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A B S T R A C T

Remote sensing is unique in its ability to record a variety of spatial and temporal data on land surfaces with
complete coverage, especially at larger spatial scales, and it has been shown to be effective for rapidly re-
cognizing spatio-temporal changes in regional eco-environments. This paper is the first to introduce a new
remote sensing-based ecological index (RSEI) to assess the urban ecological quality. The RSEI integrated the
primary land surface components (i.e., the build-up area and vegetation cover) and the climate (the land surface
temperature and land surface moisture) based on the framework of the pressure-state-response (PSR) using a
principal components analysis (PCA). In taking advantage of the same data source for all the indicators, the RSEI
was shown to be scalable, visualizable and comparable at different spatio-temporal scales, and it can avoid the
variation or error in weight definitions caused by individual characteristics. We used Fuzhou City in Fujian
Province, south-eastern China, as a case study, it showed that Fuzhou demonstrated ecological improvements
during the study period from 2000 to 2016, with its RSEI value increasing from 0.267 in 2000 to 0.503 in 2016.
Moreover, the results of the spatial autocorrelation and semi-variance indicated that there was a spatial cor-
relation in the distribution of the RSEI, with high clusters at the edge and low clusters in the centre of the city.
The values of the sill, the nugget: sill ratio and the range all increased from 2000 to 2016, which indicated a
higher spatial autocorrelation and lower spatial heterogeneity percentage in 2016 than that in 2000 in terms of
the RSEI. Based on the combination with the spatial clusters and the spatiotemporal clusters, we confirmed that
the RSEI is not randomly distributed. Moreover, a hole-effect semivariogram was observed, indicating a high
level of human intervention in the study area. Specifically, the construction of the build-up area during the study
period led to outward ecological degradation, and urban afforestation promoted environmental quality in the
central urban area.

1. Introduction

China’s economy has been growing rapidly since the early 1980s, in
accordance with the government’s reform policy, especially in the
southeast coastal areas (http://gov.finance.sina.com.cn). This growth
has accelerated the urbanization and industrialization in these regions,
leading to dramatic land use and cover change (LUCC) from vegetation
to built-up areas. Vegetative cover transformations are so pervasive that
when aggregated in a certain place, they significantly impact the key
aspects of local ecosystem functioning, such as biodiversity conserva-
tion, climate warming, urban heat islands, and water supplies (Xu et al.,
2009; Hansen et al., 2013, Hu et al., 2016). Unfortunately, it is not
simple to solve the environmental problems of today, but clearly, it is

necessary to monitor and assess the ecological state and changes to
understand these complicated issues, and then conserve the ecological
integrity (Dale and Beyeler, 2001; Lin et al., 2016). Fortunately, ad-
vances in the technologies of remote sensing (RS) and geographical
information systems (GIS) have equipped ecologists with the tools to
rapidly identify spatio-temporal changes in the environment (Kerr and
Ostrovsky, 2003; Huang et al., 2012). However, despite the increasing
effectiveness of remote sensing for use in large-scale environmental
monitoring, the reliability of studies based on satellite data are still
weakened by the uncertainty generated from human disturbances and
spatial heterogeneity (Liu et al., 2006).

The pace, magnitude and spatial reach of human alterations of the
earth’s land surface are unprecedented (Lambin et al., 2001). Since
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China initiated economic reforms and an open door policy in 1978,
tremendous land-use changes have occurred in many coastal regions of
China, such as the Yangtze River Delta region (Long et al., 2007), the
Pearl River Delta region (Seto and Kaufmann, 2003) and the Golden
Triangle Region (Xu et al., 2009). In these regions, accelerated in-
dustrialization and urbanization following economic reforms and po-
pulation increases have greatly influenced land-use changes through
increases in built-up areas and urban sprawl (Wu et al., 2004). For
example, the conversion of cultivated land into non-agricultural land,
such as construction land on the urban fringe or the countryside, has
been considered a major feature of land-use change (Long et al., 2007).
With the continuous growth of China’s economy, environmental de-
gradation induced by land use/cover change may occur without the
appropriate planning and management of the existing land resources in
these regions. Therefore, it is urgent to recognize the spatiotemporal
dynamics of eco-environmental change in urban area where humans
congregate, to provide scientific knowledge for the sustainable devel-
opment of these regions.

In the early stage, plants were used as indicators to provide insights
for assessing the physical processes and changes in environmental
conditions (Clements, 1920), e.g., benthic and planktonic plants were
used as indicator species to classify stream decomposition zones and
estuarine and coastal eutrophication (Kolkwitz & Marsson, 1908; Paerl
et al., 2003). In the past three decades, the use of ecological indicators
has rapidly accelerated because of the universal need to evaluate eco-
logical conditions for making protection or recovery decisions (Heinz
Center, 2002; Honnay et al., 2003; Niemi and McDonald, 2004). Most
of these ecological indices are based on an aggregation of selected sites
to infer regional trends (Urquhart et al., 1998; Olsen et al., 1999),
which are unsuitable for direct applications in a larger region (Urquhart
et al., 1998; Kumar et al., 2017), and they cannot predict the global
consequences of human activities (Zhang et al., 2016). In comparison
with site-specific data, RS is unique in its ability to record a variety of
spatial and temporal data over land surfaces with complete coverage,
especially with regard to larger spatial scales, and it has been effective
within a variety of applications (Groom et al., 2005; Zhang et al., 2016).
However, these applications have usually focused on one aspect of the
ecological status with a single ecological factor, such as the Normalized
Difference Vegetation Index (NDVI) (Zhang et al., 2016) or the land
surface temperature (LST) (Buyantuyev and Wu, 2010; Li et al., 2011).
With the complexity of the system, e.g., greater spatio-temporal scales
and increased human disturbance, it would be best to undertake a
comprehensive consideration of various factors with a synthetic in-
dicator (Suter et al., 2002). For instance, the United Nations conference
on sustainable development (UNCSD) provided a theme-based frame-
work that can explicitly assess the relationships between indicators and
policies and highlight management targets (Bowen and Riley, 2003). De
Keersmaecker et al. (2015) provided a framework to evaluate eco-
system stability for the major global RS ecosystems base.

Spatial heterogeneity refers to the uneven distribution of various
concentrations of each observation (i.e., the species, terrain formation,
and environmental characteristics) within a spatial domain (Herold
et al., 2002; Wu, 2004). A landscape that shows spatial heterogeneity is
one in which various patterns of land cover types are unevenly dis-
tributed across a region; they are nearly synonymous with “patchily
distributed” (Herold et al., 2005; Liu et al., 2006), which can be in-
dicated by remotely sensed pixel-wise values that are changed even in
the instantaneous field of view (e.g., 1-km). This pattern is rooted in
spatial heterogeneity, which in turn is grounded in variations in spatial
dependence (Wu, 2004). Spatial dependence arises when the value of a
pixel that is recorded at a location is highly related to the values at its
surrounding locations (Wulder and Boots, 1998). These complicated
issues in the imagery make it difficult to interpret and assimilate. In-
creasing numbers of recent studies have attempted to address the het-
erogeneity and homogeneity (i.e., spatial dependence) of remote-sen-
sing-derived land surface parameters (Liu et al., 2006), e.g., the

normalized difference vegetation index (NDVI) (Wang et al., 2016),
land surface temperature (LST) (Liu et al., 2006; Estoque et al., 2017),
soil moisture (Qi et al., 2004), leaf area index (LAI) (Garrigues et al.,
2006), and net primary production (NPP) (Sakai and Akiyama, 2005).

A number of techniques have been developed to assess the spatial
variations in remotely sensed imagery. Because a landscape is reg-
ularized into a grid of equally sized and regularly spaced pixels, there
must be a certain degree of dependency between pixels (Wulder and
Boots, 1998). Early studies on this question have borrowed some in-
dices from other disciplines, such as the Gini coefficient, the Ellison-
Glaeser index and the Herfindahl index, to measure the spatial de-
pendency (Bertinelli and Decrop, 2005; Goschin et al., 2009; Liu, 2014).
Other global measures, such as Moran’s I and Geary’s C, are also widely
used in empirical analyses (Carroll et al., 2008; Yang and Wong, 2013).
However, these indices reflect the spatial correlations from a general
perspective by incorporating all the samples, but they are unable to
reveal whether those homogeneous pixels are in proximity to each
other or if they are dispersed over the image (Wulder and Boots, 1998;
Liu, 2014). One alternative to solving this problem is to use local in-
dicators of spatial association (LISA) (Anselin, 1995). LISA measures
the local spatial association and indicates the discrete spatial regimes
(i.e., hot spots and cold spots) (Yang and Wong, 2013); thus, they have
the potential to overcome the problems mentioned above. At present,
besides the method of exploratory spatial data analysis (ESDA), semi-
variance analysis is also considered to be another extremely effective
way to observe spatial characteristics (Zawadzki et al., 2009; Zawadzki
and Fabijańczyk, 2013). Semivariance measures have traditionally been
used to quantify the range of variability exhibited in the natural pattern
of resource distributions (He et al., 2007; Hu et al., 2015). Additionally,
it is worth mentioning here that the spatial heterogeneity in the ob-
servations may be affected by the arbitrariness in the definition of the
scale (Wu, 2004), including the grain size (or resolution), extent and lag
(or spacing) (Dungan et al., 2002). In this paper, it refers only to the
“grain size”.

The estuary lowland region of the Minjiang River in Fujian
Province, south-eastern China, is composed of one primary coastal city,
Fuzhou (Fig. 1). This city is one of the areas with the fastest economic
growth in the country. Along with the development of the economy, the
urban areas of the city have expanded rapidly in the past two decades,
resulting in degraded habitability. Although this problem is poorly
measured, it is critical for the urban planners and decision makers of
this region. Therefore, a new remote sensing-based ecological index
(RSEI) (Xu et al., 2013) was employed to assess the spatial-temporal
variation in the ecological changes of Fuzhou City over the past
16 years using LISA and semivariance analysis techniques. This study
aims to 1) monitor the long-term dynamics of the RSEI in this rapidly
developing region from 2000 to 2016; 2) determine which grain size is
the most suitable to analyse the spatial heterogeneity; 3) identify both
static spatial clusters and temporal dynamic change clusters of RSEI;
and 4) observe the characteristics (i.e., the nugget effect, sill, ranges
and orientation effect) of spatial heterogeneity in the RSEI.

2. Methods and materials

2.1. Study area

Fuzhou City is the capital and the largest prefecture-level city in the
Fujian Province of China (Fig. 1). It is situated in the west coast of the
Taiwan Strait and in the lower reaches of the Minjiang River, which is
the largest river within the province. The northern subtropical monsoon
climate is prevailing in this area, with an average annual temperature of
approximately 293.9 K. Annual precipitation varies widely from 796.5
to 1913.6 mm, of which approximately 33% is received in the May and
June. The average elevation is 84m, ranging from 1m to 802m. The
study area (i.e., the red areas in Fig. 1b) locates in the central of the
city, which is also the political and economic center of the city and even

X. Hu, H. Xu Ecological Indicators 89 (2018) 11–21

12

wjf
高亮

wjf
高亮



of the Province, with construction and population being highly con-
centrated here. It has been reported that the quality of the ecosystem
have declined dramatically during the past twenty years, characterizing
with the notably warming climate in this area (Hu et al., 2015; Cai
et al., 2016). Consequently, the study on the spatio-temporal pattern in
the ecological quality of the area is meaningful, and can shed a light on
those of rapidly growing cities in the world.

2.2. Data resources and pre-processing

During this study, Landsat images were acquired on 2000-05-04
(ETM+) and 2016-06-25 (OLI/TIRS) from USGS (https://glovis.usgs.
gov/), over a period of 16 years. The images were in Level 1B, and they
were systematically processed to provide geometric corrections prior to
the analyses. First, the ETM+ images were co-registered to the OLI/
TIRS using nearest-neighbour re-sampling and a second-order poly-
nomial with a mean RMSE of less than 0.5 pixels. Clouds and their
shadows have been masked based on very low temperatures (Malbéteau
et al., 2017). Additionally, the water patches have been masked based
on the modified normalized difference water index (MNDWI) (Xu,
2006).

During the pre-processing of the datasets, the digit number (DN)
values of the multispectral bands should be further converted into
planetary surface reflectance values (Xu et al., 2013; Kilic et al., 2016).
For Landsat ETM+ imagery, the formula for the conversion of the at-
aperture spectral radiance of the multispectral bands to planetary re-
flectance was expressed as indicated in the published literature
(Chander et al., 2009). For Landsat OLI imagery, the processing of the
calibration and the conversion to planetary surface reflectance was
performed under the guidance of the Lansat-8 algorithm posted by the
USGS (USGS, 2016a; http://glovis.usgs.gov/CDR_LSR.php).

To investigate the scale effects of the landscapes, the images were
resampled into different grain sizes, including 30·30, 60·60, 90·90,
150·150, 300·300, 900·900, 1200·1200, 1500·1500 and 1800·1800m2.

2.3. Calculation of the remote sensing-based ecological index

In this case study, the RSEI is composed of a couple of indicators
that can be quickly obtained from Landsat datasets at the pixel level. In
this study, we employed the pressure-state-response (PSR) framework

to define the RSEI. The PSR framework is based on the notion of
causality (Hughey et al., 2004), which is built upon the selection and
measurement of indicators for three categories, i.e., indicators of an-
thropogenic pressures, environmental states and climate responses. The
indicators in the RSEI follow the general recommendations in the aca-
demic literature (Niemi and McDonald, 2004; Lin et al., 2016; Seddon
et al., 2016). First, there is a general awareness that the ecological
patterns and processes in certain regions are affected greatly by the
activity of LUCC within their boundaries and beyond (Foley et al.,
2005). Among them, the most notable physical feature is the change
from ecological lands to construction purposes. Therefore, the nor-
malized differential build-up and bare soil index (NDBSI) was applied to
represent the intensity of the pressures on the environment originating
from human activities. Second, indicators of environmental states are
designed to describe the status quo of the environment and the quality
and quantity of resources, and their changes over time; thus, NDVI, one
of the most successful of many attempts to simply and quickly identify
vegetated areas (Sun et al., 2010; Seddon et al., 2016), was selected as
an indicator of the environmental state, describing the status quo of the
environment and the quality and quantity of resources. Lastly, the LST
and land surface moisture (LSM) were applied to indicate the local
climate (i.e., temperature and humidity) changes in response to en-
vironmental changes and concerns. In taking advantage of the same
data source for all the indicators, the RSEI has scalability, visualization
and comparability at different spatio-temporal scales for different re-
gions.

2.3.1. Normalized differential build-up and bare soil index
The index-based built-up index (IBI) has been commonly used to

map built-up lands accurately (Xu, 2008; Essa et al., 2012). In addition
to the built-up lands, patches of bare land or sparsely vegetated ground
occurred in the deforested or abandoned locations across the study
area. For this reason, a soil index (SI) was also employed to represent
these bare areas. A combining index, NDBSI [Eq. (1)], which was
composed of IBI [Eq. (2)] and SI [Eq. (3)], was proposed here.

= +NDBSI (IBI SI)/2 (1)

Fig. 1. Location of the study area.
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where theρi is the planetary reflectance of each band in the ETM+and
OLI sensors, respectively; it is the same as indicated below.

2.3.2. Normalized differential vegetation index
The NDVI has been successfully utilized to monitor and assess ve-

getation cover across different scales (Xu and Zhang, 2013; Seddon
et al., 2016). With the normalization of the spectral bands, the NDVI
may reduce the effect of sensor degradation (Zheng et al., 2015). Most
research suggests that the NDVI is sensitive to low density vegetation,
and it is especially suitable for urban areas with high densities of built-
up land (Wang et al., 2015; Liu et al., 2017). Thus, NDVI is employed
here, and it is expressed in Eq. (4) as follows:

= − +ρ ρ ρ ρNDVI ( )/( )NIR d NIR dRe Re (4)

2.3.3. Land surface moisture
Due to the direct effect of the Tasseled Cap’s components, such as

the brightness, greenness and wetness on the physical parameters of the
earth’s surface (Zawadzki et al., 2016), the Tasseled Cap transformation
has been extensively used in ecological monitoring studies (Crist, 1985;
Goward et al., 2002; Huang et al., 2002). The wetness component is
used as the LSM indicator here, as expressed in Eq. (5) as follows:

= + + + −

−

ρ ρ ρ ρ ρ

ρ

LSM 0.0315 0.2021 0.3102 0.1594 0.6806

0.6109
Blue Green d NIR SWIR

SWIR

Re 1

2 (5)

2.3.4. Land surface temperature
The standard method for retrieving LST from raw Landsat datasets

requires the conversion of the DN values of the thermal bands (Band 6
in Landsat ETM+, and Bands 10 and 11 in Landsat TIRS) into at-sa-
tellite spectral radiance values (Lλ) (Chander et al., 2009; Xu et al.,
2009; USGS, 2016b) and then into the at-satellite brightness tempera-
ture (Tb), which is calculated under an assumption of unity emissivity
(ε) and using pre-launch calibration constants (Chander et al., 2009; Xu
et al., 2009; USGS, 2016b). This process is followed by a correction for
spectral emissivity according to the nature of the landscape (Sobrino
et al., 2004; Weng, 2009; Xu et al., 2013). In this study, we used the
thermal Band 6 of Landsat ETM+and Band 10 of Landsat OLI to re-
trieve the LST for the years 2000 and 2016, respectively. The calcula-
tions of Lλ,Tb, ε and LST were performed in light of these references (Xu
et al., 2009; Estoque et al., 2017).

2.3.5. Synthetic index of RSEI
Based on the above calculation of each factor in the PSR framework,

we aimed to design the synthetic index (i.e., RSEI) that will allow for a
quick and quantitative assessment of a region’s ecological quality. The
weighting method is among the most important processes in the
building of the RSEI. Currently, there are many alternative weighting
methods, e.g., AHP and Delphi (Cinelli et al., 2014; Norouzian-Maleki
et al., 2015). However, even for this simple weighting method, the
subjective experience may affect the weight distribution in practice. For
this reason, a principal components analysis (PCA) was adopted to
identify the relative importance of each variable. The PCA method is a
multi-dimensional data compression technology that can remove any
impact of co-linearity between the four variables (Seddon et al., 2016).
More importantly, the weight of each factor is automatically and ob-
jectively allocated according to the contribution of each factor to the
principal components, which can prevent the variation or error in the

weight definition caused by individual characteristics (Xu, 2013).
Before processing the PCA, all the factors (i.e., NDBSI, NDVI, LST

and LSM) were rescaled between 0 and 1 (Carlson and Arthur, 2000; Xu
et al., 2009). The PCA was then calculated in ENVI (version 5.1) soft-
ware using the PCA Rotation tool; as a result, a single-band image (i.e.,
RSEI image) was created. During both study years, the percent eigen-
values of PC1 were both higher than 98% (98.41% for 2000 and
98.72% for 2016), indicating that this component has integrated most
of the characteristics of all the variables, and thus PC1 was used to build
the RSEI in this study. To facilitate the temporal comparison between
the different study periods, the resulting RSEI values were again nor-
malized from 0 to 1, with higher values indicating better ecological
quality and lower values indicating poorer ecological quality.

2.4. Spatial heterogeneity analysis

2.4.1. Spatial autocorrelation analysis
ESDA is a set of techniques used to detect the spatial regimes for the

observation (Anselin, 1999; Hu et al., 2015), and it can visualize the
spatial agglomeration and anomalies of the RSEI (McMillen, 2010). It
was applied to examine if the spatial autocorrelation of RSEI was pre-
sent in Fuzhou City. The analysis focused on two aspects of spatial
clustering, namely the overall “global” spatial clustering and the “local”
patterns of RSEI distribution.

The global measure of Moran’s Ig is as follows [Eq. (6)]:

∑
=

∑ ∑ − −

∑ ∑ −
I

N w x μ x μ

w x μ

( )( )

( ) ( )
g

i j ij i j

i j ij
i

i
2

(6)

where wij is the row-standardized contiguity matrix and xi and xj are the
RSEI at grids i and j, respectively, and μ is the average level of RSEI. N
is the total number of the grids in the study area. Moran’s Ig ranges from
approximately+ 1 (for positive spatial autocorrelation) to -1 (negative
autocorrelation), and zero expresses the absence of spatial auto-
correlation (Anselin, 2003).

The Moran’s Ig cannot indicate hot spots and cold spots across the
study area. Therefore, the local indicator of spatial association (LISA)
was applied to measure the local spatial association and to indicate the
significance of hot spots and cold spots (Hu et al., 2015). The local
Moran’s Il statistic [Eq. (7)] was employed to show the LISA in this
research.

∑=
−

∑ −
−I

x μ
x μ

w x μ
( )

( )l
i

i i j
ij j2

(7)

Both the globe Moran’s Ig and the local Moran’s Il were calculated
using the GeoDa program in this study (Anselin, 2003). When the
program was run, the rook contiguity weighting method was adopted.
The number of permutation tests was set to 999 and the significance
level was set to 0.05. Then, a spatial typology map consisting of five
categories of clusters in the RSEI was created, namely High-High (hot-
spots), Low-Low (cold-spots), Low–High, High-Low and “not sig-
nificant” (Figs. 6 and 7, right).

2.4.2. Semivariance analysis
Additionally, we also employed semivariance, a central tool of

geostatistics (Krige, 1966; Zawadzki et al., 2005; Chen and Feng, 2013),
to measure the spatial continuity of the neighbouring RSEIs. The value
of the experimental semivariance for a vector is derived from calcu-
lating one-half the average squared difference between every data pair
separated by a specific lag distance of h (Krige, 1966; Hu et al., 2015).
The standard equation for the semivariance is indicated in Eq. (8) as
follows:

∑= − +
=

γ h
N h

z x z x h( ) 1
2 ( )

[ ( ) ( )]
i

N h

i i
1

( )
2

(8)
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where γ h( ) is the experimental semivariance value at distance interval
h describing the degree of autocorrelation that is present; z x( )i is the
measured sample value (i.e., RSEI) at grid xi; +z x h( )i is the sample
value (i.e., RSEI) at grid +x hi ; and N h( ) is the total number of sample
data pairs separated by distance h.

The following parameters are usually applied to identify the semi-
variance functions (Treitz and Howarth, 2000; Zawadzki et al., 2005;
Hu et al., 2015): sill ( +C C0 ), range (A0), nugget effect (C0), spatially
dependent structural variance (C), and the ratio of the Nugget effect
(C0) to the Sill (C0+C). In this case, the experimental semivariance
(either the isotropic or the anisotropic one) was fitted by linear, sphe-
rical, exponential and Gaussian models using GS+ v 7.0 (GDS, 2004).
The coefficient of determination (R2) and the residual sum of squares
(RSS) were used to compare the goodness of the semivariance models
(i.e., linear, spherical, exponential and Gaussian models) (Davis and
Sampson, 2002).

3. Results and discussions

3.1. Exploratory data analysis

The descriptive statistics of the RSEI indicated that the average RSEI
value increased from 0.267 in 2000 to 0.503 in 2016; the medium value
of RSEI also increased from 0.307 in 2000 to 0.480 in 2016 (Table 1).
The negative skew in 2000 indicated that the tail on the left side of the
probability density function was longer or fatter than the right side;
conversely, the positive skew in 2016 indicated that the tail on the right
side was longer or fatter than the left side. Overall, our case indicated
that the eco-environmental quality of the study area was improved from
2000 to 2016. However, the previous study (Xu et al., 2013) in this area
indicated that the eco-environmental quality was degraded during the
period from 2001 to 2009. The opposite results may be due to the
differences in the time and space scale. Our study covered the period
from 2000 to 2016, while the previous study covered the period from
2001 to 2009; moreover, the study area of our study was larger than
that of the previous one because the new development in the southern
section of the study region in recent years was also involved in our
study. This finding indicated that there is a scale effect (in both the
duration and spatial range) in the distribution of RSEI.

Fig. 2 revealed the spatial distribution of RSEI in 2000 and 2016. In
Fig. 2, the study area was divided into five categories according to the
RSEI values using equal intervals, namely, excellent, good, moderate,
fair and poor. In general, the eco-environment was poorer in the central
section than it was in the peripheral areas close to the rural zone, with
the red and yellow polygons concentrated in the central region and dark
green in the border. A notable characteristic of the distribution in RSEI
was that the environmentally poor areas were gathered in the centre in
2000, while it was more dispersed in 2016. The figures indicated that
the ecosystem was improved in the old districts (i.e., the north-central
areas of the study area) during the period from 2000 to 2016, while the
ecosystem was degraded in the new districts, especially in the island of
the study area. The improved polygons that occurred in the north-
central areas benefited from the afforestation program implemented in
the region, with many traditional industrial polluters within the urban
centre being closed or moved to the suburbs (Hu et al., 2015). Un-
doubtedly yet simultaneously, the urban sprawl led to continuous en-
vironment deterioration from 2000 to 2016 (Cai et al., 2016). This
finding verifies the previous finding, which indicated that the

urbanization and industrialization intensified the ecological land losses,
leading to environmental degradation (Deng et al., 2008; Hu et al.,
2015). Therefore, the smart growth and compact cities of North
American and European countries should be introduced for the sus-
tainable development of human-dominant ecosystems in China (Couch
and Karecha 2006; Chen et al., 2008).

3.2. Scale effect of spatial heterogeneity

Spatial heterogeneity is prevalent on all different scales, and it
constitutes the basis of the structure and function of landscapes, whe-
ther they are natural or artificial (Wu, 2004). To explain the spatio-
temporal change mechanism in landscape structure and function as
driven by biophysical and socioeconomic factors, the scale effect must
be quantified (Dungan et al., 2002). Our results showed that there was
spatial autocorrelation in the RSEI at all the grain size levels, with
statistical significances that were all lower than 5%. This finding con-
firms the “first law in geography”, which shows that “Everything is
related to everything else, but near things are more related than distant
things” (Tobler, 1970).

Fig. 3 indicated that the values of Moran’s I and R2 in the spatial
autocorrelation analysis monotonically decreased with the increase in
the grain size, with a sharper decline from 150·150 m2 in both of the
study years. Figs. 4 and 5 indicated that the change in the A0 values was
large in the grain sizes of 30·30m2, 60·60m2 and 90·90m2 in both of
the years; however, from 150·150m2, the parameter trended towards
relative invariableness. The other parameters, such as C0+C, C0/
(C0+C) and the R2 of semivariances showed a relatively invariable
trend except for the C0 parameter.

Our analytical results are consistent with “the second law in geo-
graphy”, which indicates that “Everything is related to everything else,
but things observed at a coarse spatial resolution are more related than
things observed at a finer resolution” (Arbia et al., 1996). This law
revealed the truth that the variance in RSEI decreased with the increase
in the grain size in this study.

The spatial heterogeneity may exhibit various paradigms at dif-
ferent scales (i.e., grain sizes), and this pattern can be best character-
ized at a certain scale (Lam and Quattrochi, 1992). Based on the ana-
lysis, 150·150m2 was viewed as a suitable grain size to weaken the
scale effects in this study. Thus, it was applied here during the ob-
servation of the spatial pattern of the RSEI distribution.

3.3. Spatial heterogeneity in RSEI

3.3.1. Spatial autocorrelation analysis
The value of Moran’s I has a range from −1 to 1. A value greater

than zero indicates a positive spatial autocorrelation; a value of less
than zero shows a negative spatial autocorrelation (Li et al., 2017). The
Moran’s Ig of the RSEI at different spatial scales was indicated in Fig. 6.
Overall, the curve showed a downward trend, indicating that the spatial
variation in the RSEI increased with the increasing spatial distance.
Over a range of 10 km or so, the spatial association of RSEI was positive
while changing to negative beyond 10 km or so.

In this study, LISA was employed to detect both the spatial clusters
and the spatiotemporal clusters of RSEI. The spatial clusters aimed to
identify areas with high-high (hot-spot) or low-low (cold-spot) patterns
throughout the entire study region during certain periods (Fig. 7), while
the spatiotemporal clusters aimed to identify areas with changing dy-
namics (i.e., ones that were degraded or improved) during the study
period (Fig. 8). In Fig. 7, High-High/Low-Low signifies that the statis-
tically significant regions of good/poor quality were surrounded by
their homogeneous regions, respectively; High-Low/Low-High indicates
the statistically significant regions in good/poor quality surrounded by
their heterogeneous regions, respectively. In Fig. 8, High-High/Low-
Low indicates that the regions of statistically significantly improved/
degraded regions were surrounded by areas with the same direction of

Table 1
Description statistics of RSEI.

Min Max Average S.D. Skewness Kurtosis Medium

2000 −0.264 0.671 0.267 0.205 −1.002 3.449 0.307
2012 0.089 0.810 0.503 0.131 0.412 2.167 0.480
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change in the RSEI as themselves during the study period. High-Low/
Low-High indicates that the statistically significant improved/degraded
regions were surrounded by areas with the opposite direction of change
in the RSEI as themselves during the study period.

Fig. 7 shows that the High-High clusters were distributed around the
study area in both study years. However, the Low-Low clusters were
concentrated in the old downtown in 2000 while moving to the per-
iphery of the previous clusters in 2016. Fig. 8 (left) also indicates that
the eco-environmental quality in the old downtown was improved from
2000 to 2016. Fig. 8 (right) revealed that the statistically significant
High-High/Low-Low clusters were all in the improved/degraded areas
in Fig. 8 (left), respectively.

The clusters obtained from these two methods (i.e., both the spatial
clusters and the spatiotemporal clusters mentioned above) led to si-
milarly deteriorated clusters (i.e., the blue polygons in Figs. 7 and 8)

and improved clusters (i.e., the red polygons in Figs. 7 and 8). It is thus
confirmed that the RSEI is not randomly distributed. Therefore, it is not
difficult to judge that the extension of the built-up area during the study
period led to the appearance of these Low-Low clusters in 2016, and
urban afforestation promoted good environmental quality in the urban
central area (Hu et al., 2015).

3.3.2. Semivariance analysis
Table 2 describes the parameters of the fitting models in the iso-

tropic variogram for RSEI in the years 2000 and 2016. These models
best satisfied the hypothesis according to the R2 and RSS values
(Zawadzki et al., 2005; Liu et al., 2013).

The nugget effect (C0) represents spatially independent variability,
including the measurement error and short-scale variations that occur
at a scale smaller than the closest sampling interval (i.e., the pixel size)

Fig. 2. Spatial distribution of RSEI in 2000 and 2016.
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(Huijbregts, 1975). According to the parameters, the values of the
nugget effect (C0) for the isotropic variograms were 0.004 in 2000 and
0.009 in 2016 (Table 2), indicating that the spatially independent
variabilities generally arose from measurement errors (including sam-
pling error) were small, and the measurements therein could be used to
analyse the spatial variation of the RSEI in question.

The spatial variations increased with the increasing interval (lag-
distance) (Figs. 9 and 10), and they reached a stable plateau, which is
called the sill (C0+C). The sill is the sum of the total variation, in-
cluding the nugget effect and the spatial inequality (Zawadzki et al.,
2005). The nugget/sill ratio [C0/(C+C0)] reveals the spatial correla-
tion degree of regional variables, with a ratio< 0.25 indicating strong
spatial correlation, a ratio of 0.25–0.75 indicating moderate spatial
correlation, and a ratio> 0.75 indicating weak spatial correlation
(Cambardella et al., 1994; Javed et al., 2005). Table 2 shows that the
values of the sill were 0.011 in 2000 and 0.021 in 2016; moreover, the
values of the C0/(C+C0) were 0.383 and 0.430 in 2000 and 2016,
respectively. These parameters indicated that the structural factors
were leading sections for spatial patterns and there was spatial de-
pendence in the distribution of the RSEI, which is consistent with the
result of the spatial autocorrelation analysis.

Their range (A0) indicates the distance at which the spatial corre-
lation of the pixel properties disappears and therefore presents a mea-
surement of the size of the spatial variations embedded within the
distribution of the RSEI expressed by the semivariance (Figs. 9 and 10).
Beyond the distance, the spatial interpolation or processing is invalid
(Yuan et al., 2015). In this case, the models revealed that the RSEI
distributions were fully independent when the observing distance ex-
ceeded 12 km in 2000 and 29 km in 2016 (Table 2).

The values of the sill, the nugget/sill ratio and the range all in-
creased from 2000 to 2016 (Table 2), which indicated that there was a
higher spatial autocorrelation and lower spatial heterogeneity percen-
tage in the RSEI in 2016 than in 2000. This trend implies that the ur-
banization process has a significant effect on the spatial structure of the
eco-environment as measured by RSEI. The effect was a double-edged
sword as discussed in Section 3.3.1. This finding shows that the results
of these two methods (i.e., spatial autocorrelation analysis and

semivariance analysis) are consistent, and only the combination of
these two methods can better explain the spatial paradigm of the ob-
servation.

The calculation of the experimental semivariance considering all the
pixels in all directions within the entire study area is the most rigorous
approach, but it is a very time-consuming process due to the large
number of observations involved in the calculation (Balaguer-Beser
et al., 2013). To overcome this weakness, a multidirectional approach
(i.e., anisotropic semivariance), which is defined as the experimental
semivariance, is obtained by computing a limited number of analysed
directions (Maillard, 2003), which was also employed here. In this
study, both the isotropic and the anisotropic semivariances were per-
formed and compared. The anisotropic semivariances were calculated
by taking the mean of each pixel in several transects (i.e., directions)
over a range from 0° to 180°, in which four directions, the north-south
direction (0°), northeast-southwest direction (45°), west-east direction
(90°) and southeast-northwest direction (135°), were observed here.
Figs. 9 and 10 show that the trend in the semivariance curves for both
the isotropic and anisotropic models were similar. All the curves in-
dicated that the semivariance values tend to be higher as the lag dis-
tance increases in general, but they are not monotonic. However, the
semivariance showed a cyclical behaviour, which is known as the hole-
effect semivariogram, which is characterized by having crest(s) and
valley(s) in a curve (Pyrcz and Deutsch, 2003), and it is commonly
found in areas with a high intensity of human intervention (Balaguer-
Beser et al., 2013). This finding is consistent with this study that used
an urban area as the observation object, in which populations and
buildings were highly concentrated. According to the indices of the
fractal dimension (D) for both the isotropic and anisotropic models
(Table 3), the results of the variance analysis revealed that there was no
significant difference in the distribution of RSEI among all the direc-
tions.

4. Conclusions

A new index known as RSEI, which was based on the PSR frame-
work, was applied to evaluate the regional ecological status. It may help
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us understand the variation in the pressure, state and response of the
ecosystem. RSEI was formed using the PC1 derived from the four factors
and thus it can measure the pressures on the environment caused by
human activities (i.e., urbanization), changes in the environmental
state (i.e., vegetation coverage) and the climate change responses (i.e.,
temperature and humidity). In using the advantage of having the same
data source for all the indicators, the RSEI was found to be scalable,
visualizable and comparable at different spatio-temporal scales and can

avoid the variation or error in weight definitions caused by individual
characteristics. In using Fuzhou City of Fujian Province in south-eastern
China as a case, the results showed that Fuzhou experienced ecological
improvements during the study period from 2000 to 2016, with the
RSEI value increasing from 0.267 in 2000 to 0.503 in 2016.

A set of parameters was then extracted from the autocorrelation and
semivariance analysis (both of which are omnidirectional and multi-
directional) to quantify the heterogeneity of the spatial distribution in
the RSEI. Based on the analysis, 150·150m2 was viewed as a suitable
grain size to weaken the scale effects in this study. The analysis of the
spatial autocorrelation and semivariance indicated that there was spa-
tial correlation in the distribution of the RSEI, with the high value in the
edge and the low value in the centre of the city. The values of the sill,
the nugget/sill ratio and the range all increased from 2000 to 2016.
Based on the combination with the spatial clusters and the spatio-
temporal clusters, we confirmed that the RSEI is not randomly

Fig. 7. Significant clusters of RSEI in 2000 and 2016.

Fig. 8. Changes and their significant clusters of RSEI from 2000 to 2016.

Table 2
Parameters of spatial heterogeneity of RSEI in 2000 and 2016 (150m).

C0 C C0+C C0/(C0+C) A0 (m) R2 RSS

2000 0.004 0.007 0.011 0.383 12,030 0.985 5.385E−07
2016 0.009 0.012 0.021 0.430 28,560 0.956 5.493E−06
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distributed. Moreover, a hole-effect semivariogram was observed, in-
dicating a high level of human intervention in the study area.
Specifically, the construction of the built-up area during the study
period led to ecological degradation outward, and urban afforestation
promoted good environmental quality in the central urban area. In this
case, we suggested that the observations were fully independent when
the observation distance exceeded 12 km in 2000 and 29 km in 2016.
Hence, this research sheds light on the applications of ESDA and
semivariance analysis to assess urban eco-environment changes using
the remote sensing index.
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Table 3
Fractal dimension of spatial heterogeneity in RSEI for different directions in 2000 and 2016 (150m).

Isotropic +0° +45° +90° +135°

D SE R2 D SE R2 D SE R2 D SE R2 D SE R2

2000 1.897 0.104 0.963 1.877 0.158 0.916 1.863 0.142 0.930 1.936 0.317 0.741 1.901 0.174 0.902
2016 1.881 0.077 0.979 1.856 0.051 0.990 1.839 0.098 0.965 1.894 0.176 0.899 1.917 0.173 0.905

X. Hu, H. Xu Ecological Indicators 89 (2018) 11–21

19

http://refhub.elsevier.com/S1470-160X(18)30082-7/h0005
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0005
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0005
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0010
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0010
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0010
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0015
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0015
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0020
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0020
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0025
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0025
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0025
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0030
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0030
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0035
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0035
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0040
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0040
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0040
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0045
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0045
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0045
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0050
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0050
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0050
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0055
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0055
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0055
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0060
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0060
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0065
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0065
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0065
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0070
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0070
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0075
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0075
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0075
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0080
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0080
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0080
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0085
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0090
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0090
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0095
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0095
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0100
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0100
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0105
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0105
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0110
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0110
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0110
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0115
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0115
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0120
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0120
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0120
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0125
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0125
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0125
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0130
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0130
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0130
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0135
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0135
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0135
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0135
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0140
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0140
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0145
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0145
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0145
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0150
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0150
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0150
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0155
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0155
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0155
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0155
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0160
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0160


Hansen, M.C., Potapov, P.V., Moore, R., Hancher, M., Turubanova, S.A., Tyukavina, A.,
Thau, D., Stehman, S.V., Goetz, S.J., Loveland, T.R., Kommareddy, A., Egorov, A.,
Chini, L., Justice, C.O., Townshend, J.R.G., 2013. High-resolution global maps of
21st-century forest cover change. Science 342, 850–853.

He, Z.B., Zhao, W.Z., Chang, X.L., 2007. The modifiable areal unit problem of spatial
heterogeneity of plant community in the transitional zone between oasis and desert
using semivariance analysis. Landscape Ecol. 22, 95–104.

Center, Heinz, 2002. The State of the Nation’s Ecosystems: Measuring the Lands, Waters,
and Living Resources of the United States. Cambridge Univ. Press, New York.

Herold, M., Couclelis, H., Clarke, K.C., 2005. The role of spatial metrics in the analysis
and modeling of urban land use change. Comput. Environ. Urban Syst. 29, 369–399.

Herold, M., Scepan, J., Clarke, K.C., 2002. The use of remote sensing and landscape
metrics to describe structures and changes in urban land uses. Environ. Plann. A 34,
1443–1458.

Honnay, O., Piessens, K., Van Landuyt, W., Hermy, M., Gulinck, H., 2003. Satellite based
land use and landscape complexity indices as predictors for regional plant species
diversity. Landscape Urban Plann. 63, 241–250.

Hu, X.S., Hong, W., Qiu, R.Z., Hong, T., Chen, C., Wu, C.Z., 2015. Geographic variations
of ecosystem service intensity in Fuzhou City, China. Sci. Total Environ. 512–513,
215–226.

Hu, X.S., Wu, Z.L., Wu, C.Z., Ye, L.M., Lan, C.F., Tang, K., Xu, L., Qiu, R.Z., 2016. Effects
of road network on diversiform forest cover changes in the highest coverage region in
China: an analysis of sampling strategies. Sci. Total Environ. 565, 28–39.

Huang, C., Wylie, B., Yang, L., Homer, C., Zylstra, G., 2002. Derivation of a Tasselled Cap
transformation based on Landsat 7 at-satellite reflectance. Int. J. Remote Sens. 23 (8),
1741–1748.

Huang, J.L., Pontius Jr, R.G., Li, Q.S., Zhang, Y.J., 2012. Use of intensity analysis to link
patterns with processes of land change from 1986 to 2007 in a coastal watershed of
southeast china. Appl. Geogr. 34, 371–384.

Hughey, K.F.D., Cullen, R., Kerr, G.N., Cook, A.J., 2004. Application of the pressure-state-
response framework to perceptions reporting of the state of the New Zealand en-
vironment. J. Environ. Manage. 70, 85–93.

Huijbregts, C.J., 1975. Regionalized variables and quantitative analysis of spatial data. In:
Davis, J.C., McCullagh, M.J. (Eds.), Display and Analysis of Spatial Data. John Wiley
& Sons, London, pp. 38–53.

Javed, I., Thomasson, J.A., Jenkins, J.N., Owens, P.R., Whisler, F.D., 2005. Spatial
variability analysis of soil physical properties of alluvial soils. Soil Sci. Soc. Am. J. 69,
1338–1350.

Kerr, J.T., Ostrovsky, M., 2003. From space to species: ecological applications for remote
sensing. Trends Ecol. Evol. 18, 299–305.

Kilic, A., Allen, R., Trezza, R., Ratcliffe, I., Kamble, B., Robison, C., Ozturk, D., 2016.
Sensitivity of evapotranspiration retrievals from the METRIC processing algorithm to
improved radiometric resolution of Landsat 8 thermal data and to calibration bias in
Landsat 7 and 8 surface temperature. Remote Sens. Environ. 185, 198–209.

Kolkwitz, R., Marsson, M., 1908. O¨ kologie der pflanzlichen Saprobien. Bericht der
Deutschen Botanischen Gesellschaft 26, 505–519.

Krige, D.G., 1966. A study of gold and uranium distribution patterns in the Klerksdorp
gold field. Geoexploration 4, 43–53.

Kumar, P., Thakur, P.K., Bansod, B.K., Debnath, S.K., 2017. Multi-criteria evaluation of
hydro-geological and anthropogenic parameters for the groundwater vulnerability
assessment. Environ. Monit. Assess. 189, 564.

Lam, N.S.-N., Quattrochi, D.A., 1992. On the issues of scale, resolution, and fractal ana-
lysis in the mapping sciences. Prof. Geogr. 44, 88–98.

Lambin, E.F., Turner, B.L., Geist, H.J., Agbola, S.B., Angelsen, A., Bruce, J.W., Coomes,
O.T., Dirzo, R., Fischer, G., Folke, C., George, P.S., Homewood, K., Imbernon, J.,
Leemans, R., Li, X., Moran, E.F., Mortimore, M., Ramakrishnan, P.S., Richards, J.F.,
Skanes, H., Steffen, W., Stone, G.D., Svedin, U., Veldkamp, T.A., Vogel, C., Xu, J.C.,
2001. The causes of land-use and land-cover change: moving beyond the myths.
Global Environ. Change 11, 261–269.

Li, J.X., Song, C.H., Cao, L., Zhu, F.G., Meng, X.L., Wu, J.G., 2011. Impacts of landscape
structure on surface urban heat islands: a case study of Shanghai, China. Remote
Sens. Environ. 115, 3249–3263.

Li, R.Z., Cheng, S.H., Luo, C., Rutherford, S., Cao, J., Xu, Q.Q., Liu, X.D., Liu, Y.X., Xue,
F.Z., Xu, Q., Li, X.J., 2017. Epidemiological characteristics and spatial-temporal
clusters of mumps in Shandong Province, China, 2005–2014. Sci. Rep. 7, 46328.

Lin, T., Ge, R.B., Huang, J., Zhao, Q.J., Lin, J.Y., Huang, N., Zhang, G.Q., Li, X.H., Ye, H.,
Yin, K., 2016. A quantitative method to assess the ecological indicator system's ef-
fectiveness: a case study of the ecological province construction indicators of China.
Ecol. Ind. 62, 95–100.

Liu, Z.Q., 2014. Global and local: measuring geographical concentration of China's
manufacturing industries. The Professional Geographer 66, 284–297.

Liu, Q., Xie, W.J., Xia, J.B., 2013. Using semivariogram and Moran's I techniques to
evaluate spatial distribution of soil micronutrients. Commun. Soil Sci. Plant Anal. 44,
1182–1192.

Liu, R.G., Shang, R., Liu, Y., Lu, X.L., 2017. Global evaluation of gap-filling approaches for
seasonal NDVI with considering vegetation growth trajectory, protection of key
point, noise resistance and curve stability. Remote Sens. Environ. 189, 164–179.

Liu, Y.B., Hiyama, T., Yamaguchi, Y., 2006. Scaling of land surface temperature using
satellite data: a case examination on ASTER and MODIS products over a hetero-
geneous terrain area. Remote Sens. Environ. 105, 115–128.

Long, H., Tang, G., Li, X., Heilig, G.K., 2007. Socio-economic driving forces of land-use
change in Kunshan, the Yangtze River Delta economic area of china. J. Environ.
Manage. 83, 351–364.

Maillard, P., 2003. Comparing texture analysis methods through classification.
Photogramm. Eng. Remote Sens. 69, 357–367.

Malbéteau, Y., Merlin, O., Gascoin, S., Gastellu, J.P., Mattar, C., Olivera-Guerra, L.,

Khabba, S., Jarlan, L., 2017. Normalizing land surface temperature data for elevation
and illumination effects in mountainous areas: a case study using aster data over a
steep-sided valley in Morocco. Remote Sens. Environ. 25–39.

McMillen, D.P., 2010. Issues in spatial data analysis. J. Reg. Sci. 50, 119–141.
Niemi, G.J., McDonald, M.E., 2004. Application of ecological indicators. Annu. Rev. Ecol.

Evol. Syst. 35, 89–111.
Norouzian-Maleki, S., Bell, S., Hosseini, S.B., Faizi, M., 2015. Developing and testing

aframework for the assessment of neighbourhood liveability in two contrasting
countries: Iran and Estonia. Ecol. Ind. 48, 263–271.

Olsen, A.R., Sedransk, J., Edwards, D., Gotway, C.A., Liggett, W., Rathbun, S., Reckhow,
K.H., Yyoung, L.J., 1999. Statistical issues for monitoring ecological and natural re-
sources in the United States. Environ. Monit. Assess. 54, 1–45.

Paerl, H.W., Valdes, L.M., Pinckney, J.L., Piehler, M.F., Dyble, J., Moisander, P.H., 2003.
Phytoplankton photopigments as indicators of estuarine and coastal eutrophication.
Bioscience 53, 953–964.

Pyrcz, M.J., Deutsch, C.V., 2003. The whole story on the hole effect. In: Searston, S. (Ed.),
Geostatisitical Association of Australasia. Newsletter, pp. 18.

Qi, F., Liu, Y.S., Ikami, M., 2004. Geostatistical analysis of soil moisture variability in
grassland. J. Arid Environ. 58, 357–372.

Sakai, T., Akiyama, T., 2005. Quantifying the spatio-temporal variability of net primary
production of the understory species, Sasa senanensis, using multipoint measuring
techniques. Agric. For. Meteorol. 134, 60–69.

Seddon, A.W.R., Macias-Fauria, M., Long, P.R., Benz, D., Willis, K.J., 2016. Sensitivity of
global terrestrial ecosystems to climate variability. Nature 531 (7593).

Seto, K.C., Kaufmann, R.K., 2003. Modeling the drivers of urban land use change in the
Pearl River Delta, China: integrating remote sensing with socio-economic data. Land
Econ. 79, 106–121.

Sobrino, J.A., Jiménez-Muñoz, J.C., Paolini, L., 2004. Land surface temperature retrieval
from LANDSAT TM 5. Remote Sens. Environ. 90, 434–440.

Sun, Z.D., Chang, N.B., Opp, C., 2010. Using SPOT-VGT NDVI as a successive ecological
indicator for understanding the environmental implications in the Tarim River Basin,
China. J. Appl. Remote Sens. 4, 844–862.

Suter, G.W., Norton, S.B., Cormier, S.M., 2002. A methodology for inferring the causes of
observed impairments in aquatic ecosystems. Environ. Toxicol. Chem. 21,
1101–1111.

Tobler, W., 1970. A computer movie simulating urban growth in the Detroit region. Econ.
Geogr. 46, 234–240.

Treitz, P., Howarth, P., 2000. High spatial resolution remote sensing data for forest
ecosystem classification: an examination of spatial scale. Remote Sens. Environ. 72,
268–289.

United States Geological Survey (USGS), 2016a. Product Guide: Provisional Landsat 8
Surface Reflectance Product. Geological Survey, Department of the Interior, U.S.

United States Geological Survey (USGS), 2016b. Landsat 8 (L8) Data Users Handbook.
Geological Survey, Department of the Interior, U.S.

Urquhart, N.S., Paulsen, S.G., Larsen, D.P., 1998. Monitoring for policy-relevant regional
trends over time. Ecol. Appl. 8, 246–257.

Wang, H., Liu, D., Lin, H., Montenegro, A., Zhu, X., 2015. NDVI and vegetation phenology
dynamics under the influence of sunshine duration on the Tibetan plateau. Int. J.
Climatol. 47, 855–870.

Wang, J.F., Zhang, T.L., Fu, B.J., 2016. A measure of spatial stratified heterogeneity. Ecol.
Ind. 67, 250–256.

Weng, Q., 2009. Thermal infrared remote sensing for urban climate and environmental
studies: methods, applications, and trends. ISPRS J. Photogramm. Remote Sens. 64,
335–344.

Wu, J.G., 2004. Effects of changing scale on landscape pattern analysis: scaling relations.
Landscape Ecol. 19, 125–138.

Wu, L.X., Sun, B., Zhou, S.L., Huang, S.E., Zhao, Q.G., 2004. A new fusion technique of
remote sensing images for land use/cover. Pedosphere 14, 187–194.

Wulder, M., Boots, B., 1998. Local spatial autocorrelation characteristics of remotely
sensed imagery assessed with the Getis statistic. Int. J. Remote Sens. 19, 2223–2231.

Xu, H.Q., 2013. A remote sensing urban ecological index and its application. Acta Ecol.
Sin. 33, 7853–7862 (In Chinese with English abstract).

Xu, H.Q., 2006. Modification of normalised difference water index (NDWI) to enhance
open water features in remotely sensed imagery. Int. J. Remote Sens. 27, 3025–3033.

Xu, H.Q., 2008. A new index for delineating built-up land features in satellite imagery.
Int. J. Remote Sens. 29, 4269–4276.

Xu, H.Q., Ding, F., Wen, X.L., 2009. Urban expansion and heat island dynamics in the
Quanzhou region, China. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2, 74–79.

Xu, H.Q., Huang, S.L., Zhang, T.J., 2013. Built-up land mapping capabilities of the aster
and Landsat ETM+ sensors in coastal areas of southeastern China. Adv. Space Res.
52, 1437–1449.

Xu, H.Q., Zhang, T., 2013. Assessment of consistency in forest-dominated vegetation
observations between aster and Landsat ETM+ images in subtropical coastal areas of
Southeastern China. Agric. For. Meteorol. 168, 1–9.

Yang, Y., Wong, K.K.F., 2013. Spatial distribution of tourist flows to China's cities.
Tourism Geographies: Int. J. Tourism Space Place Environ. 15, 338–363.

Yuan, F., Wu, J.G., Li, A., Rowe, H., Bai, Y.F., Huang, J.H., Han, X.G., 2015. Spatial
patterns of soil nutrients, plant diversity, and aboveground biomass in the Inner
Mongolia grassland: before and after a biodiversity removal experiment. Landscape
Ecol. 30, 1737–1750.

Zawadzki, J., Cieszewski, C.J., Zasada, M., Lowe, R.C., 2005. Applying geostatistics for
investigations of forest ecosystems using remote sensing imagery. Silva Fennica 39,
599–618.

Zawadzki, J., Fabijańczyk, P., 2013. Geostatistical evaluation of lead and zinc con-
centration in soils of an old mining area with complex land management. Int. J.
Environ. Sci. Technol. 10, 729–742.

X. Hu, H. Xu Ecological Indicators 89 (2018) 11–21

20

http://refhub.elsevier.com/S1470-160X(18)30082-7/h0165
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0165
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0165
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0165
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0170
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0170
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0170
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0175
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0175
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0180
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0180
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0185
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0185
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0185
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0190
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0190
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0190
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0195
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0195
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0195
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0200
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0200
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0200
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0205
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0205
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0205
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0210
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0210
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0210
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0215
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0215
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0215
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0220
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0220
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0220
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0225
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0225
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0225
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0230
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0230
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0235
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0235
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0235
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0235
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0240
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0240
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0245
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0245
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0250
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0250
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0250
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0255
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0255
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0260
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0260
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0260
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0260
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0260
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0260
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0265
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0265
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0265
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0270
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0270
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0270
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0275
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0275
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0275
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0275
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0280
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0280
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0285
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0285
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0285
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0290
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0290
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0290
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0295
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0295
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0295
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0300
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0300
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0300
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0305
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0305
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0310
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0310
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0310
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0310
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0315
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0320
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0320
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0325
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0325
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0325
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0330
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0330
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0330
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0335
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0335
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0335
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0340
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0340
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0345
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0345
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0350
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0350
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0350
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0355
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0355
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0360
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0360
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0360
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0365
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0365
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0370
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0370
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0370
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0375
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0375
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0375
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0380
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0380
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0385
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0385
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0385
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0390
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0390
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0395
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0395
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0400
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0400
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0405
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0405
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0405
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0410
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0410
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0415
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0415
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0415
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0420
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0420
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0425
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0425
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0430
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0430
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0435
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0435
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0440
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0440
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0445
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0445
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0450
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0450
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0455
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0455
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0455
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0460
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0460
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0460
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0465
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0465
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0470
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0470
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0470
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0470
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0475
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0475
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0475
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0480
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0480
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0480
wjf
高亮



Zawadzki, J., Magiera, T., Fabijańczyk, P., 2009. Geostatistical evaluation of magnetic
indicators of forest soil contamination with heavy metals. Stud. Geophys. Geod. 53,
133–149.

Zawadzki, J., Przeździecki, K., Miatkowski, Z., 2016. Determining the area of influence of
depression cone in the vicinity of lignite mine by means of triangle method and
Landsat TM/ETM+ satellite images. J. Environ. Manage. 166, 605–614.

Zhang, J.Q., Zhu, Y.Q., Fan, F.L., 2016. Mapping and evaluation of landscape ecological
status using geographic indices extracted from remote sensing imagery of the Pearl
River Delta, China, between 1998 and 2008. Environ. Earth Sci. 75, 327–342.

Zheng, B., Myint, S.W., Thenkabail, P.S., Aggarwal, R.M., 2015. A support vector machine
to identify irrigated crop types using time-series Landsat NDVI data. Int. J. Appl.
Earth Obs. Geoinf. 34, 103–112.

X. Hu, H. Xu Ecological Indicators 89 (2018) 11–21

21

http://refhub.elsevier.com/S1470-160X(18)30082-7/h0485
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0485
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0485
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0490
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0490
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0490
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0495
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0495
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0495
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0500
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0500
http://refhub.elsevier.com/S1470-160X(18)30082-7/h0500

	A new remote sensing index for assessing the spatial heterogeneity in urban ecological quality: A case from Fuzhou City, China
	Introduction
	Methods and materials
	Study area
	Data resources and pre-processing
	Calculation of the remote sensing-based ecological index
	Normalizeddifferential build-up and bare soil index
	Normalized differential vegetation index
	Land surface moisture
	Land surface temperature
	Synthetic index of RSEI

	Spatial heterogeneity analysis
	Spatial autocorrelation analysis
	Semivariance analysis


	Results and discussions
	Exploratory data analysis
	Scale effect of spatial heterogeneity
	Spatial heterogeneity in RSEI
	Spatial autocorrelation analysis
	Semivariance analysis


	Conclusions
	Acknowledgements
	References




