAEC of Zhejiang coastal waters eutrophication
	The MEDC of Zhejiang coastal waters eutrophication
	The MEC of Zhejiang coastal waters eutrophication
	The CMEC of Zhejiang coastal waters eutrophication
	The CID of Zhejiang coastal waters eutrophication
	The CIE of Zhejiang coastal waters eutrophication

	Two-point SSI
	The NIC of Zhejiang coastal waters eutrophication
	The CIC of Zhejiang coastal waters eutrophication
	The CIR of Zhejiang coastal waters eutrophication

	Eutrophication mechanisms and management in the Zhejiang coastal waters


	Conclusions
	References
	Acknowledgments
	Conflict of Interest





