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Abstract
Heavy metal pollution is a global ecological safety issue, especially in crops, where it directly threatens regional ecological
security and human health. In this study, the back-propagation (BP) neural network optimized by the genetic algorithm (GA) was
used to predict the concentration of cadmium (Cd) in rice grain based on influencing factors. As an intelligent information
processing system, the GA-BP neural network could learn the laws of Cd movement in the soil-crop system through its own
training and use the soil properties to predict the concentration of Cd in grain with high accuracy. The total soil Cd concentration,
clay content, Ni concentration, cation exchange capacity (CEC), organic matter (OM), and pH have important impacts and
interactions on Cd concentration in rice grain were selected as input factors of the predictionmodel based on Pearson’s correlation
analysis and GeoDetector. By using GA to optimize the initial weight, the prediction accuracy of the GA-BP neural network
model was optimal compared with the BP neural network model and multiple regression analysis. Based on the Cd concentration
predicted in grain by the model, human exposure and health risk can be assessed quickly, enablingmeasures to be taken in time to
reduce the transfer of Cd from soil to the food chain.

Keywords Prediction model . Cadmium . Rice grain . Soil-rice system . GA-BP neural network . Soil properties

Introduction

Heavy metal pollution in agricultural soils has become a prob-
lem in many parts of the world because of their toxicity, per-
sistence, and concealment (Li et al. 2014b; Ran et al. 2016;
Yan et al. 2013). Although Cd is unnecessary for the growth
and production of crops, it is readily absorbed by plants, after
which it induces adverse effects such as slow growth, stunted

growth, and reduced yield (Rizwan et al. 2016a; Rizwan et al.
2016b). Furthermore, the transfer of Cd from soils into the
food chain via soil-crop systems has been considered the pre-
dominant exposure pathway for humans (Qian et al. 2010).
Therefore, it is necessary to investigate the transfer and accu-
mulation of Cd from soil to crops, especially when predicting
Cd concentration in crops (Lu et al. 2017; Novotna et al. 2015;
Ye et al. 2014).

As a reasonable tool to estimate potential dietary risks, crop
heavy metal prediction models need to be constructed using
reliable methods (Novotna et al. 2015). The mechanistic mod-
el, which is one of the most frequently used models, is
established based on the mechanisms of heavy metal transport
in soil-crop systems and commonly considers factors including
soil properties, crop characteristics, and atmospheric environ-
ment (Rein et al. 2011; Sterckeman et al. 2004). Mechanistic
models have been widely researched and include the CLEA
(Contaminated Land Exposure Assessment) model developed
by the UK Environment Agency (Martin and Jeffries 2008),
Hough’s FIAM (Free Ion Activity Model) (Hough et al. 2005),
Legind’s NMF (New Model Framework) (Legind and Trapp
2010), Rein’s dynamic model (Rein et al. 2011), the Barber-
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Cushmanmodel (Barber andCushman 1981; Sterckeman et al.
2004), and Ingwersen’s process-oriented model (Ingwersen
and Streck 2005). However, data describing critical parameters
in models are difficult to obtain, resulting in limited application
of these models (Legind and Trapp 2010; Ye et al. 2014).
When compared to the mechanistic models, empirical models
have a relatively simple structure and require fewer input data,
making them particularly suitable to large-scale and practical
applications (Ye et al. 2014). Empirical models are mostly in
the form of multiple regression, in which the parameters eval-
uated are commonly soil properties (Novotna et al. 2015). The
majority of models contain the total concentration of heavy
metals in soil and soil pH, which are both important factors
influencing crop absorption of heavy metals (Adams et al.
2004; McBride 2002; Ran et al. 2016; Tudoreanu and
Phillips 2004; Wang 2002). Other important factors such as
OM, clay content, CEC, and the concentration of other heavy
metals in soil are also considered in many models (Bester et al.
2013; Chaudri et al. 2007; Chen et al. 2016; Lu et al. 2017;
Novotna et al. 2015; Romkens et al. 2009; Ye et al. 2014).
Although crop heavy metal predictionmodels have beenwide-
ly researched and applied, there is still room for improvement
in the prediction accuracy of these models.

The BP neural network, which is one of the most exten-
sively used artificial neural network (ANN) models, consists
of a multi-layer network that uses a gradient descent-based
algorithm for weight training (Zhang et al. 2017). As an intel-
ligent information processing system, the BP neural network
can approximate any complex nonlinear function with high
accuracy by learning and simulating some sort of algorithm or
function in nature (Zhang et al. 2016). Because of its strong
fitting ability, the BP neural network is suitable for application
of internal complex mechanisms such as the migration of
heavy metals in soil-plant systems. However, few studies have
investigated the use of the BP neural network to predict the
heavy metal concentrations in crops to date. Some studies
have used remote sensing data as input data and achieved a
relatively high accuracy (Jiang et al. 2016; Liu et al. 2011).
The GA is a powerful stochastic algorithm that has wide ap-
plicability in optimization problems. It can be used to search
the global minimum based on natural selection and genetic
mechanisms (Tongle et al. 2016). Therefore, the GA can over-
come the weaknesses of the BP neural network in areas that
easily fall into local minima and improve the training speed
and forecast accuracy of the network (Pang and Shi 2008).
The combination of GA and BP neural network has been
applied in many fields and achieved good predictions (Shen
et al. 2007;Wang et al. 2016). However, there was no research
that applied the GA-BP neural network in the prediction of
heavy metal concentrations in crops. Here, we present a hy-
pothesis that the application of GA-BP neural network to pre-
dict the Cd concentration in rice grain will achieve high pre-
diction accuracy.

The Yangtze River Delta (YRD), one of the most econom-
ically developed regions in China, has accelerated the accumu-
lation of heavy metals in soils because of its urbanization and
industrialization (Chen et al. 2016; Chen 2007). As the main
agricultural product in the YRD, rice has great ability to be
enriched by Cd in soil, posing a health hazard to consumers
of rice and local residents. Therefore, a thorough understand-
ing of the factors influencing the concentration of Cd absorbed
by rice and accurate prediction of Cd in grains is important for
human exposure and health risk assessment, as well as taking
measures to reduce the transfer of Cd from soil to the food
chain (Hough et al. 2003; Legind and Trapp 2010; Ye et al.
2014; Zhao et al. 2010). In this study, we used the GA-BP
neural network to predict the Cd concentration in rice grain
based on influencing factors selected by correlation analysis
and GeoDetector. The specific objectives of this study include
(1) identification of the main factors influencing Cd concentra-
tion in rice grain for model construction, (2) development of a
GA-BP neural network model for predicting the concentration
of Cd in rice grain based on selected factors, and (3) develop-
ment of a BP neural network model and multiple regression
model for comparing the prediction accuracy of the models.

Materials and methods

Data preparation

This study was conducted in a typical industrial county in the
city of Yixing, Jiangsu Province (N31.35°, E119.82°) (Fig. 1),
which is located in the YRD and characterized by a warm and
moist subtropical climate. The study area is a commercial
grain base and rice is the main crop at the local level.
However, wastes from industrial activities have brought ex-
cessive pressure on the environment and caused serious heavy
metal pollution of agricultural land.

A total of 45 pairs of soil samples and corresponding rice
grain samples were collected during November of 2015. Rice
grains were sampled at the same time from the same locations
as the soil samples. Sampling points were selected from soil
contamination areas identified in an investigation of ecological
geochemistry quality for cultivated land conducted in 2007.
Figure 1 illustrates the locations from which soil and rice grain
samples were collected. To ensure the accuracy of the measure-
ment, three sub-samples were taken from each sample point.
Samples were collected from a depth of 0–20 cm, after which
debris and gravel in the soil were removed. A five-point sam-
pling method was adopted to take soil from each sub-sample.
The quarter-point method was used to retain 1 kg of soil sam-
ples into polyethylene bags. During the collection of rice grain
samples, grains that were empty and or showed signs of insect
diseases were avoided. All samples were sealed in sample bags,
then air-dried in a pollution free place for future analysis.
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The pH, CEC, OM, clay content, heavy metal concentra-
tions in soil, and Cd concentration in rice grain were deter-
mined. The Cd and Pb concentrations were determined by
graphite furnace atomic absorption spectrometry (Optima
2100DV, Perkin Elmer, USA), while the Ni, Cu, and Zn con-
centrations in soil were determined by flame atomic absorp-
tion spectrometry (Optima 2100DV, Perkin Elmer, USA), the
Hg and As concentration were determined by atomic fluores-
cence spectrometry (Primus-II, Rigaku Corporation, Japan),
and the Cr concentration was determined by inductively
coupled plasma atomic emission spectroscopy (Optima
2100DV, Perkin Elmer, USA). Soil pH was determined using
an ion-selective electrode, while OM was measured by wet
oxidation using K2Cr2O7, and the CEC was determined with
the ammonium acetate method using CH3COONH4 leaching.
The clay content was measured by pipette and sieve analysis.

Correlation analysis

The SPSS 20.0 statistical package was used to analyze data.
Specifically, Pearson’s correlation coefficient was calculated
to determine the relationships between different variables,

while two-way analysis of variance (ANOVA) was conducted
to identify differences among groups. Relationships were con-
sidered significant at P < 0.05 and P < 0.01.

Interaction analysis

Generally, the process of rice uptake of Cd from soil is
influenced by many factors; therefore, the mechanism
through which this process occurs is complicated and it is
difficult to estimate the independent effects of factors
(Dayton et al. 2006; Li et al. 2014b). As a result, interac-
tions among factors should be considered. Geodetector has
been widely used in a variety of fields to analyze the forces
driving various phenomena as well as multi-factor interac-
tions (Wang et al. 2010). This system employs a statistical
method to detect spatial variability and reveal the driving
forces behind this variability based on risk, factors, inter-
actions and ecological detectors (Wang et al. 2010).
Detecting the power determinant of a factor influencing
Cd content in rice is mainly accomplished by comparing
the total variance of each factor in different subareas with
the total variance of crop Cd content in the entire study

Yixing City

Fig. 1 Location of sampling sites and distribution of soil types in the study area
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area. The smaller the ratio, the stronger the determinant
power. The general expression is

q ¼ 1−
∑M

k¼1Nkσ2
k

Nσ2

where q indicates how much of the Cd concentration in rice
grain is interpreted by the factor. q∈[0, 1], where q = 0
indicates that there is no relationship between the Cd con-
centration in rice grain and the factor, and q = 1 indicates
that the Cd concentration in rice grain is completely deter-
mined by the factor. k = 1,..., M indicates the number of
strata in a factor, Nk and N are the number of the strata k
and units of the Cd content in rice grain, respectively. σ2

k
and σ2 reflect the variance of the strata k and Cd concen-
tration in the rice grain, respectively. The interaction de-
tector can deal with the issue of whether two factors to-
gether have a stronger or weaker effect on the concentra-
tion of Cd in grain than they do independently. This index
can quantify the interactive effect of two factors by stack-
ing two layers (X1, X2) to form a new layer (X1 ∩ X2).
The attribute of the new layer is determined by a combina-
tion of those two layers (Hu et al. 2011). By comparing the
q-value of X1, X2, and X1 ∩ X2, the influence of the
interaction between two soil factors on Cd concentration
in grain can be determined (Huang et al. 2014).

Construction of GA-BP neural network

Data pre-processing phase

To eliminate the impact of different platforms on the results
and improve the efficiency of network training, the sam-
ples data were normalized to [− 1, 1] using the following
formula:

xnorm ¼ a−bð Þ � x−xminð Þ= xmax−xminð Þ þ b

where x, xnorm, xmax, and xmin are the actual value, normalized
value, maximum value, and minimum value of the sample,
respectively, and a and b are the maximum value and mini-
mum value of the normalized interval, respectively.

Model building phase

To obtain high-precision prediction of the concentration of
Cd in rice grain, a BP neural network model was
established. The statistical learning algorithms of the net-
work were inspired by the biological neural networks
(Hooyberghs et al. 2005). The structure of the BP neural
network consists of an input layer, hidden layer and output
layer, which includes multiple neurons, and each layer is
linked by connection weights. With the initial weights ran-
domly set, neural networks are trained to modify all

weights based on the back propagation algorithm until
the errors between output data and desired data are within
a predetermined range. When the weights among layers are
decided, the neural network is determined and can be used
for forecasting. The BP neural network has a strong non-
linear mapping ability and can achieve the final conver-
gence of the network through training. However, it has
weaknesses such as being prone to jumping into the local
minima, which leads to training of the network being more
sensitive to the initial network weights (Tongle et al.
2016). The GA can solve these problems effectively and
is therefore widely applied in neural networks. Because the
GA has strong global search ability in a complex, polymor-
phic, and discontinuous space, it can help optimize the
structure and parameters of neural networks (Yu and Xu
2014). The use of GA to optimize the initial weights of the
BP neural network can exert the advantages of the global
search of GA and overcome the disadvantages of the BP
neural network (Zheng 2017). The weights and thresholds
of the network are initialized randomly and are connected
and coded into individuals in order. The individual lengths
are determined according to the network structure param-
eters, and n individuals are randomly generated within a
given range to make up the initial population. The fitness
function is taken as the reciprocal of the error in the neural
network. After repeated selections, crossovers, and muta-
tions, individuals with lower fitness are eliminated and a
new population is obtained. The optimal initial weights
and thresholds of the neural network are then obtained
through decoding of individuals. The process of the GA-
BP model is shown in Fig. 2.

Where d is the length of the individual; r is the number
of input layer nodes; s1 is the number of hidden layer
nodes; s2 is the number of output layer nodes; E is output
error value; f is fitness function; u is the size of the popu-
lation; fi is the fitness value of the ith individual, and Pi is
the probability of being selected; zi(k) and zi + 1(k) denote
the kth gene of the ith and i + 1th individuals, respectively; α
and β are random numbers between 0 and 1; and q is the
threshold width corresponding to the p + 1st gene value. n
represents the input layer nodes; l represents the hidden
nodes; m represents the output layer nodes; Yk is the pre-
dictive value; Ok is the actual value; ek is the model error;
ωij is the weight between the input layer and the hidden
layer; ωjk is the weight between the hidden layer and the
output layer; Hj is the hidden layers value; aj is the thresh-
old between the input layer and the hidden layer; bk is the
threshold between the hidden layer and the output layer.

Model evaluation phase

The root mean square error (RMSE), mean absolute error
(MAE), mean relative error (MRE), and coefficient of
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determination (R2) are used as metrics to assess the perfor-
mance of different models:

R2 ¼
∑n

i¼1 Xi−Xi

� �
∑n

i¼1 Yi−Yi

� �h i2

∑n
i¼1 Xi−Xi

� �2
∑n

i¼1 Yi−Yi

� �2

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

i¼1 X i−Y ið Þ2
n

s

MAE ¼ 1

n
∑n

i¼1jX i−Y ij

MRE ¼ 1

n
∑n

i¼1

jX i−Y ij
X i

� 100%

where Xi and Yi denote the measured and forecasted values
of Cd concentration in grain and n is the number of groups.

A larger R2 is associated with a smaller RMSE, MAE, and
MRE, representing higher accuracy of the model.

Results and discussion

Main factors influencing Cd concentration in rice
grain

The key to establishing an accurate prediction model is
selecting appropriate factors as input factors. The mechanism
of Cd transfer and accumulation in soil-crop systems is very
complex. Absorption of Cd by rice is influenced by the chem-
ical form of Cd in the soil. Based on the results of previous
studies, soil physicochemical properties such as pH, clay con-
tent, OM, and other heavy metals can change the chemical
form of Cd in soil to affect the amount of Cd absorbed by rice,
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Fig. 2 Flowchart of the GA-BP neural network model
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and the Cd concentration in rice is affected by joint action of
these factors (Wang et al. 2017). Therefore, the factors that are
highly correlated with Cd concentration in rice grain and great
impact on the process by which rice absorbs Cd from soil
should be selected. Correlative analysis showed that the Cd
concentration in rice was positively correlated with total Cd
concentration in soil, negatively correlated with clay content >
total Ni concentration in soil > CEC >OM, and uncorrelated
with soil pH.

The total Cd concentration in soil has a large effect on Cd
uptake (McBride 2002; Novotna et al. 2015). As shown in
Table 1, the correlation coefficient between Cd concentration
in soil and in rice grain was 0.651, indicating that this is an
optimal factor to determine the Cd concentration in rice.

The OM is considered an important factor influencing the
availability of heavy metals in soils (Bester et al. 2013;
Chaudri et al. 2007; Chen et al. 2016). As shown in Table 1,
OM was significantly correlated with Cd concentration in
grain, with a correlation coefficient of − 0.301. Studies con-
ducted to investigate the sorption mechanisms of OM onto Cd
have shown that the main mechanism is binding of functional
groups of OMwith Cd ions via strong chemical bonds to form
stable complexes that are difficult to desorb, thereby reducing
the biological activity of Cd in soil and inhibiting the absorp-
tion of rice (Bradl 2004; Guo et al. 2006; Weng et al. 2002).

Clay content was significantly correlated with Cd concen-
tration in grain, with a correlation coefficient of − 0.495. Clay
is an important adsorbent for Cd in soils in addition to OM
(Hooda and Alloway 1998). Studies have shown that clay
minerals adsorb Cd ions in soil solution through their unique
and negatively charged surfaces, then exchange their ions,
thereby affecting the exchangeable content of Cd and reduc-
ing its bioavailability (Bradl 2004; Song et al. 1999).

As shown in Table 1, the correlation coefficient between
CEC and Cd concentration in rice grain was found to be −
0.338, indicating a significant negative correlation. The CEC
is a measure of the total amount of negative surface charges,
which are primarily contributed by clay and organic fractions
(Hooda and Alloway 1998). Studies have shown that as the
CEC increases, the negative charge of soil becomes greater,
providing more adsorption sites to fix Cd ions, thereby reduc-
ing the availability of Cd in soil and the absorption of Cd by
rice (Bradl 2004; Hooda and Alloway 1998).

Soil pH is another important factor that determines the
bioavailability of Cd in soil (Chen et al. 2016; Li et al.

2014b; Ye et al. 2014; Zhao et al. 2010). The Cd concentration
in rice grain was expected to be greatly affected by soil pH
(Chen et al. 2016; Romkens et al. 2009). However, there was
no significant correlation between pH and Cd concentration in
grain observed in our data. These findings indicate that soil
properties other than pH, such as Cd concentration and OM,
had a strong influence on the available Cd in soil and therefore
the amount of Cd absorbed by rice grains. Similarly,
Wiggenhauser et al. (2016) found that there was no significant
correlation between soil pH and available Cd in a soil-wheat
system (Wiggenhauser et al. 2016).

In addition to the above factors, other heavy metals in soil
can also affect Cd absorption by rice. Specifically, we found
that the total Ni concentration in soil was significantly corre-
lated with Cd in rice grain, with a correlation coefficient of −
0.433. There is an antagonistic effect between Cd and Ni. Pot
experiments showed that Ni treatment reduced Cd concentra-
tion in rice grain (Bingham et al. 1980), and that the uptake of
Cd by seedlings growing on medium containing both Cd and
Ni was significantly lower than that observed by seedlings
grown on medium containing only Cd (Artiushenko et al.
2014). However, we did not find a significant correlation be-
tween Cd concentration in grain and other heavy metals in
soil. This may have occurred because the concentrations of
Zn, Pb, As, and Cu in soil were below the thresholds in ac-
cordance with the Chinese environmental quality standard for
soils (GB 15618–1995).

Interaction among influence factors

The interaction detector of the GDM was used to determine if
the soil factors had interactive effects on Cd concentration in
rice grain. The symbol q(X1∩X2) denotes the determinant pow-
er of interaction of new layers that comprised a combination of
X1 and X2. As shown in Table 3, the interaction relationship is

defined in the coordinate axis, which has five intervals, and
the interaction relationship is determined by the location of
q(X1∩X2) in the five intervals (Wang et al. 2010). The results
show that all of the interactive values were higher than the q
value of sole factors (Table 2). Moreover, most of those com-
binations consisted of nonlinear enhancement interactions,
while few had bi-enhance interactions (Table 3). In particular,
the interaction between Cd and Ni showed the highest power
of determinant for Cd content of rice, reaching 0.889.

Table 1 Correlation between Cd concentration in rice grain and soil factors

Soil factor Total Cd concentration
in soil

Clay content Total Ni concentration
in soil

CEC OM pH

Correlation coefficient 0.651** − 0.495** − 0.433** − 0.338* − 0.301* 0.231

*p < 0.05; ** p < 0.01
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GA-BP neural network prediction and comparison
with other models

To establish and validate the neural network model, we used
36 groups of samples as a training set and nine groups of
samples as a test set for the model. Matlab software was used
to simulate and compute (Li et al. 2014a; Peng 2013). The GA
was used to optimize and assign initial weights and thresholds
of the BP neural network, while the BP neural network was
used to search for the local optimization values. By trying
different parameters, architectures, and training algorithms,
satisfactory GA-BP neural network models were developed.

In the experiments, 50, 100, 0.5, and 0.09 were set as the
population size, the maximum genetic algebra, the crossover
rate, and the variation rate, respectively. Tansig functions were
used as activation functions for hidden neurons and output
neurons. The Levenberg-Marquardt back-propagation was
used as a training function to ensure the rapid convergence
of the network. The most suitable model structure was found
to be 6-11-1 based on the experiments. Finally, the optimal
model with the lowest RMSE, errors, and highest R2 value
was obtained.

To assess and compare the performance of GA-BP neural
network models, a BP neural network model and a multiple re-
gression model were established. The equation for multiple re-
gressionwas lg Cdrice = 0.768lg Cdsoil− 1.760 lg SOM− 0.142 lg
pH+ 0.663 lg CEC − 1.049lg Clay − 2.073 lg Ni + 3.890.

The RMSE, MSE, and MAE values of the training and test
sets were used to compare the credibility and stability of the
models. The results suggested the application of GA-BP neural
network in predicting Cd concentration in rice grain achieved
relatively high prediction accuracy. As shown in Table 4, the
accuracies of the GA-BP neural network and BP neural network
models based on the six factors were better than those of the
multiple regression model. Furthermore, the accuracy of the
GA-BP neural network model was slightly better than that of
the BP neural network model. The errors of train sets of the
GA-BP neural network model and the BP neural network model
had reached a relatively low level, andR2 had reached a relatively
high level. However, the RMSE and MAE of the test set of GA-
BP neural network are 0.040 and 0.023, respectively, which are
much lower than the 0.117 and 0.077 of the BP neural network.
The MRE of the GA-BP neural network and the BP neural
network are approximately equal. The R2 of test set of GA-BP

Table 2 q-values for interactions between pairs of soil factors influencing the Cd concentration of grain

Total Cd concentration
in soil

Clay content Total Ni concentration
in soil

CEC OM pH

Total Cd concentration in soil 0.400 – – – – –

Clay content 0.639 0.326 – – – –

Total Ni concentration in soil 0.889 0.746 0.222 – – –

CEC 0.671 0.587 0.594 0.234 – –

OM 0.852 0.695 0.749 0.364 0.148 –

pH 0.575 0.586 0.753 0.513 0.395 0.180

Table 3 Types of interaction between two factors

Min (q(X1), q(X2)); Max (q(X1), q(X2)); (X1)+q(X2); q q (X1 X2)

Graphical representation Description Interaction type Interaction factors

q(X1 X2) > q(X1)+ q(X2) Enhance, nonlinear

Cd concentration OM; Cd concentration CEC Cd 

concentration Ni concentration OM pH OM clay

OM Ni concentration pH CEC pH clay pH Ni 

concentration CEC Ni concentration clay Ni 

concentration;

q(X1 X2) = q(X1)+ q(X2) Independent —

q(X1 X2) > Max(q(X1), q(X2)) Enhance, bi-
Cd concentration pH; Cd concentration clay; OM

CEC; CEC clay

Min(q(X1),q(X 2))<q(X1 X2)<Max(q(X1)), q(X2)) Weaken, uni- —

q(X1 X2) < Min(q(X1), q(X2)) Weaken, nonlinear —
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neural network is 0.989, which was much higher than 0.884 of
the BP neural network. Therefore, the prediction effect of the
GA-BP neural network was better than that of the BP neural
network. Overall, the optimal model for estimating the Cd con-
centration of rice grain is the GA-BP neural network model.

Figure 3 shows the measured and predicted values of the train-
ing and test sets in different models. Figures 4 and 5 show the
absolute errors and relative errors between the model-predicted
and measured values, respectively. As shown in Figs. 3, 4, and 5,
the predicted values of the GA-BP neural network model and the
BP neural network model matched the measured values well.
Moreover, the errors of the GA-BP neural network model were
smaller than those of the BP neural network model. However,
there was a relatively large difference between the measured and
predicted values of the multiple regression model.

The results indicated that the accuracy of neural networks
was better than that of the multiple regressionmodel. This was
primarily because the BP neural network model can be used as
a black box model to predict a certain variable through a
complex interaction factor and to process complex and fuzzy
mappings relationships without knowing the relationship be-
tween the distribution form and variables. Therefore, when
compared with multiple regression analysis, the BP neural
network can reveal the nonlinear relationship between Cd
concentration in rice grain and soil properties better, which
overcomes the shortcomings of simulation by multiple regres-
sion model using complex factors. Moreover, the higher ac-
curacy of the GA-BP neural network than the BP neural

network at predicting heavy metal concentrations can be ex-
plained by the advantage of GA in global optimization.

Compared with neural network model, the mechanism
models are in various forms, and the factors used include the
root water uptake, the transpiration rate, the relative humidity,
the change of total plant mass, the water flux in different parts
of plants, the concentration of metals at particles in air, the dry
and wet deposition velocity of particles and so on (Hough et al.
2005; Legind and Trapp 2010; Rein et al. 2011). These factors
are relatively complex and difficult to obtain, and some of them
can only be obtained in pot experiments. There are also some
empirical parameters that were given by experts based on ex-
perience and theory, such as an empirical parameter that de-
scribes the distribution of root length density with depth, which
may have some deviations from the actual (Hough et al. 2005).
In addition, before applying the mechanism model, it is neces-
sary to analyze which model is suitable for the area. And most
mechanism models are only suitable for specific areas, crops,
and heavymetals.When applied to other conditions, themodels
need to be calibrated and expanded (Hough et al. 2005).
However, the neural network model does not have too many
regulations and limitations on the choice of factors. The factors
that have a great impact on the predicted objects should be
selected. Data acquisition can be done by sampling in the field,
rather than being limited to pot experiments.

The application of GA-BP neural networks can be used as a
new method to complement the original methods. It can
achieve as high as possible prediction accuracy with limited

Table 4 Results of evaluation indexes of training and test samples for models

Model RMSE MAE MRE R2

Train set Test set Train set Test set Train set Test set Train set Test set

GA-BP neural network 0.041 0.040 0.024 0.023 0.337 0.346 0.991** 0.989**

BP neural network 0.045 0.117 0.028 0.077 0.302 0.342 0.991** 0.884**

Multiple regression 0.304 0.092 0.143 0.077 0.970 0.859 0.594** 0.808**

*p < 0.05; **p < 0.01
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data. We can choose the method based on the characteristics of
the study area, data acquisition, dataset characteristics, and ex-
pected predictions effect that need to be achieved. Based on the
neural network method, we can predict the Cd concentration in
rice by measuring critical factors, without waiting for measur-
ing the Cd concentration in the grain after the rice is matured.
According to the prediction of Cd concentrations of rice grains
in farmland, we can develop agricultural plans to plant rice in
areas with low Cd concentration, which can reduce the flow of
Cd from soil to the crops. In this study, we selected and mea-
sured factors that have a more significant impact on Cd con-
centration in rice grain such as Cd concentration in soil, SOM,
pH, and so on. Although the prediction results of the neural
network model based on the critical factors were relatively ac-
curate, there were still some errors. Many factors such as the
atmospheric environment, crop varieties, Fe concentration, S
concentration, and microbes in the soil have not been consid-
ered for the data are not readily available. Whether the addition
of these factors will further improve the prediction accuracy of
the network can be found in further research.

Conclusion

In this study, we applied GA-BP neural network on predicting
the Cd concentration in rice grain and achieved high prediction
accuracy. Pearson’s correlation analysis and Geodetector were
used to identify the main factors influencing Cd concentration in
rice grain for model construction. The total soil Cd concentra-
tion, clay content, Ni concentration, CEC, OM, and pH have
important impacts and interactions on Cd concentration in rice
grain. The BP neural network model optimized by GAwas used
to predict the concentration of Cd in rice grain based on themain
influencing factors. The GA-BP neural network model showed
higher prediction accuracy than the BP neural network model
and multiple regression model. Although the movement of Cd
in the soil-rice system is very complicated, the black box feature
of the BP neural network enabled the concentration of Cd in rice
grain to be predicted through learning and training by the neural

network, and the purpose of accurate prediction was achieved.
We also found that the limited explanatory power of this model
for the concentration of Cd in rice grain based on soil properties
can be improved by considering irrigation patterns, crop variety
and atmospheric factors to reduce model errors in further stud-
ies. Overall, this study demonstrates the applicability of the GA-
BP neural network for accurate prediction of Cd concentration
of rice grain in large areas, which can contribute to human ex-
posure and health risk assessment and the development of mea-
sures to reduce the transfer of Cd from soil to the food chain.

Acknowledgments We thank the International Science Editing (http://
www.internationalscienceediting.com) for editing this manuscript.

Funding information This study was financially supported by the nation-
al key R&D program of China (No. 2017YFD0800305) and special funds
for scientific research on public causes of ministry of land and resources
of China (No. 201511082).

Compliance with ethical standards

Conflict of interest The authors declare that there is no conflict of
interest.

References

Adams ML, Zhao FJ, McGrath SP, Nicholson FA, Chambers BJ (2004)
Predicting cadmium concentrations in wheat and barley grain using
soil properties. J Environ Qual 33:532–541

Artiushenko T et al (2014) Metal uptake, antioxidant status and mem-
brane potential in maize roots exposed to cadmium and nickel.
Biologia 69:1142–1147

Barber S.A., Cushman J.H (1981) Nitrogen uptake model for agronomic
crops, in modeling waste water renovation- land treatment

Bester PK, Lobnik F, Erzen I, Kastelec D, Zupan M (2013) Prediction of
cadmium concentration in selected home-produced vegetables.
Ecotoxicol Environ Saf 96:182–190. https://doi.org/10.1016/j.
ecoenv.2013.06.011

Bingham FT, Page AL, Strong JE (1980) Yield and cadmium content of
rice grain in relation to addition rates of cadmium, copper, nickel,
and zinc with sewage sludge and liming. Soil Sci 130:32–38

Bradl HB (2004) Adsorption of heavy metal ions on soils and soils con-
stituents. J Colloid Interface Sci 277:1–18. https://doi.org/10.1016/j.
jcis.2004.04.005

Chaudri A, McGrath S, Gibbs P, Chambers B, Carlton-Smith C, Godley
A, Bacon J, Campbell C, Aitken M (2007) Cadmium availability to
wheat grain in soils treated with sewage sludge or metal salts.
Chemosphere 66:1415–1423. https://doi.org/10.1016/j.
chemosphere.2006.09.068

Chen J (2007) Rapid urbanization in China: a real challenge to soil pro-
tection and food security. Catena 69:1–15. https://doi.org/10.1016/j.
catena.2006.04.019

Chen H, Yuan X, Li T, Hu S, Ji J,Wang C (2016) Characteristics of heavy
metal transfer and their influencing factors in different soil-crop
systems of the industrialization region, China. Ecotoxicol Environ
Saf 126:193–201. https://doi.org/10.1016/j.ecoenv.2015.12.042

Dayton EA, Basta NT, PaytonME, BradhamKD, Schroder JL, LannoRP
(2006) Evaluating the contribution of soil properties to modifying
lead phytoavailability and phytotoxicity. Environ Toxicol Chem 25:
719–725

0 5 10 15 20 25 30 35 40 45

Data No.

-2.0

0.0

2.0

4.0

6.0

8.0

10.0

12.0
R

el
at

iv
e 

er
ro

r

GA-BP neural network model

BP neural network model

Multivariable regression model

Test setTrain set

Fig. 5 Relative errors of GA-BP neural network model, BP neural net-
work model and multiple regression model

Environ Sci Pollut Res



Guo X, Zhang S, Shan XQ, Luo L, Pei Z, Zhu YG, Liu T, Xie YN, Gault
A (2006) Characterization of Pb, Cu, and Cd adsorption on partic-
ulate organic matter in soil. Environ Toxicol Chem 25:2366–2373

Hooda PS, Alloway BJ (1998) Cadmium and lead sorption behaviour of
selected English and Indian soils. Geoderma 84:121–134. https://
doi.org/10.1016/s0016-7061(97)00124-9

Hooyberghs J, Mensink C, Dumont G, Fierens F, Brasseur O (2005) A
neural network forecast for daily average PM10 concentrations in
Belgium. Atmos Environ 39:3279–3289

Hough RL, Young SD, Crout NMJ (2003)Modelling of Cd, Cu, Ni, Pb and
Zn uptake, by winter wheat and forage maize, from a sewage disposal
farm. Soil UseManag 19:19–27. https://doi.org/10.1079/sum2002157

Hough RL, Tye AM, Crout NMJ, McGrath SP, Zhang H, Young SD
(2005) Evaluating a ‘free ion activity model’ applied to metal uptake
by Lolium perenne L. grown in contaminated soils. Plant Soil 270:
1–12. https://doi.org/10.1007/s11104-004-1658-5

Hu Y, Wang J, Li X, Ren D, Zhu J (2011) Geographical detector-based
risk assessment of the under-five mortality in the 2008 Wenchuan
earthquake, China. PLoS One 6:e21427. https://doi.org/10.1371/
journal.pone.0021427

Huang JX, Wang JF, Bo YC, Xu CD, Hu MG, Huang DC (2014)
Identification of health risks of hand, foot and mouth disease in
China using the geographical detector technique. Int J Environ Res
Public Heath 11:3407–3423

Ingwersen J, Streck T (2005) A regional-scale study on the crop uptake of
cadmium from sandy soils: measurement and modeling. J Environ
Qual 34:1026–1035. https://doi.org/10.2134/jeq2003.0238

Jiang J, Liu X, Xu Z, Jin M, Liu F (2016) An improved BP neural network
model for estimating cd stress in rice using remote sensing data. In:
International conference on fuzzy systems and knowledge discovery

Legind CN, Trapp S (2010) Comparison of prediction methods for the
uptake of As, Cd and Pb in carrot and lettuce. SAR QSAR Environ
Res 21:513–525. https://doi.org/10.1080/1062936X.2010.502296

Li C, Yang Z, YanH,Wang T (2014a) The application and research of the
GA-BP neural network algorithm in the MBR membrane fouling.
Abstr Appl Anal 2014:8. https://doi.org/10.1155/2014/673156

LiW, Xu B, Song Q, Liu X, Xu J, Brookes PC (2014b) The identification
of ‘hotspots’ of heavy metal pollution in soil-rice systems at a re-
gional scale in eastern China. Sci Total Environ 472:407–420.
https://doi.org/10.1016/j.scitotenv.2013.11.046

Liu M, Liu X,WuM, Li L, Xiu L (2011) Integrating spectral indices with
environmental parameters for estimating heavymetal concentrations
in rice using a dynamic fuzzy neural-network model. Comput
Geosci 37:1642–1652. https://doi.org/10.1016/j.cageo.2011.03.009

Lu J, Yang X, Meng X, Wang G, Lin Y, Wang Y, Zhao F (2017)
Predicting cadmium safety thresholds in soils based on cadmium
uptake by Chinese cabbage. Pedosphere 27:475–481. https://doi.
org/10.1016/s1002-0160(17)60343-6

Martin I, Jeffries J (2008) Updated technical background to the CLEAmodel
McBride MB (2002) Cadmium uptake by crops estimated from soil total

Cd and pH. Soil Sci 167:62–67. https://doi.org/10.1097/00010694-
200201000-00006

Novotna M, Mikes O, Komprdova K (2015) Development and compar-
ison of regression models for the uptake of metals into various field
crops. Environ Pollut 207:357–364. https://doi.org/10.1016/j.
envpol.2015.09.043

Pang NS, Shi YL (2008) Research on short-term load forecasting based
on adaptive hybrid genetic optimization BP neural network algo-
rithm. Int C Manage Sci Eng 1563–1568. https://doi.org/10.1109/
Icmse.2008.4669113

Peng HY (2013) The BP neural network’s GA optimization and its real-
ization onMATLAB. In: Chinese Control andDecision Conference.
IEEE, 2013:536–539. https://doi.org/10.1109/CCDC.2013.
6560982

Qian YZ, Chen C, Zhang Q, Li Y, Chen ZJ, Li M (2010) Concentrations
of cadmium, lead, mercury and arsenic in Chinese market milled

rice and associated population health risk. Food Control 21:1757–
1763. https://doi.org/10.1016/j.foodcont.2010.08.005

Ran J, Wang DJ, Wang C, Zhang G, Zhang HL (2016) Heavy metal
contents, distribution, and prediction in a regional soil-wheat sys-
tem. Sci Total Environ 544:422–431

Rein A, Legind CN, Trapp S (2011) New concepts for dynamic plant
uptake models. SAR QSAR Environ Res 22:191–215. https://doi.
org/10.1080/1062936X.2010.548829

Rizwan M, Ali S, Abbas T, Zia-ur-Rehman M, Hannan F, Keller C, al-
Wabel MI, Ok YS (2016a) Cadmium minimization in wheat: a crit-
ical review. Ecotoxicol Environ Saf 130:43–53. https://doi.org/10.
1016/j.ecoenv.2016.04.001

Rizwan M, Ali S, Adrees M, Rizvi H, Zia-ur-Rehman M, Hannan F,
Qayyum MF, Hafeez F, Ok YS (2016b) Cadmium stress in rice:
toxic effects, tolerance mechanisms, and management: a critical re-
view. Environ Sci Pollut Res Int 23:17859–17879. https://doi.org/
10.1007/s11356-016-6436-4

Romkens PF, Guo HY, Chu CL, Liu TS, Chiang CF, Koopmans GF (2009)
Prediction of cadmium uptake by brown rice and derivation of soil-
plant transfer models to improve soil protection guidelines. Environ
Pollut 157:2435–2444. https://doi.org/10.1016/j.envpol.2009.03.009

ShenCY,Wang LX, LiQ (2007) Optimization of injectionmolding process
parameters using combination of artificial neural network and genetic
algorithm method. J Mater Process Technol 183:412–418

Song Y, Wilson MJ, Moon HS, Bacon JR, Bain DC (1999) Chemical and
mineralogical forms of lead, zinc and cadmium in particle size fractions of
some wastes, sediments and soils in Korea. Appl Geochem 14:621–633

Sterckeman T, Perriguey J, Caël M, Schwartz C, Morel JL (2004)
Applying a mechanistic model to cadmium uptake by Zea mays
and Thlaspi caerulescens: consequences for the assessment of the
soil quantity and capacity factors. Plant Soil 262:289–302. https://
doi.org/10.1023/B:PLSO.0000037049.07963.ab

Tongle X, Yingbo W, Kang C (2016) Tailings saturation line prediction
based on genetic algorithm and BP neural network. J Intell Fuzzy
Syst 30:1947–1955. https://doi.org/10.3233/ifs-151905

Tudoreanu L, Phillips CJC (2004) Empirical models of cadmium accu-
mulation in maize, rye grass and soya bean plants. J Sci Food Agric
84:845–852. https://doi.org/10.1002/jsfa.1730

Wang KR (2002) Tolerance of cultivated plants to cadmium and their
utilization in polluted farmland soils. Acta Biotechnol 22:189–198

Wang JF, Li XH, Christakos G, Liao YL, Zhang T, Gu X, Zheng XY
(2010) Geographical detectors-based health risk assessment and its
application in the neural tube defects study of the Heshun region,
China. Int J Geogr Inf Sci 24:107–127. https://doi.org/10.1080/
13658810802443457

Wang S, Zhang N, Wu L, Wang Y (2016) Wind speed forecasting based
on the hybrid ensemble empirical mode decomposition and GA-BP
neural network method. Renew Energy 94:629–636. https://doi.org/
10.1016/j.renene.2016.03.103

Wang S,WuW, Liu F, Liao R, Hu Y (2017) Accumulation of heavy metals
in soil-crop systems: a review for wheat and corn. Environ Sci Pollut
Res Int 24:15209–15225. https://doi.org/10.1007/s11356-017-8909-5

Weng L, Temminghoff EJ, Lofts S, Tipping E, Van RiemsdijkWH (2002)
Complexation with dissolved organic matter and solubility control
of heavy metals in a sandy soil. Environ Sci Technol 36:4804–4810

WiggenhauserM, BigalkeM, ImsengM,Müller M, Keller A, Murphy K,
Kreissig K, Rehkämper M, Wilcke W, Frossard E (2016) Cadmium
isotope fractionation in soil-wheat systems. Environ Sci Technol 50:
9223–9231

Yan XD, Gao D, Zhang F, Zeng C, Xiang W, Zhang M (2013)
Relationships between heavy metal concentrations in roadside
topsoil and distance to road edge based on field observations in
the Qinghai-Tibet plateau, China. Int J Environ Res Public
Health 10:762–775

Environ Sci Pollut Res

wjf
高亮



Ye XX, Li HY, Ma YB, Wu L, Sun B (2014) The bioaccumulation of Cd
in rice grains in paddy soils as affected and predicted by soil prop-
erties. J Soils Sediments 14:1407–1416

Yu F, Xu X (2014) A short-term load forecasting model of natural gas
based on optimized genetic algorithm and improved BP neural net-
work. Appl Energy 134:102–113. https://doi.org/10.1016/j.
apenergy.2014.07.104

Zhang L, Wang F, Sun T, Xu B (2016) A constrained optimization meth-
od based on BP neural network. Neural Comput & Applic 29:413–
421. https://doi.org/10.1007/s00521-016-2455-9

Zhang D, Liu J, Jiang C, Liu A, Xia B (2017) Quantitative detection of
formaldehyde and ammonia gas via metal oxide-modified graphene-
based sensor array combining with neural network model. Sensors
Actuators BChem240:55–65. https://doi.org/10.1016/j.snb.2016.08.085

Zhao KL, Liu XM, Xu JM, Selim HM (2010) Heavy metal contam-
inations in a soil-rice system: identification of spatial depen-
dence in relation to soil properties of paddy fields. J Hazard
Mater 181:778–787

Zheng B-H (2017) Material procedure quality forecast based on genetic
BP neural network. Mod Phys Lett B 31:1740080. https://doi.org/
10.1142/s0217984917400802

Environ Sci Pollut Res


