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Abstract
In clinical practice, surrogate variables are commonlyused as an indirectmeasurewhen
it is difficult or expensive to measure the primary outcome variable X , based on which
the disease status is assessed. In this article, we consider the problem of constructing an
optimal binary surrogate Y to substitute such the feature variable X . To retain samples
that have rare values in X , the paired sample (X ,Y ) is usually selected based on
stratified sampling, where the strata are constructed using the disjoint intervals with the
support of X . For such a sampling design, the stratum proportions are usually unknown
such that proportional allocation is infeasible and (X ,Y )’s cannot be regarded as an
i.i.d. sample between strata.We estimate the unknown cutoff determining higher/lower
levels of X that optimally match the variable Y and provide the true positive rates
(TPR) adjusted for the disproportionate stratum weights. Our approach is to estimate
the underlying distribution of X , then conduct an ad-hoc estimation for the TPR and
for the expected prediction errors under zero-one loss function.We develop parametric
estimate of the distribution of X under exponential family assumption and a weighted-
kernel density estimator when the distribution of X is unspecified. We illustrate our
methods on various simulation studies and on a real example where binary surrogates
were evaluated for a medical device. The simulation results indicate that our approach
performs well.

Keywords Surrogate variable · Biased sampling · Logistic model · Binary
classification · Composite likelihood · Kernel density · Optimal cutoff values
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1 Introduction

In many clinical practices, surrogate variables are commonly used as an indirect mea-
sure when it is difficult or expensive tomeasure the primary outcome variable X , based
on which the disease status is assessed. In particular, it is desirable to have a binary
surrogate Y , providing positive/negative signs for some disease status. In this article,
we consider the problem of constructing an optimal binary surrogate Y , which allow
us to predict the disease status. In clinical studies, in order to obtain samples from
individuals with rare values of X , the stratified sampling scheme is often used. Specif-
ically, the population is first divided into relevant strata using the disjoint intervals with
the support of X , i.e., the support of the real-valued input variable X is partitioned into
semi-closed intervals, say Js = [bs−1, bs), b0 < b1 · · · < bS , and from each semi-
close interval (strata), a paired random sample (Xsi ,Ysi ), i = 1, . . . , ns; s = 1, . . . , S
with values restricted in the semi-close interval Js is randomly drawn. Since the stra-
tum proportions are usually unknown, the proportional allocation is infeasible, i.e., the
sample sizes are allowed to be disproportionate to the interval probabilities P(X ∈ Js).
Thus, under such a sampling scheme, (Xsi ,Ysi )’s can not be regarded as an i.i.d. sam-
ple. Under this disproportional sampling scheme, we shall construct a binary surrogate
Y using an estimated cutoff value (threshold) of X . We assume that the surrogate
variable Y is monotonically positively associated to the input variable X through a
monotone increasing link function φ(·) such that P(Y = 1|x) = φ(x). Thus, we are
seeking the function value v(c) = 1 for X ≥ c. Accordingly, the optimal relation is
subject to finding the optimal c, such that P(v(c)|X ≥ c) is optimized. Although such
sampling scheme seems to be uncommonly utilized, we have motivating examples
and a few more other examples, in that such sampling way may be considered.

Example A: themotivating example for our study

This example has also served as the real example in Sect. 5. The present paper is
motivated by a clinical study conducted by a biotech company for developing a rapid
test kit, by which, diabetic patients can simply read positive/negative outcomes to
indicate whether their glycated haemoglobin (HbA1c or A1c) levels have exceeded a
critical point. Normally the measurement of such medical value has to be taken via
blood tests with much higher cost and time, therefore the goal is to determine accurate
cut-off point serving a threshold value, optimally dividing the +/- revealed on the new
test kit. The medical regulation requires the condition that the new test kit should be
applicable to both healthy persons and patents with specified precisions for the whole
range of A1c values. Due to the cost and insufficient samples sizes for both healthy
persons and patients, the medical investigator took random samples from different
ranges of the A1c values.

Example B: endpoints example

From literature, we also found an interesting example regarding endpoints in clinical
trials. For the evaluation of new treatments in clinical trials, a conventional endpoint
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Table 1 Endpoints examples of Table 1 in Buyse et al. (2016)

Z = 0 Z = 1

Scenario A: Scenario
Full capture Independence

S T S T S T Prognosis

0 10 0 10 0 5 Poor

0 10 0 10 0 15

0 10 1 20 1 5 Intermediate

1 20 1 20 1 15

1 20 1 20 1 40 Good

could be costly or difficult to measure. Thereby, a cheaper and more convenient sur-
rogate endpoint is expected to predict the clinical outcomes. As data abbreviated in
Table 1, an example shown in Buyse et al. (2016). The surrogate endpoint S is a binary
outcome, with S = 0 denoting failure and S = 1 success. The true endpoint T is a
continuous outcome. The patients are classified by prognosis types: Poor, Intermedi-
ate and Good. In such an example, imagine that if the prognosis types are grouped
according to a continuous variable (variable reflect the prognosis), by the values on
scales, and samples are taken by groups, then we also face the pooled samples which
are not IIDs between those groups. According to our simulation studies, matching the
continuous endpoint T to the binary surrogate Z with such stratified samples would
also encounter the same concerns of biased true positive rates as we had in our original
motivation example.

Example C: ecological data

Another potential application may occur in the construction of spatial distribution. As
in the paper by Ferrier et al. (2002), a fundamental challenge faced by conservation
action is to manage biodiversity. A way to proceed is to use the existence of informa-
tion on the spatial distribution of biodiversity. To have better information cover the
whole range of spatial areas, conducting stratified sample by some different ranges
of continuous scores would be applicable and reduce the cost. For instance, for large
ecological regions, samples may be drawn by different levels of lapse rates due to the
mountain altitudes.

From the abovemotivation examples,we summarize our studymotivation thatwhen
specific sample sizes are demanded for different range of a continuous measurements
and the distribution is unknown, then such stratification would provide a sampling
scheme with an effective cost. We can utilize the first stage of our approach to estimate
the distribution of the variable. And for matching the measurements to one binary
surrogate, we proposed to further utilize our two-stage method.

One way is to model the optimal cutoff by establishing cutpoint models as proposed
by Lausen and Schumacher (1996), Contal and O’Quigley (1999) and da Silva and
Klein (2011). However, this method requires modification since (X ,Y )’s cannot be
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regarded as an i.i.d. sample between strata.On the other hand, in viewof the conditional
probability P(v(c)|X ≥ c), if by fitting the conditional probability with a logistic
model, we have biased estimates of TPRs as illustrated in Example 1. The resultant
bias is also due to fitting the model while neglecting the unknown stratum weights.
Our approach is based on the minimization of the expected zero-one loss prediction
error (EPE) (Friedman et al. 2001) possessing the following form

EPE(v) = EX EY |X [|Y − v(X)| |X ] . (1)

For a given threshold value c, when the expectation is evaluated with a continuous
probability density of X , we write it as

EPE(v) = P(Y = 0|X ≥ c)P(X ≥ c) + P(Y = 1|X < c)P(X < c). (2)

The classification problem then is equivalent to maximizing the total correct proba-
bility (TCP), namely to get

max
c

TCP = max
c

[P(Y = 1, X ≥ c) + P(Y = 0, X < c)] . (3)

To determine the optimal c based on TCP, we need to estimate the distribution of
X , which requires the estimation of the unknown stratum proportion P(X ∈ Js)),
such that the selection bias can be adjusted (Heckman 1979; Zadrozny 2004; Cortes
et al. 2008; Richards et al. 2012; Liu and Ziebart 2014). Selection biased problems
similar to ours are also investigated as a special case in the work of Vardi (1985),
Gill et al. (1988), Gilbert (2000) and Fokianos (2004). In particular, Gill et al. (1988)
pointed out that such a biased sampling depending on the partition of the support is not
identifiable and there is noway to estimate it using the empirical distribution unless the
weights of bias can be extracted from other sources, whereas commonly the biased
sampling is referred to sampling the data without the concordance of the original
probability weights in the population. They therefore propose to use an enlarged data
set by including another extra proportion of the data drawn with the support of X .
For inference dealing with similarly biased samples, Wang and Sun (2009) utilized
observations from overlapped intervals (i.e., recaptures) from a finite population.

Directly applying non-parametric estimation to TCP, EPE(v), such as simply
counting the relative frequencies to estimate these probabilities is not adequate either.
We propose to solve the binary classification first by estimating the underlying true
distribution for the input variable X , then by estimating the EPE(v) with an ad-
hoc approach. The optimal threshold value is then obtained by attaining the smallest
EPE(v). We utilize parametric and non-parametric approaches to build the distribu-
tion of X , where we assume that the values of X are continuously distributed and have
continuous density f (x). Parametrically, let f (x) be specified by fθ (x), a density up
to an unknown parameter θ . We first investigate the distribution in exponential family,
well-known to accommodate quite many choices of popular distributions undertaken
in practice. For an exponential family, we use composite-type (Varin et al. 2011)
likelihood function conditioning on strata (Godambe 1976; Lindsay 1982). Follow-
ing the results shown by Lindsay (1988) that under unbiased score functions, the
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asymptotic properties of estimates solved from the composite likelihood function are
asymptotic equivalent to those from a full likelihood function. To handle an unknown
density, which may inherently have a multi-modal feature, we build the density using
a weighted-type kernel density with the weights adaptively sought by the data. We
connect the densities under strata Js , denoted by f Js (x), s = 1, . . . , S, side-by-side
on the edges of the stratum and apply normalization to obtain the estimation of true
density f (x) defined on the whole support. For a such non-parametrically fitting,
choices of optimal bandwidth are also under consideration with values searched from
minimizing the integrated squared error with cross-validation.

The rest of the article is organized as follows. In Sect. 2,we derive the parametric and
non-parametric estimators for the underlying distribution of X when the distribution
of X belongs to an exponential family and is unspecified. In Sect. 3, the form for
ad-hoc estimation of the expected zero-one loss prediction error is presented and the
asymptotic variance of EPE with the fitted parametric distribution of X is described.
We present simulation studies in Sect. 4, where we find that the rebuilt distributions
are quite close to the truth and the estimated EPE appears reasonable compared with
the results generated by proportionately stratified samples, which relatively we set as
benchmarks. In Sect. 5, we illustrate the proposed method using a real example.

2 Parametric distribution estimation with stratification

2.1 Parametric distributions from exponential families

We assume that X has a continuous distribution belonging to a p-dimensional expo-
nential family. With respect to some common probability measure μ, the density of X
has the form

fθ (x) = exp{η(θ)TT(x) − A(η(θ))}h(x), (4)

where η is the vector of natural parameters and T(x) = (T1(x), . . . , Tp(x)) is the
vector of corresponding sufficient statistics. For finitely fixed S ≥ 3, the partition of the
sample space is a collection of left-closed intervals Js = [bs−1, bs), b0 < b1 · · · < bS .
Being subject to the range within each stratum Js , a random sample of size ns is
collected. We denote the total size as N =∑S

s=1 ns .
Let Qs be the probability that the value of X falls in stratum Js . While conditioning

on stratum Js , the probability density of one Xsi is

fθ (xsi )

Qs
= exp{ηTT(x)}h(x)
∫
Js
exp{ηTT(x)}h(x)dx

= f̄θ (xsi )

Q̄s
, (5)

where f̄θ (xsi ) denotes exp{ηTT(x)}h(x) and η simplifies η(θ). However, there is no
guarantee that the data crossing the stratumare independent, and therefore no particular
explicit form to express the full likelihood via a joint probability. But, given on strata,
these stratified samples xsi are conditionally independent [as the same assumptions
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hold in Example 1.3a by Gill et al. (1988) and Section 5.2 by Wu (1997)]. We exploit
the composite likelihood function approach that is a likelihood-type object obtained
by multiplying a collection of marginal likelihoods (Lindsay 1988; Cox and Reid
2004). Originally, this likelihood-type object was facilitated for spatial data collected
over split sites or for the aim of reducing computational burden. While considering
the conditioning on stratum Js, s = 1, . . . , S, we notice that the data is conditionally
independent. Bymultiplying all conditional likelihoods across the strata, the composite

likelihood is L(θ |x) = �S
s=1�

ns
i=1

[

f̄θ (xsi )

/

Q̄s

]

. For a single data point xsi in Js ,

the log of likelihood of the parameter η and the score function with respective to η is

l(η|xsi ) = ln

(
fθ (xsi )

Qs

)

= ηTT(xsi ) + ln(h(xsi ))

− ln

[∫

Js
eηTT(xsi )h(x)dx

]

, (6)

u(η j , xsi ) = ∂l(η|xsi )
∂η j

= Tj (xsi ) − EJs

[
Tj (xsi )

]
, (7)

where u(η j , xsi ) is the score function of the component log-likelihood at a data point
xsi . Given observations in stratum Js , the conditional log likelihood function of η is

l(η|x) =
S∑

s=1

ns∑

i=1

l(η|xsi ) =
S∑

s=1

l(s)(η|xs), xs = (xs,1, . . . , xs,ns ). (8)

After taking differentiation with respective to η, we have the following composite
score functions:

l(η|x)
∂η j

=
S∑

s=1

ns∑

i=1

u(η j , xsi ) =
S∑

s=1

ns∑

i=1

∂l(η|xsi )
∂η j

=
S∑

s=1

ns∑

i=1

[
Tj (xsi ) − EJs

[
Tj (xsi )

]]
. (9)

We also denote the composite score function of η j given x by u(η j , x) and the com-
posite score function of η by u(η, x). If the interest is to make inference about θ ,
further taking differentiation regarding one component of θ , say θk , leads to

l(η|x)
∂η j

∂η j

∂θk
=

S∑

s=1

ns∑

i=1

∂l(η|xsi )
∂η j

∂η j

∂θk

=
(

S∑

s=1

ns∑

i=1

[
Tj (xsi ) − EJs

[
Tj (xsi )

]]
)

∂η j

∂θk
. (10)
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The composite maximum likelihood estimates for η are solved by equating the com-
posite score functions to zero. For computing the score functions, we need to evaluate
the expectation EJs

[
Tj (xsi )

]
, which is an integral with respect to the probability mea-

sure under the stratified interval and therefore sometime intractable. A convenient way
is to implement software to obtain the numerical integral, such as using the function
integrate() in R. When the probability density is not too complicated, usually
the numerical integral can be obtained. Here we also propose Monte Carlo likelihood
estimation steps as another way to evaluate the composite score functions:

• 1. Monte Carlo E-step Given the current parametric values θ0, with Monte Carlo
size ms , simulate Xs,1, . . . , Xs,ms from fθ with values restricted in disjoint strati-
fied intervals Js . Compute the Monte Carlo estimate ÊMC

Js

[
Tj (xsi )

]
by averaging

the Monte Carlo samples of Tj (xsi ).
• 2. Maximization step Use the current estimate ÊMC

Js

[
Tj (xsi )

]
as the expectation

in the composite scores (10). Equate the equations to zero to obtain the updated
parameter values θ1. Then we repeat the iteration for M times.

The computation steps with Monte Carlo can be regarded as an implment of Monte
Carlo EM algorithm proposed by Wei and Tanner (1990), and the iterationes achieve
convergence to the MLE under certain conditions for M → ∞. Geyer (1991, 1994);
Beskos et al. (2009). However, the Monte Carlo EM algorithm does not anymore
monotonically increase the likelihood due to the extra randomness introduced by
the simulations in the Monte Carlo E-step. Nevertheless, after a long iteration of
M times, the solutions will be oscillate within a small range that the changes of
likelihoodbehaves sufficiently small stochatstically (Chan andLedolter 1995).We stop
the iterationwhen such small changes δ occurs. TheMonte Carlo likelihood estimation
is its easy implement of integration, however simulation errors may be of concerned.

2.2 Asymptotic properties

Composite likelihoodsmay be seen asmisspecified likelihoods.However, as addressed
by Lindsay (1988), under regularity conditions on the component log-densities, i.e.
the first properties that only require unbiased component scores and finite covari-
ance matrix, we can conclude with consistent properties for the composite maximum
likelihood estimator under our sampling scheme.

Theorem 1 Consider the stratified sample X = (Xsi ), s = 1, . . . , S, i = 1, . . . , ns,
conditionally independent on stratum s = 1, . . . , S with the density function (5). Then,
the Kullback Leibler information inequality holds for each component log likelihood
and hence for the composite log likelihood, i.e.,

Eη0 [u(η, xsi )] ≤ Eη0

[
u(η0, xsi )

]⇒ sup
η

Eη0 [L(η|xsi )] = Eη0

[
L(η0|xsi )

]
, (11)

where η0 is the true value of the parameter. Hence the composite MLE is consistent.

Proof It is straightforward to see that the regularity conditions hold for each component
log-density in (6). The asymptotic results follow the first properties addressed by
Lindsay (1988). �	
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Given the strata, the component score functions are conditionally independent
across the strata. In the following, we derive weak convergent properties for the com-
posite MLE based on the conditional independent component score functions.

Theorem 2 Let (Xsi ), s = 1, . . . , S, i = 1, . . . , ns be random samples from stratum
Js respectively. Let u(η, xsi ) denote the component score of η at one observation xsi
obtained at stratum Js and suppose that each u(η, xsi ) has a p × p non-singular
covariance Vs. There exists t = (t1, . . . , ts) ∈ [0, 1]s that for ns = Nts , we have

1√
N

S∑

s=1

ns∑

i=1

u(η, xsi )
L−→

S∑

s=1

V 1/2
s Ws(ts), (12)

where Ws(t) are independent Wiener processes.

Proof Apply Donsker’s theorem on the scores at each stratum, the asymptotic results
follow with similar derivations in Theorem 1 of Martsynyuk (2012) by adding up the
conditional independent terms together. The proof would be analogous, and so details
are omitted. �	
Theorem 3 Let (Xsi ), s = 1, . . . , S, i = 1, . . . , ns be random samples from stratum
Js respectively. Let u(η, xsi ) denote the component score of η at one observation xsi
obtained at stratum Js, and suppose that each u(η, xsi ) has a p × p non-singular
covariance Vs. Suppose that for each s, ns/N → λs and for some λs ∈ (0, 1), the
equation is

1√
N

S∑

s=1

ns∑

i=1

u(η, xsi )
L−→

S∑

s=1

λsV
1/2
s N (0, Ip). (13)

Theorem 4 Under the same setting in Theorems 2 or 3, let � denote asymptotic
covariance of

∑S
s=1
∑ns

i=1 u(η, xsi )/
√
N evaluated at the true value η0. Let η̂ be

the composite MLE obtained from the composite score functions (9). Then, as
N → ∞, ns → ∞, for s = 1, . . . , ns,

√
N
(
η̂n − η0

) L−→ N (0,G(η0)
−1), (14)

where

G(η0) = H(η0)
−1�H(η0) and H(η0) = Eη0

[

−
S∑

s=1

ns
N

∇η0u(η0, xsi )

]

, (15)

with i ∈ { 1, . . . , ns } and ns/N → λs .

Proof Let h̃(η) = 1
N

∑S
s=1
∑ns

i=1 u(η, xsi ). From equation (9), it is obvious that

E
[
h̃(η)

]
= 0 for all η. From Theorem 2, we have
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√
Nh̃(η)

L−→
S∑

s=1

λsV
1/2
s N (0, Ip) = N

(

0,
S∑

s=1

λ2s Vs

)

. (16)

Expand the estimating equations h̃(η) in a Taylor series with negligible error

0 = h̃(η) = h̃(η0) +
[
∇h̃(η0)

]
(̂η − η0) + op(

√
N ), (17)

−∇ h̃(η0)
L−→ H(η0), (18)

where

H(η0) = − E

[
1

N

S∑

s=1

ns∇η0u(η0, xs)

]

, xs ∈ Js . (19)

Equation (17) can be written as

√
N (̂η − η0) =

[
−∇h̃(η0)

]−1 [√
Nh̃(η0)

]
+ op(

√
N ), (20)

from which by Slustsky’s theorem, we get
√
N (̂η − η0)

L−→ H(η0)
−1�−1H(η0). �	

• Remark Notice that in our case, we have H(η0) = �.

For IID random samples, with the regularity conditions, the asymptotic results for
theMLEarewell known.However, for stratified samples such as ours,we encounter the
way how to have larger samples. First, we can increase the total sample size N overall
managed for the all strata, and with fixed proportions ts specified at each stratum, ns =
Nts . Then by Theorem 2, the sum of the score function across the strata asymptotically
converges to

∑S
s=1 V

1/2
s Ws(ts). However, if we simply increase the total sample size

N and have the condition that the relative sizes ns/N are eventually attained at λs ,
then by Theorem 3, we have similar asymptotic normality results. In fact, results on
Theorems 2 and 3 are very similar, in that if we have a large sample size ns for each
stratum either the sample is increased with fixed proportions ts or increases eventually
to a proportion λs , the scores functions weakly converges to Gaussian weighted by
the variance matrix and has variances depending on the proportions ts or λs . Notice
however that, in practice, Theorem2 assures us the asymptoticGaussian, evenwe don’t
increase the sample size for the stratum according to their true proportions behind the
population.

By expressing the score function with Taylor expansion up to the second order, the
weak convergence of the MLE is presented in Theorem 3. In Theorem 3, we adopt the
condition that ns/N → λs and from the proof, we see that the asymptotic variance
	 is asymptotically equivalent to the matrix H(η0), because the matrix H(η0) is the
Fisher information derived from the score function. In the real example in Sect. 5 of
the original manuscript, we show how to implement Theorem 3 numerically to obtain
the standard error for the MLEs. Except for the above comments about the asymptotic
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properties, which are derived for the stratified samples from disjoint intervals, we have
reasonable conjectures that the composite likelihood and the asymptotic properties
may be extended to be adopted for the cases whenwe have stratified samples randomly
from overlapped intervals. We will put these extensions in future study.

2.3 Discussions on incorrect distribution assumptions

When the estimation of the distribution of the benchmark variable X is not very
accurate, from all of our simulation examples and real examples, we empirically find
that the optimal cutoff points would be still very close to the solution under the true
distribution. However, incorrect assumptions on the distribution would pass possible
bias to the estimated true positive rates. For real application, the true distribution may
not always follow what we presume, i.e. the exponential family. We propose here the
ways to justify whether the distribution assumptions are suitable and suggest possible
modification.

The situations collapse into possible cases that (1) presence of outliers in the data
(2) no particular parametric suitable to the data (3) the distribution of the data actually
belongs to other parametric family. The first case that the data contain outliers is easier
to be handled, because a simple empirical quantile against the fitted quantiles plot may
review the extraordinary values. The second and the third case would result in that
the fitted parametric distribution in the exponential family would quite differ from
the empirical distribution of the data. For the stratified data, we propose to test the
goodness of fit, by controlling the familywise error rate with type I error α/S chosen
for each stratum and for each stratum we perform the Komogorov–Smirnov test. If it
shows that the null hypothesis that the fitted distribution F̂ differs from the empirical
distribution Fn , we consider the following alternatives.

I. No particular assumption presumed for the stratified data: Under the continuous
assumption of the data, we suggest and propose to use the weighted kernel density
estimation described in Sect. 2. Then the stratum weights can be estimated.

II. Other family of parametric distributions such as generalized Gamma or non-
exponential family: although there are many other parametric distributions not
belonging to the exponential family, due to the stratified samples and the profile
likelihood is employed to solved for the likelihood estimates, the consistency
of the estimates of particular parametric distribution may require some further
investigation and we leave this for further study.

III. Box-Cox transformation: if the original observations (stratified) has a nonlinear
transformation to normal, we propose the following steps.

– For unstratified X , the power transformation is utilized as

x (λ1) =
{

(xλ1+λ2)
λ1−1

λ1
, λ1 �= 0

log(x + λ2), λ1 = 0
, x > − λ2. (21)

123



Binary surrogates with stratified samples…

– the profile likelihood with stratified power transformed data is

∑

s

1

Qs(θ)

(
1√
2πσ

)ns
exp

{

− (x(λ1) − μ)
′
(x(λ1) − μ)

2σ 2

}

Jac(λ1; x)

(22)

where the Jacobin is Jac(λ1; x) =∏ns
j=1

∣
∣
∣
∣
dx

(λ1)

i
dxi

∣
∣
∣
∣

Analogously following the Box-Cox transformation as for unstratified data, we
solve for the power λ1 by maximizing the profile likelihood function.

2.4 Non-parametric distribution with kernel density

Assume that the input variable X has an unknown continuous density function f (x)
defined on the support of X that consists of partitioned intervals Js = [bs−1, bs), b0 <

b1 · · · < bS . With stratified samples, we estimate the underlying density function with
the following steps:

Step 1. For each semi-close interval, estimate one single stratum density function
f Js ,hs (x) by the kernel density function

f̂ Js ,hs (x) = 1

nshs

ns∑

i=1

K

(
xsi − X

hs

)

= 1

nshs

ns∑

i=1

1

2
I
(∣
∣
∣
∣
xsi − X

hs

∣
∣
∣
∣ < 1

)

, (23)

where K (u) is the uniform kernel defined on (−1, 1).
Step 2. Unify the stratum density functions into a function g:

f̂U N (x) =
S∑

s=1

f̂ Js ,hs (x)c(s)I (x ∈ Js), for x ∈ Js, (24)

where c(s) > 0 satisfies the condition that f̂ Js−1,hs−1(b
−
s )c(s−1) = f̂ Js ,hs (bs)c(s).

A particular choice of such c(s) is

c(s∗) =
⎧
⎨

⎩

1, for s = 1
∏s∗

s=2

(

f̂ Js−1,hs−1(b
−
s )

/

f̂ Js ,hs (bs)

)

, for s∗ ≥ 2,
(25)

where f̂ Js−1,hs−1(b
−
s ) = limb↑bs f̂ Js−1,hs−1(b). Notice that the function g is piece-

wise smooth by stratum.
Step 3. Normalize the function g to a density function over the support  =
J1 ∪ · · · ∪ JS that
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f̂h(x) = f̂U N (x)
∫


f̂U N (x)dx
≈ f̂U N (x)
∑S

s=1
∑ns

i=1 f̂ Js ,hs (xsi )c(s)I (xsi ∈ Js)�s

(26)

=
∑S

s=1 f̂ Js ,hs (x)c(s)I (x ∈ Js)
∑S

s=1
∑ns

i=1 f̂ Js ,hs (xsi )c(s)I (xsi ∈ Js)�s

(27)

=
S∑

s=1

w(x, s, hs)
1

hs

ns∑

i=1

K

(
xsi − X

hs

)

, s = 1, . . . S, (28)

where w(x, s, hs) = 1
ns

c(s)I (x∈Js )∑S
s=1
∑ns

i=1 f̂ Js ,hs (xsi )c(s)I (xsi∈Js )�s
and �s is the equal width

between bins within each Js . The fitted f̂h(x) is our proposed density to the non-
parametric estimate of the underlying density function for X . All the convergence
assumptions required in the setting of the kernel density estimation are conventionally
assumed to be held under each stratum. We adopt Eq. (28) to express the estimate
as a weighted-type kernel density as discussed in Wang and Sun (2009) and Wang
and Wang (2007), except that the weights w(x, s, hs) in (28) are based on our kernel
density estimation for each stratum rather than due to any weight that have ever been
formerly determined for those data points. The weights w(x, s, h) are driven by the
data, and the sum of the total weights is approximately equal to onewhen c(s) has been
obtained. In fact, substituting this result into w(x, s, hs) gives us the approximation∑S

s=1 w(xsi , s, hs) ≈ 1. We may consider w(xsi , s, hs) as the weight representing
the data points fitting the kernel density.

The bandwidth controls the smoothness of the kernel estimate and is regularly
chosen to minimize a measure of the closeness between the estimate f̂h(x) and the
true density f . Here, universally, we set hs = h. We then measure the closeness by
considering the integrated squared error (ISE), that is

I SE( f̂h) =
∫
(
f̂h − f

)2
dx =

∫
(
f̂h
)2

dx − 2
∫

f̂h f dx +
∫

f 2dx . (29)

The ISE in (29) can be conveniently approximated by utilizing leave-one-out cross-
validation (Bowman 1984; Sheather et al. 2004; Wang and Wang 2007). We apply
steps similar to those in the work by Wang and Wang (2007) to the weighted form
(28), and denote w(xi , s, h) as wi , the first term of ISE is

∫

f̂h(x)
2dx =

S∑

s=1

∫ ∑

i

wi

h
K

(
x − Xi

h

)

×
∑

j

w j

h
K

(
x − X j

h

)

dx (30)

t=x/h=
S∑

s=1

1

h

∑

i

∑

j

wiw j

∫

K

(
Xi − t

h

)

K

(
t − X j

h

)

dt (31)

u=t−(x/h)=
S∑

s=1

1

h

∑

i

∑

j

wiw j

∫

K

[
Xi

h
− X j

h
− u

]

K (u) du, (32)
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where u ∼ Uni f (−1, 1) and the subscripts i, j are denoted inside the stratum Js .
After integrating the convolution part of the kernel, we have

∫

f̂h(x)
2dx =

S∑

s=1

1

h

∑

i

∑

j

wiw j K
∗(Xi , X j ), (33)

where

K ∗(Xi , X j ) =
⎧
⎨

⎩

1
4

[
2 − Xi−X j

h

]
, for

Xi−X j
h ∈ (0, 2)

1
4

[
2 + Xi−X j

h

]
, for

Xi−X j
h ∈ (−2, 0).

(34)

Now, the kernel density f̂−i by leaving the i th case out of computation while the others
x(−i) will receive re-adjusted weights that are the original weight w j normalized by
the the total weights of x(−i). The leave-one-out estimation of f̂−i would be

f̂−i =
∑

j �=i w
(−i)
j Kh

(
x − X j

)

∑
j �=i w

(−i)
j

. (35)

The second term of ISE can be estimated by −2/n
∑

f̂−i . Although, the entire
sample is stratified and only conditioning within the same stratum observations are
treated independently, the leave-one-out can still be applied because stratification is
unchanged. We seek to obtain a bandwidth h to minimize

S∑

s=1

1

h

∑

i

∑

j

wiw j K
∗(Xi , X j ) − 2

n

∑
f̂−i . (36)

For a target range of h, we perform a grid search on h and the ISE computed with a
corresponding w(s) is minimized. An important issue that requires to be called is the
boundary effects for each f̂ Js ,hs (x). Without further corrections, the estimation bias
on the boundaries of each Js may induce some overall bias for the final estimated
density f̂ (x). For our estimation, we use the correction method proposed by Zhang
et al. (1999), a combination of methods of pseudo-data, transformation, and reflection,
with these advantages that the variance is kept down, and a small bias could only be
on the boundary. But Zhang’s method is only originally introduced for a density with
support on [0,∞). To apply the correction method to the kernel density estimated on
J1, . . . , Js , we will need to modify the method to correct boundary effects at a right-
hand sided endpoint, and also modify the method that can be utilized for support with
two-sided boundaries. We will illustrate these modified corrections in our simulation
studies in Sect. 5.
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3 Estimation of EPE(v)

3.1 Ad-hoc estimation

For a cut-off point c ∈ Js̃ of X , we estimate the EPE(v) with

Ê PEc(v) =
∫

X<c
1(Y = 1|X)d P̂X +

∫

X≥c
1(Y = 0|X)d P̂X , (37)

where P̂X refers to the fitted distribution obtained by the methods in Sect. 2. Since the
distribution of X is assumed to be continuous, this would be equivalent to

Ê PEc(v) =
S∑

s=1

∫

X∈Js ,X<c
1(Y = 1|X)d P̂X +

S∑

s=1

∫

X∈Js ,X≥c
1(Y = 0|X)d P̂X .

(38)

While estimating the expectation of indicator functions inside Eq. (38) by the empirical
measures that in turn are the relative frequencies of Y = 0 and Y = 1 within Js ,
we may then evaluate Ê PEc(v) by ad-hoc approach as following. Let Z = 1, if
X ≥ c, otherwise Z = 0. We may denote the sampled triple as (Xsi ,Ysi , Zsi ), s =
1, . . . , S, i = 1, . . . , ns . For each stratum Js , we denote the sample of X as { Xsi }.
Suppose that c is a value in Js∗ �= JS . Further, write Js as a union of A1, A2:

A1 = { x ∈ Js∗ : bs∗−1 ≤ x < c }, A2 = { x ∈ Js∗ : c ≤ x ≤ bs∗ }. (39)

Then for a fixed value c, the conditional true positive probability is

T P(c) = P(Y = 1|Z = 1) (40)

= P(Y = 1, Z = 1, A2|Z = 1) +
S∑

k=s∗+1

P(Y = 1, Jk |Z = 1) (41)

= P(Y = 1, A2, Z = 1)P(A2, Z = 1)

P(Z = 1)P(A2, Z = 1)

+
S∑

k=s∗+1

P(Y = 1|Jk, Z = 1)P(Jk, Z = 1)

P(Z = 1)
(42)

= ps∗P(c ≤ X < bs∗)

P(X ≥ c)
+

S∑

k=s∗+1

pk P(X ∈ Jk)

P(X ≥ c)
, (43)

where ps∗ denotes P(Y = 1|A2, Z = 1) and pk denotes P(Y = 1|Jk, Z = 1). With
the sample triples (Xsi ,Ysi , Zsi ), we estimate the probabilities P(c ≤ X < bs∗),
P(X ∈ Jk) and P(X ≥ c) using the estimated density from Sect. 2. We then estimate
ps∗ , pk with the sample proportions of Y = 1 observed in strata Js∗ and Jk , which are
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p̂s∗ =
∑

i∈A2
Ys∗i

ms∗
, p̂k =

∑
i∈Jk Yki

nk
, k = s∗ + 1, . . . , S, (44)

where ms∗ , nk are the number of subjects in A2 and Jk respectively. The estimated
T P(c) given the value c would be

T̂ P(c) = p̂s∗ P̂(c ≤ X < bs∗)

P̂(X ≥ c)
+

S∑

k=s∗+1

p̂k P̂(X ∈ Jk)

P̂(X ≥ c)
. (45)

Now, if the value of c is given at JS , then

T̂ P(c) = p̂S =
∑

i∈JS YSi

nS
. (46)

Analogously, for a fixed value c ∈ Js∗ , s∗ �= 1, the estimation of false positive
probability is

F̂ P(c) = r̂s∗ P̂(bs∗−1 ≤ X < c)

P̂(X < c)
+

s∗−1∑

k=1

r̂k P̂(X ∈ Jk)

P̂(X < c)
, (47)

where r̂s∗ and r̂k are

r̂s∗ =
∑

i∈A1
Ys∗i

ms∗
, p̂k =

∑
i∈Jk Yki

nk
, k = 1, . . . , s∗ − 1, (48)

where ms∗ , nk are the number of subjects in A1 and Jk respectively. From the above
equations, the estimated EPE(v) is

Ê PE(v) = 1 −
⎧
⎨

⎩
P̂(X < c) −

⎛

⎝r̂s∗ P̂(bs∗−1 ≤ X < c) +
s∗−1∑

k=1

r̂k P̂(X ∈ Jk)

⎞

⎠

+ p̂s∗ P̂(c ≤ X < bs∗) +
S∑

k=s∗+1

p̂k P̂(X ∈ Jk)

}

(49)

and T̂ C P = 1 − Ê PE(v).

3.2 TPR and the logistic model

Suppose we employ a logistic model log(E(Y = 1|1 {X ≥ c})) = α + β1 {X ≥ c},
which imposes the constant parameters α and β universally over X ≥ c. With an
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expression of composite likelihood over the strata with the logistic model, we solve
the score functions for α and β leading to

S∑

s=s∗

[ ns∑

i=1

Ysi −
nsi∑

i=1

exp(α + β)

1 + exp(α + β)

]

P(X ∈ Js |X ≥ c). (50)

The estimated TPR at a cutoff c is a solution sought by a weighted logistic model, that
is,

∑S
s=s∗

∑ns
i=1 Ysi P(X ∈ Js |X ≥ c)

∑S
s=s∗

∑ns
i=1 nsi P(X ∈ Js |X ≥ c)

. (51)

In contrast to the ad-hoc estimation in Eq. (40), it can be remarked that the ad-hoc
estimation does not acquire the universal constant parameters through the strata, but
rather fit the expectation locally inside the strata. The logistic model turns out to be a
special case under our ad-hoc approach.

3.3 Comparisons of EPE and the q-statistic

When matching the binary surrogate variable Y by the continuous values of X , we
seek a cufoff point dividing the range of X into two divisions, so that the optimal
heterogeneity or classification between two groups is attained, and the groups are
corresponding to the binary surrogates Y = 0 or Y = 1. By the concept of spatial
stratified heterogeneity, the classified groups are considered as spatial strata or clas-
sified groups. We may take further look about comparing EPE with using q-statistic.
To avoid using the same term, i.e. “strata” mentioned for the semi-closed intervals in
this paper, for our case when discussing the q-statistic, we adopt the term classified
groups in terms of the spatial strata. The q-statistic, proposed by Wang et al. (2010,
2016), is a measure for presenting the spatial heterogeneity for an interesting variable
W :

q = 1 −
∑L

h=1
∑Nh

i=1(Whi − Wh)
2

∑N
i=1(Wi − W)2

= 1 −
∑L

h=1 Nhσ
2
h

Nσ 2 , (52)

where h is the index of the classified group. The main concept is to measure the
dissimilarity between the groups by the difference of 1 and the ratio of the between
group variation relative to the total variation. For our study, we set h = 1, 2 for the
“Y = 0” and “Y = 1” groups, andwe seek to apply the q-statistic to our paired interval
stratified data (X ,Y ) and evaluate the cutoff point with the optimal (maximum) value
of q-statistic.

We apply theq-statistic on the binary data ofY . Under a cutoff value c, theq-statistic
is

1 −
∑

s,i,X<c(Ysi − Y1)
2 +∑s,i,X≥c(Ysi − Y2)

2

∑
s
∑

i (Ysi − Y)2
, (53)
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where
∑

s,i,X<c(Ysi − Y1)
2 is the total sum of squares variation for the values of Y

with X < c. The total variation
∑

s
∑

i (Ysi − Y)2 would be the same for any cutoff
value c we apply, hence it is not affected by the cutoff. For a choice of cutoff value c,
the numerator of the second term in Eq. (53) can be written into

∑

s,i,X<c

(Ysi − μ1)
2 +

∑

s,i,X≥c

(Ysi − μ2)
2 +

∑

s,X<c

(Y1 − μ1)
2 +

∑

s,X≥c

(Y2 − μ2)
2,

(54)

where μi denotes the true means of the groups based on the classification with such
cutoff value c. Recall that if c is a general cutoff value, with stratified data, suppose
c ∈ Js∗ for some semi-close interval Js∗ , and w

(1)
s , s = 1, . . . , s∗ are probability

weights of Js conditioning on X < c, w(2)
s , s = s∗, . . . , S are probability weights of

Js conditioning on X ≥ c:

P(Y = 0, Js |X < c) = (1 − a1)w
(1)
s ,

s = 1, . . . , s∗, w
(1)
1 + · · · + w

(1)
s∗ = 1, (55)

P(Y = 1, Js |X ≥ c) = (1 − a2)w
(2)
s ,

s = s∗, . . . , S, w
(2)
s∗ + · · · + w

(2)
S = 1, (56)

for some constants 0 < a1, a2 < 1. Based on this, with a cufoff value c, the true
mean μ1 and μ2 of Y on the two groups are μ1 = a1 = P(Y = 1|X < c) and
μ2 = 1 − a2 = P(Y = 1|X ≥ c). Because Ysi are either 0 or 1, conditioning on the
classified groups, the marginal expectation over the stratum is

E

⎡

⎣
∑

s,i,X<c

(Ysi − μ1)
2 +

∑

s,i,X≥c

(Ysi − μ2)
2

⎤

⎦

= E

⎡

⎣E

⎡

⎣
∑

s,i,X<c

(Ysi − μ1)
2 +

∑

s,i,X≥c

(Ysi − μ2)
2
∣
∣
∣
∣X

⎤

⎦

⎤

⎦

= E

[[

(Y − μ)T (Y − μ)

∣
∣
∣
∣X

]]

(57)

where Y represents the whole binary data Y and μ = (μ1,μ2) with μ1, μ2 vectors
of elements μ1 and μ2. Equation (57) in fact is also an expected prediction error
(EPE) but with square error loss. If we restrict our solutions to those unbiased ones,
the forms of solutions of μ1 and μ2 are formulated as μ1 = E(Y |X < c) = P(Y =
1|X < c) and μ2 = E(Y |X ≥ c) = P(Y = 1|X ≥ c). For one binary Y , in order
to obtain the unbiased E(Y |X ≥ c), accordingly we must have the optimal cutoff
c corresponding to the true μ1 and μ2. Because under the true mean μ1 and μ2,
asymptotically

∑
s,X<c(Y1 − μ1)

2 +∑s,X≥c(Y2 − μ2)
2 goes to zero,1 we have on

1 For X < c, Y1 =
∑

i,s1
Ysi+···+∑i,s∗ Ysi

N1
≈ n1w1μ1+···+ns∗ws∗μ1

N1
= μ1
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average and sufficiently the Eq. (54) would be minimized at the true cutoff value with
the optimal solutions on μ1 and μ2. Comparing with the EPE in our approach, we use
EPE with the zero-one loss function which generates best prediction v(x) = 0 when
maxy P(Y = y|X < c) = P(Y = 0|X < c) and v(x) = 1whenmaxy P(Y = y|X ≥
c) = P(Y = 0|X ≥ c). For this binary classification, we can see asymptotically the
same cutoff value c minimizing the two versions of EPE. Thus, we conclude that the
optimal cufoff based on q-statistic and our approach would be close, but certainly have
different values on the statistics. Herewe also notice that the unbiased solutionsμ1 and
μ2 are the best unbiased solutions, howevermaynot be the best solutions inminimizing
the expected square loss (57), when comparing using some possible other James-Stein
type estimators in (57). Such estimators are biased and would not be corresponding
to using Y1 and Y2 in the q-statistic. Empirically, we work on EPE with estimation
of the probabilities of P(X < c) and P(X ≥ c) hence we encounter some adding
prediction errors, while the q-statistic is computed on the summarized sum of squares
with rawdata but also have some errors due to

∑
s,X<c(Y1−μ1)

2+∑s,X≥c(Y2−μ2)
2.

However, the q-statistic would not report the true positive rates as when of interests
of the scientists.

Now, we may want to have some idea about how the value of q-statistic may take.
Because the binary data onY , though independentwithin a stratum, can not be regarded
as independent observations between the strata. With possible minor dependence, we
put

∑

s,i,X<c

(Ysi − Y1)
2 ≈ (N1 − 1)s21 + bias1,

∑

s,i,X≥c

(Ysi − Y2)
2 ≈ (N2 − 1)s21 + bias2, (58)

∑

s

∑

i

(Ysi − Y)2 ≈ (N − 1)s21 + bias3 (59)

With moderate or small dependence, the bias of the above would be small, and consis-

tently the q-statistic has value approximated by 1− (N1−1)s21+(N2−1)s22
(N−1)s2

. The empirical
comparisons are shown in Example 1 in Sect. 4.

We conclude that the optimal cutoff values from our approach are close to the
optimal cutoff obtaining frommaximizing the q-statistic. However in our problem, our
approach in usingEPE ismore suitable. Because in our case, first,we are also interested
in reporting the true positive rates as further results for evaluating themisclassification,
and second our classified data is binary, the q-statisticmay generatemultiple solutions.
In fact,the q-statistic may be more suitable for continuous data as according to our
experiences.

4 Simulation studies

In this section, we conduct simulation examples to assess the performance of the
proposed method. All of our three examples are analyzed on bivariate data (X ,Y )
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collected with the support of X based on the stratified sampling scheme. We assumed
X ∼ F(x) is continuous, and Y is a binary outcome monotonically associated with
the input variable X by Eq. (61). For each example, we compare the results from our
approach with that estimation obtained by the simple, naive non-parametric method
(NP), at which, any disproportionate sampling bias is intended to be ignored. Then,
by such a naive non-parametric method, for a cutoff point c ∈ Js∗ , the non-parametric
TCP would only use the relative frequencies for probabilities:

TCPnp =
S∑

s=s∗

∑

{ i :Xsi≥c }
1{ Ysi = 1 }/n +

s∗∑

s=1

∑

{ i :Xsi<c }
1{ Ysi = 0 }/n. (60)

Through the empirical results, we convey the following.

• The estimation of distribution of X, fitted parametrically or non-parametrically by
the kernel density, is close to the true distribution.

• The distribution-adjustedTCP, where stratumweights were incorporated from our
ad-hoc approach with disproportional stratified samples, is close to the TCP that
is estimated based on proportional stratified samples if the underlying distribution
of X is the same. But distribution-adjusted TCPs are quite different from TCPnp.

• The cutoff point appears without a significantly large difference to the cutoff point
based on TCPnp.

• For values X ≥ ĉ, the true positive probabilities from both methods are close, but
these probabilities tend to be much overestimated at X ≥ c, c ≤ ĉ in some cases
if TCPnp is used.

Example 1. Gamma distributed input variable

We assume that X ∼ Gamma(15, 3) and the variable Y is associated to X according
to the following logistic regression

P(Y = 1|X = x) = exp(−12.5 + 1.92X)

1 + exp(−12.5 + 1.92X)
(61)

From the relation, one can identify that the optimal cutoff point is 6.5104 at which
success probability is 0.5.

(1.a) Bias from using the logistic model

We generate simple random pairs (X ,Y ) where X ∼ Gamma(15, 3) with sample
size 500 and generate (X ,Y ) based on the stratified sampling scheme that with values
of X from J1 = [0, 6), J2 = [6, 7), J3 = (7,∞) and sample sizes 100, 250, 200
respectively. For the two data sets and a sequence of cutoff values c > 0, at each c,
we fit the following logistic model:

P(Y = 1|X ≥ c) = exp(α + β 1{ X ≥ c }
1 + exp(α + β 1{ X ≥ c } .
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Fig. 1 Estimated TPR at various
cutoff points with logistic model
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The resultant TPRs for these two simulations are shown in the following chart (Fig. 1).
We found that there is potential bias with stratified samples. The TPR curve for the

simple random pairs may be also taken as a benchmark to be compared later with the
results from our approach.

(1.b) TCP and TPR

We simulate samples with proportional and disproportionate stratification produced
by partitioning the support of X into J1 = [0, 6), J2 = [6, 7), J3 = [7,∞), and
from each Js , the sample sizes are arranged in 6 cases: (a) n1 = 79, n2 = 7, n3 =
14 (b) n1 = 395, n2 = 35, n3 = 70 (c) n1 = 30, n2 = 50, n3 = 20 (d) n1 =
40, n2 = 150, n3 = 60 (e) n1 = 100, n2 = 250, n3 = 200 (f) n1 = 130, n2 =
10, n3 = 100. The samples under (a) and (b), designed for representing cases of
moderate and larger sizes, have relative stratum sample sizes that are proportional
to the original probability weights of J1, J2, J3 in Gamma(15, 3). Obviously, the
samples under (c), (d) and (e) make the second strata oversampled, and in (f), we
undersample the second strata. For each sample size scheme listed above, we run 100
Monte Carlo replications and assess the composite MLEs of the Gamma parameters
and the fitted distribution of X . The results are summarized in Table 2, which shows
that the composite MLEs of Gamma parameters seem to have potential variances,
and may result in a wider range of solutions. However, based on the 100 Monte Carlo
replications, the distribution deviations calculated upon ‖F̂n−F‖ only showmoderate
differences between them, and these differences become relatively much small when
sample sizes increase. Further, the TCP plot (Fig. 2) reveals that the distribution-
adjusted TCP of all disproportional stratified samples [(c), (d), (e), (f)] are close to the
TCP of the proportional stratified samples, and this is also similar to the TCP obtained
under simple random pairs.We found that the naive non-parametric TCP (TCPnp) has
bias and sharply drops when the cutoff point is just slightly away from the cutoff. In
addition, the estimate of TPR, however, is bumpy due to the stratification, we present
the TPR curve through a Lowess smoothing. From the TPR plot (Fig. 3), we also
find that the TPR with adjustment using the correct underlying distribution is similar
to the TPR curve with proportionately stratified samples, and so, we consider that
it has recovered well under disproportionately sampled data. Nevertheless, in these
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Fig. 2 Estimated TCP at different cutoff points: the solid curves are obtained with adjusting strata probabili-
ties using estimated gamma probabilities, and the dashed curves are obtained using the naive non-parametric
estimation

cases, the naive non-parametric TPR may overestimate the TPR if the disproportional
sampling weights are ignored while data is oversampled in J2 or J3. This suggests
that when we give lower cutoff values, the naive nonparametric approach would not
rightly explore TPRs under disproportionate stratification.

Empirically, in this example,we compare the cutoff valuemaximizing theq-statistic
with the cufoff values from our two stage with EPE approach based on the simulation
Gamma example. Using one simulation data, we found that the cutoff values obtained
from the q-statistic are close to the cutoff values from our approach in the sense of
95% confidence intervals as using the Monte Carlo standard error shown in the Table
2. However, because we work on EPE with ad-hoc estimation and the q-statistic is
calculated based on the raw data, the q-statistic in our case somehow has bumpy
paths. In fact, in the numerical study, we encounter multiple solutions reaching the
samemaximum of q-statistic, and we take averages over these solutions as the optimal
cutoff from the q-statistic. The numbers are summarized in Fig. 4.

Example 2. Kernel density on gamma distributed input variable

In this example, we assume that X ∼ Gamma(α, β), α = 15, β = 3 and the
variable Y is associated with X according to the logistic function, as per Eq. (61).
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Fig. 3 Smooth true positive probability curve: solid curves are solutions adjusting probabilities using the
estimated gamma probabilities, dashed curves are from the naive non-parametric estimation

Table 2 Estimation of gamma distribution with various disproportionate schemes

Sample size in paritions Js

(79,7,14) (395,35,70) (30,50,20) (40,150,60) (100,250,200) (130,10,100)

α̂ 13.34 ± 0.54 14.36 ± 0.92 14.02 ± 1.52 13.92 ± 1.43 14.38 ± 1.07 14.11 ± 0.91

β̂ 2.61 ± 0.16 2.87 ± 0.21 2.70 ± 0.33 2.79 ± 0.25 2.89 ± 0.21 2.81 ± 0.19

Cutoff 6.20 ± 0.42 6.27 ± 0.32 6.25 ± 0.39 6.42 ± 0.31 6.19 ± 0.32 6.18 ± 0.32

‖F̂n − F‖ (0,0,0.1) (0,0,0.05) (0,0,0.13) (0,0,0.09) (0,0,0.06) (0,0,0.06)

α̂, β̂ are estimates of shape and scale parameters based on 100 Monte Carlo samples presented with ± one
s.e. The entries of the last row in the Table are the 10th, 50th, 95th percentiles for ‖F̂n − F‖, where F(x)
is Gamma(15, 3)

The sample is generated with disproportional stratification partitioning the support of
X by J1 = [0, 6), J2 = [6, 7), J3 = [7,∞), and from each Js , the sample sizes are
n1 = 100, n2 = 250, n3 = 200. In this study, only one data set is analyzed to be
compared to the results from Example 1. The underlying distribution is assumed to
be unknown and has continuous density. The kernel density of X is estimated with
the method constructed in Sect. 2. Figure 5 summarizes the significant findings of our
analysis. The plot of ISE versus bandwidth shows that the lowest ISE is attained at the
bandwidth value of around 0.1, but empirically, the locally largest bandwidth usually
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Fig. 4 q-statistics for various cutoff values with the optimal points shown by circles
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Fig. 5 Estimated TCP, smoothed TPR: solid curves are solutions adjusting probabilities using kernel den-
sities, dashed curves are from the naive non-parametric estimation

provides better performance (Jones et al. 1996). Hence, we choose the bandwidth
h = 0.5 for this case. We found that the kernel density is close to the true density
Gamma(15, 3), but it is not without some bumpy curvatures - particularly around
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the boundary of the interval J2. The TCP seems similar to the TCP from Example 1,
though with a lower top value around the cutoff point.

We further conduct boundary correction for the kernel density. The kernel den-
sity estimate is constructed with boundary correction on the boundaries of J1, J2, J3
using the improved estimator of the density function at the boundary (Zhang et al.
1999), which is shown to have advantages while keeping the variance down while
the bias is also controlled. The improved estimator is formed as a combination of
pseudo-data, transformation, and reflection methods using the extended data set con-
sisting of the original data X1, . . . , Xn ∈ [0,∞) and the pseudo transformed data
−g(X1), . . . ,−g(Xn) pulled into a new kernel density estimator:

f̂ (x) = 1

nh

n∑

i=1

{

K

(
x − Xi

h

)

+ K

(
x + g(Xi )

h

)}

, (62)

where g ∈ [0,∞) is non-negative, continuous, and monotonically increasing with
g−1(0) = 0, g(1)(0) = 1. As shown in the work of Zhang et al. (1999), the bias
of their estimate is first-orderly trimmed off by letting g(2)(0) = [2 f (1)(0)/ f (0)].
Further, a rationale choice of g is also proposed to be

g(x) = x + dx2 + Ad2x3, (63)

where d = f (1)(0)/ f (0) and 3A > 1. To implement Zhang’s estimate in our example
with data presented in partitioned intervals, with the same type of g, we modify the
estimate by the followings

• For J1 = (0, 6): f̂ (x) = 1
nh

∑n
i=1

{
K
(
x−Xi
h

)
+ K

(
(6−x)+g(6−Xi )

h

)}

• For J2 = [6, 7): f̂ (x) = 1
nh

∑n
i=1

{
K
(
x−Xi
h

)
+ 0.5K

(
(x−7)+g(Xi−7)

h

)
+ 0.5K

(
(6−x)+g(6−Xi )

h

)}

• For J3 = [7,∞): f̂ (x) = 1
nh

∑n
i=1

{
K
(
x−Xi
h

)
+ K

(
(x−7)+g(Xi−7)

h

)}

For J1 and J3, the estimates f̂ (x) were only constructed on the data by resetting the
data to have the boundary on zero on the left. For J2, the data is confined to an interval
with two endpoints, and there seems to be no direct way of applying Zhang’s method.
However, if we take the boundary corrections generated by g on the two sides by half
them adding to the kernel density, using similar approximation steps of derivation
as proved in Zhang’s work and according to our computation, we will find that we
can still get a certain amount of boundary corrections on the two endpoints although
such a correction effect is slightly weaker than the one done in the interval which has
only one endpoint. By the choice of kernel density, the same cross-validation steps
of choosing the bandwidth were also applied. With these corrections, the connected
kernel density appears to be smoother and closer to the true density (Fig. 6). Although,
there are other boundary correctionmethods, such as utilizing beta kernel (Chen 1999)
or Probit-transformation on data in (0, 1), while performing the kernel density, either
the computation is more complicated, or the correction effects are not quite clearly
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Fig. 6 Estimated TCP, smoothed TPR: solid curves are solutions adjusting probabilities using boundary-
corrected kernel densities, and dashed curves are from the naive non-parametric estimation

applicable for our case. Besides, the distribution-adjusted TCP with our modified
boundary-corrected kernel density is closer to the distribution-adjusted TCP based on
the Gamma distribution that is estimated from the conditional likelihood.

Example 3: Kernel density onmixtures of Normal

In this example, we assume that X ∼ 0.3N (3, 1) + 0.4N (6, 3) + 0.3N (9, 1) and
the variable Y is associated to X according with the logistic function as per the same
Eq. (61). The sample is generated with disproportional stratification partitioning the
support of X by J1 = [0, 6), J2 = [6, 7), J3 = [7,∞) and from each Js , the sample
sizes are n1 = 100, n2 = 250 and n3 = 200. To compute the TCP and TPR, as
we have previously done for Example 1 and 2, we shall first estimate the density
for the distribution. In this case, we estimate f (x) by a kernel density (1) without
boundary corrections and (2) with boundary corrections. The results are summarized
in the following Figs. 7, 8. In fact, in this example, either with boundary correction
or without boundary correction, all the estimates of kernel density, TCP and TPR are
quite similar. Similarly, we have gotten better TCP, and TPR that are close to the truth,
while using the fitted distribution in calculating the TCP and TPR.

5 Real example

Currently, glycated haemoglobin (A1c) is considered to be the critical marker of
metabolic control in diabetic patients, providing a cumulative measurement of the
blood glucose concentration over the preceding 2nd-3rdmonths. However, blood sam-
ples should be taken regularly from the patients and the level of A1c has to be obtained
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Fig. 7 Estimated TCP, smoothed TPR: solid curves are solutions adjusting probabilities using kernel den-
sities, and dashed curves are from the naive non-parametric estimation. Assume the underlying distribution
is a mixture of normal
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Fig. 8 Estimated TCP, smoothed TPR: solid curves are solutions adjusting probabilities using boundary-
corrected kernel densities, and dash curves are from the naive non-parametric estimation. Assume that the
underlying distribution is a mixture of normal

from hightech machines in a medical center. In general, one patient is diagnosed as
diabetic if his/her A1c level is detected to be higher than 6.5%. A personal rapid test
kit is a newly invented device for use at home. With the kit, the patient can simply
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read positive/negative outcomes that indicate whether the A1c level has exceeded a
critical level. In this clinical study, the goal is to estimate and determine an accurate
cut-off point, serving as a threshold value that optimally divides the +/- outcomes on
the test kit. This clinical study was conducted at the Chung Shan Medical University
Hospital, Taiwan, where a total of 220 of participants, including diabetic patients and
healthy individuals, were sampled during their revisits or regular medical examina-
tion. We consider all the individuals visiting the hospital during the months as our
study population. The sample scheme was set up as following: based on the readings
of the machine (rounded up to the first decimal place), subjects with the resultant
A1c levels 0–5.9%, 6.0–6.9%, and ≥ 7.0% were randomly sampled subsequently. At
the end, we had 94 individuals with A1c levels between 0 and 5.9%, 77 individuals
with A1c levels between 6.0 and 6.9% and 49 individuals with A1c levels exceed-
ing 7.0%. The participants drawn at each of the three ranges of A1c levels (0–5.9%,
6.0–6.9%, 7.0% and above) is an independent random sample. Based on literatures
on diabetes and primary analysis through preclinical study, we assume that A1c lev-
els of the study population has a Gamma distribution Gamma(α, β), where β is the
scale parameter. Let X = A1c level and Y be the binary outcome from the test kit for
each patient. Expressing Gamma in a density in the exponential family, the sufficient
statistics are T1 = X and T2 = log(X) with respect to the parameter = (α, 1/β) in
its canonical form. To solve the score functions in Eq. (9), we have composite MLE
η̂ = (23.9857, 0.3058) and (̂α, β̂) = (23.9857, 3.2697). The asymptotic variance of
η takes the form

3∑

s=1

ns

{(
EJs

[
(log(X))2

]
EJs

[
X log(X)

]

EJs

[
X log(X)

]
EJs

[
X2
]

)−1
}

.=
(
0.2653 0.0000
0.0000 0.0212

)

(64)

where
.= represents the right hand side of the equation that is the estimate of variance

matrix by plugging in MLEs. By apply the Delta method, the asymptotic variance of
(̂α, β̂) is found to be (0.2653, 0.0002). The estimated total correct probability (TCP)
and true positive rate at various choices of cutoff points are shown in Fig. 9. From
the figure, the optimal cutoff point (circled point) seems quite close in both methods,
but the TPR probabilities at different points have large deviations. We also apply the
boundary-correct kernel density to calculate distribution-adjusted TCP and TPR, the
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Fig. 9 Estimated TCP, smoothed TPR using the estimated Gamma density of input variable for A1c data
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Fig. 10 Estimated TCP, smoothed TPR using the estimated kernel density of input variable for A1c data

results are shown in Fig. 10. The results differ from those obtained in Fig. 9, and the
results in Fig. 10 seem to be more rationale.

6 Conclusions

We consider the problem of constructing a binary surrogate, while attempting to use
a binary variable Y to substitute a continuous X , with paired data (X ,Y ) sampled
respectively from the partitioned intervals with the support of X . By minimizing the
expected prediction error of the data, we estimate the cutoff value c that divides the
values of X optimally to match the binary response Y in (0, 1) of interest. We pro-
pose a method to estimate the expected prediction error by summing the probability
P(Y = 1|X ≥ c)P(X ≥ c), where we estimate the probability P(X ≥ c) with a fitted
distribution of X . Our method brings advantages and solutions to the problem. First,
it is suspicious that existing methods such as logistic regression, change point method
or naive nonparametric method do not take into account possible heterogeneous vari-
ances of different strata and the yielding prediction errors or TPRs would be doubtful.
Accordingly, we use estimated EPE adjusting for the stratum probability weights. In
particular, to circumvent unknown stratum probabilities, we need to estimate distri-
bution of X . However, we found no existing method in the literature to estimate the
unknown stratum weights under such a sampling scheme. The estimation of distri-
bution with such stratified samples has ever been discussed by Vardi (1985), Gilbert
(1988, 1999) and other recent articles, where non-parametric MLE or kernel densities
were proposed, but these estimates are based on an enlarged data set to which another
extra portion of data drawn across from the support were added.Our approach provides
a novel estimation, requiring no such extra portions. We estimate the distribution of X
assumed in the exponential family with composite likelihoodwhere asymptotic results
were also presented. Non-parametrically, we establish a kernel density estimates for
data that may have other distribution features. From simulation studies and real data
analysis, we found that our estimates of the distribution were close to the true one
and the optimal cutoff value had adequate true positive rates when compared with the
results from the naive non-parametric method. From our proposed methods, further
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improvements are possible: (1) for kernel density, use precise boundary corrections on
the boundaries between strata (2) Estimate the stratumweights under other parametric
families. For either of these two directions of improvements, we need to both further
investigate and leave them for future work.

Supplementarymaterial

Supplement to “Binary surrogates with stratified samples when weights are unknown”
(gamma-whole-sim-combine-2018Jun.R, gamma-epf-plot.R, gamma-ROC.R, FN-
simulation.R, KD-prob.R, KD-boundary). The supplement to this paper contains R
codes to perform numerical results in Sects. 4 and 5.
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