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Abstract: The purpose of this study is to explore the impact of socioeconomic factors on PM2.5 

concentrations and to provide insights into air quality improvement. We firstly studied the spatial 

autocorrelations of PM2.5 concentrations using global Moran’s I and Local Indicators of Spatial 

Association, then explained the spatial heterogeneity of regional PM2.5 concentrations and identify 

the driving factors on PM2.5 by geographical detector technique, using data extracted from satellite 

observations over the years from 2000 to 2015. The results showed that, the annual average PM2.5 

concentration in China ranged from 11.5 μg/m³ to 18.7 μg/m³ with an upward trend in general, 

while PM2.5 pollutions were relatively serious in Beijing-Tianjin-Hebei region and Yangtze River 

Delta. Regional PM2.5 concentrations showed significant global and local spatial autocorrelation. 

Regions of high PM2.5 concentrations tend to cluster with regions of similar PM2.5 concentrations. 

From a long-term perspective, population density has the greatest power of determinant on PM2.5, 

followed by electricity consumption, industry structure, coal consumption, number of vehicles per 

capita and GDP per capita. Over the study period, the impact of population density revealed a 

trend to first rise and then fall, and the impacts of GDP per capita showed a slightly upward trend. 

The impact trends of number of vehicle per capita and industry structure presented to be 

fluctuated. The determinant power of coal consumption and electricity consumption had 

significant downward trends. 
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Highlights:

  The PM2.5 pollution in China showed a significant upward trend from 2000 to 2007, and a flat 

and slightly downward trend from 2007 to 2015.

  Global and local spatial autocorrelations of PM2.5 pollution exist in China.

  Population density has the highest power of determinant among 6 socioeconomic driving 

factors on PM2.5 concentration.

  Coal consumption and electricity consumption show significant downward trends of impact on 

PM2.5 pollution.
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1.Introduction

For the past few years, persistent air pollution in many countries has had a significant impact on 

the climate, human health and urban sustainable development (Fang et al., 2016; Lelieveld et al., 

2015). Among the atmospheric pollutants, fine particulate matter PM2.5 is the primary pollutant1 

with the greatest hazard (Li and Zhang, 2014). ‘PM2.5’ refers to any aerosol particles of 2.5 

micrometers or smaller suspended in the air. Small in size, large in dispersion area, and easy to 

carry toxic substances, PM2.5 can easily enter the human body and cause serious harm to human 

health (Madrigano et al., 2013; Sofowote et al., 2015), such as cardiovascular morbidity (Ostro et 

al., 2014), bronchitis and lung cancer (Chalbot et al., 2014), and mortality (Atkinson et al., 2014). 

Moreover, PM2.5 can also cause serious environmental problems such as reduced air visibility and 

climate change (Brauer et al., 2012; Kan et al., 2012). These problems are more prominent in 

China due to rapid urbanization and industrialization (Matus et al., 2012), which results in mass 

population migration and increasing energy consumption (Lyu et al., 2016). As demonstrated in 

previous study, about 1.2 million to 1.6 million people die prematurely every year in China due to 

air pollution problems (Yang et al., 2013). Therefore, the problem of PM2.5 has received 

increasing attention from scholars globally. A growing body of literature has focused on exploring 

the driving factors of PM2.5 concentrations, finding that both natural conditions (Dayan et al., 

2011; ) and human activities (Lou et al., 2016) have significant impact on PM2.5 concentrations.

In existing research, some scholars focus on the influence of natural factors on PM2.5. Their 

studies indicate that natural conditions, such as temperature (Li et al., 2014), precipitation 

(Mazeikis, 2013), wind speed (Wang et al., 2016; Zhang et al., 2015), wind direction (Zhang and 

Cao, 2015), terrain (Vieira-Filho et al., 2015), etc., are important factors affecting the 

accumulation and diffusion of PM2.5.For example, He et al. (2017) investigated the relationship 

between air pollution and meteorological conditions in major Chinese cities and found that, 

compared to coarse particle (PM10), fine particle (PM2.5) was easier to be affected by 

meteorological conditions, and meteorological conditions could explain more than 70% of the 

1 According to MEE of China, “primary pollutant” refers to the air pollutant of the highest individual Air Quality 
Index (AQI) among all the 6 air pollutants involved in the air quality assessment when the composite AQI is 
higher than 50.
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variation of pollutant concentrations over China. Vakeva et al. (2000) and Hussein et al. (2006) 

both pointed out that urban temperature and local wind speeds have the greatest impact on PM2.5 

concentrations. However, since the formation and diffusion of air pollutants mainly take place 

within the planetary boundary layer (PBL) (Emeis et al., 2008), the structure of PBL is considered 

to be the most important natural factor on air pollutions, among others. Recent research 

investigated the linkage between the height/depth of PBL and air pollution in China based on 

sounding data, finding a significant anti-correlation between them (Miao and Liu, 2019). More 

specifically, a shallow PBL with low height is found to be responsible for severe air pollutions 

(Quan et al., 2014). Influenced by meteorological conditions, underlying surface and upper airflow 

velocity, the structure of PBL is more of a comprehensive reflection of natural factors affecting air 

pollutions.

Besides natural conditions, a growing number of scholars have explored the correlations 

between PM2.5 concentrations and socioeconomic factors including population (Halkos and 

Paizanos, 2013), industrial structure (He, 2009), per capita GDP (Auffhammer and Carson, 2008), 

energy consumption (Wang et al., 2017; Xu et al., 2016), Vehicle population (Bozlaker et al., 

2014) and so on, demonstrating that human activities are the fundamental causes of high PM2.5 

concentration (Han et al., 2016; Platt et al., 2014). For instance, based on the environmental 

Kuznets curves (EKC) hypothesis and econometric models, Wang et al. (2017) found that PM2.5 

pollutions in China were closely related to the urban population, per capita GDP, population 

density and fossil fuel combustion. Xu et al. (2016) used the Stochastic Impacts by Regression on 

Population, Affluence and Technology (STIRPAT) model and nonparametric additive regression 

models to examine the key driving forces of PM2.5 pollutions in China, finding that the 

relationship between economic growth, urbanization, coal consumption, private vehicle and PM2.5 

concentration followed the inverted “U-shaped” pattern. By using the dynamic spatial panel 

model, Cheng et al. (2017) pointed out that the main causes of PM2.5 in 285 cities in China were 

population size, the proportion of the second industry, the consumption of coal and the intensity of 

traffic. ). In addition, since more power consumption requires more power supply (Guan et al., 

2014), and coal-fired power plants would generate a lot of PM2.5 during power generation (Gao et 

al., 2014), electricity consumption is a factor that cannot be ignored in the generation of PM2.5. 
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Obviously, there has been a large amount of research on PM2.5 pollutions, discovering the 

socioeconomic driving factors on PM2.5. However, given these factors, which one or some factors 

have greater influence on PM2.5 pollution compared to others? Moreover, do the influences of 

these factors remain unchanged over time? 

In recently studies, many methods are used to study the driving factors governing PM2.5 

concentrations, such as hierarchical cluster analysis (Gao et al., 2014), dynamic factor analysis 

(DFA) (Yu et al., 2015), structural decomposition analysis (Djalalova et al., 2010; Guan et al., 

2014), general econometrics models (Zhang et al., 2015). While time series and cross-sectional 

data are frequently used for analysis, the estimation results of panel data could be more optimized 

than that of time series and cross-sectional data (Pao and Tsai, 2010). Moreover, due to the high 

mobility of PM2.5 and the first law of geography (Tobler, 1970), the concentration of PM2.5 in 

China is considered to have significant spatial autocorrelations. Some scholars have adopted 

spatial econometric models such as dynamic spatial panel model (Cheng et al., 2017), geographic 

weighted regression (Hu et al., 2013), spatial Durbin model (Liu et al., 2017), spatial lag model 

(SLM) and spatial errors model (SEM) (Hao and Liu, 2016; Ma et al., 2016) for correlation 

analysis. Using the spatial statistical approaches including spatial interpolation and spatial 

regression based on ground-level PM2.5 observations of 190 Chinese cities, Zhang et al. (2016) 

found that PM2.5 concentration was positively related to population size, amount of atmospheric 

pollutants, and emissions from nearby cities, but inversely related to precipitation and wind 

speeds. By using spatial lag model and spatial error model, Hao and Liu (2016) found that the 

relationship between PM2.5 concentrations and per capita GDP was inverted U-shaped. In addition, 

the vehicle population and the secondary industry have significant and positive influences on 

urban PM2.5 concentrations. Despite the various methods applied in existing research, the 

geographical detector method (GDM) has been rarely used in the analysis of correlation between 

socioeconomic factors and PM2.5 concentrations.  

Proposed by Wang et al (2010), the basic idea of GDM is that, if the values of two variables 

tend to share the similar spatial distribution, these two variables are spatially correlated. While 

relatively new, this method has some significant advantages: first, no linear assumptions are 

required in the analysis of dependent and independent variables; second, interactive influence of 
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two independent variables on the dependent variable can be detected; third, any potential factors 

can be included in the analysis without having to consider the problem of multiple collinearity. 

Though first applied in the research of geographical issues, GDM has later been used in the study 

of human health (Wang and Hu, 2012), housing price (Wang et al., 2017) aeolian desertification 

(Du et al., 2016) and air pollutions (Zhou et al., 2018). However, research on the correlation 

between PM2.5 pollutions and socioeconomic factors using GDM have focused on either single 

year (Zhou et al., 2018) or small scale of area (Lou et al., 2016). Given this, we use GDM in this 

paper to explore the correlations between PM2.5 concentrations and socioeconomic factors for a 

long period of time from 2010 to 2015 and on a national scale of China. Moreover, since each 

time the GDM analysis is performed, it is performed based on a set of cross-sectional data, e.g. 

data of a single year. Therefore, in this paper, based on data from 2000 to 2015, we can obtain the 

impact of socioeconomic factors on PM2.5 concentration for each year separately and thus the 

trend of impact for each factor over the study period.

The main goal of this paper is to identify the impact of driving factors on PM2.5 concentration in 

China. As such, we began by using ArcGIS software to extract PM2.5 concentration data from 

satellite observations over the period of 2000 to 2015. Secondly, driving factors were selected 

based on former studies. Thirdly, the temporal-spatial patterns of PM2.5 concentrations were 

explored by spatial autocorrelation analysis. Finally, the power of determinants for each driving 

factor of PM2.5 were investigated based on geographical detector method, and the trend of 

determinant power of each factor was analyzed. The main conclusions could be beneficial for 

making further endeavor to improve atmospheric environmental quality.

The remainder of the paper is organized as follows. Section 2 describes the data and presents 

the methods used in this paper. Section 3 presents the results of analysis and our main findings. 

Finally, Section 4 concludes and proposes policy recommendations.

2.Material and methodology

2.1 Data and data sources

2.1.1 Data of annual average PM2.5 concentrations 

  In existing research, data of PM2.5 concentrations were mostly derived from urban ground air 

quality monitoring sites (Djalalova et al., 2010; Zhou et al., 2018) or emission inventory database 
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(Guan et al., 2014; Li et al., 2018). However, the latest version of Ambient Air Quality Standards 

(GB 3095-2012) in China was revised and implemented in 2012, and since then the readings of 

PM2.5 concentrations were included and recorded for the first time. Therefore, considering the 

attainability of data, the PM2.5 concentrations in this paper were calculated based on global 

satellite observations provided by Socioeconomic Data and Applications Center (SEDAC2), which 

presented as annual global surface of concentrations (micrograms per cubic meter, μg/m3) of 

mineral dust and sea-salt filtered PM2.5 over the period of 1998-2016 (van Donkelaar et al., 2018). 

The annual estimates were generated following a geographically weighted regression technique 

(van Donkelaar et al., 2016). 

Global in scope as the original dataset is, a vector layer of China was used as the clip extent to 

extract the study area, covering all 34 provinces, autonomous regions and municipalities in China. 

The time range in this study is from 2000 to 2015, considering the availability of socioeconomic 

driving factors data. While the original raster grids had a grid resolution of 0.01°×0.01°, 

resampling was applied to decrease the resolution to 0.18°×0.18° to reduce the points to 29,426, 

for the reason of data rows limitation (32,767) in GeoDetector program. Then the raster grid files 

were transformed into point files by extracting the value of each point. For each year, the PM2.5 

concentrations were recorded in the point file with each point containing a value of PM2.5 

concentration. All processes were realized in ArcGIS 10.2 software. Fig. 1 shows the maps 

representing ground-level annual average PM2.5 concentration of the year 2000, 2005, 2010, and 

2015, respectively. As shown in the figure legend, the spectrum of PM2.5 concentrations range 

from a minimum of 0 μg/m³ and maximum 100.2 μg/m³. Notably, compared to the year 2010, the 

Northeast China region including Liaoning, Jilin and Heilongjiang shows an obvious and sharp 

increase of PM2.5 concentrations, while the PM2.5 pollutions in central and western regions of 

China shows distinct improvements.

Fig. 2 shows the trends of the average PM2.5 concentrations in different regions of China from 

2000 to 2015. It can be seen that among the three major economic growth poles, the PM2.5 

2 SEDAC is a data center in Earth Observing System Data and Information System (EOSDIS) of the U.S. National 
Aeronautics and Space Administration (NASA), hosted by the Center for International Earth Science Information 
Network (CIESIN) within the Earth Institude at Columbia University.
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pollution situation in the Beijing-Tianjin-Hebei region is relatively the most serious. During the 

study period, the highest annual average PM2.5 concentration in the Beijing-Tianjin-Hebei region 

reached 53.2 μg/m³, which is significantly higher than the national average. The PM2.5 pollution in 

the Yangtze River Delta region is also serious, with the highest annual average of 48.8μg/m³. The 

situation in the Pearl River Delta is relatively better, but it is still about twice the national average. 

Overall, annual average PM2.5 concentration in three major economic growth poles reached their 

highest level around 2007 and began to decline slowly before the year 2013. As we can see from 

Fig. 2, the subsequent sharp increase in the year 2013 made the overall trend appear to be on the 

rise again.

Fig. 1 Spatial distributions of annual average PM2.5 concentration in the year 2000, 2005, 2010 
and 2015
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Fig. 2. Average PM2.5 concentrations of Beijing-Tianjin-Hebei region, Yangtze River Delta, Pearl 
River Delta and nationwide from 2000 to 2015

2.1.2 Data of indicators for driving factors

Based on former researchers, the explanatory variables we selected are population density (PD), 

GDP per capita (GDPPC), number of vehicles per capita (NVPC), industry structure (IS), coal 

consumption (CC) and electricity consumption (EC).

Definitions, unit of measurement and data sources of the variables above are presented in Table 

1. All data were collected from the year 2000 to 2015. 

Table 1. Descriptions of the indicators for driving factors.
Variables Definitions Units Data sources

PD Regional resident population density 100 people/km2 China statistical yearbook

GDPPC Regional gross domestic product yuan China statistical yearbook

NVPC Possession of civil vehicles per capita vehicles China statistical yearbook

IS Percent of value added of industry in GDP percent China industry statistical yearbook

CC Regional consumption of coal 104 tons China energy statistical yearbook

EC Regional consumption of electricity 100 million kwh China energy statistical yearbook

2.2 Methods

2.2.1 Global spatial autocorrelation analysis

According to Tobler's First Law of Geography, everything is related to everything else, but near 

things are more related to each other (Tobler, 1970). To find out whether the PM2.5 concentrations 

have an impact on neighboring regions, global Moran’s I (Moran, 1950), which was invented by 
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Patrick Moran in 1950, was calculated to examine the spatial autocorrelation patterns of PM2.5 

concentration. Formula for calculating global Moran’s I is expressed as follows:
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where n is the number of sample regions, which should be at least 30 to obtain reliable results 

(Mitchel and Esri, 2005); yi and yj are the regional average PM2.5 concentrations of region i and j, 

respectively;  is the average PM2.5 concentrations of all regions; wij is the spatial weight matrix, y

which can be both contiguity-based and distance-based. In this paper, we adopt the contiguity-

based spatial weight using queen criterion3, for which the setting principle is as follows:

    (3)
1   when region  and   are adjacent;    
0   when region  and   are not adjacent;
0   when .                              
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i j
w i j

i j


 
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Usually, though not always, the value of Moran’s I ranges from -1 to 1, where positive 

correlations of air pollution exist among cities when I is positive, and negative correlations when I 

is negative. No correlations exist when I is 0. The results of Moran’s I are tested using 

standardized statistic  to test the existence of spatial autocorrelation between regions:z

     (4)
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     (5)E[ ] 1/ ( 1)I n  

The statistic z is calculated based on a random permutation procedure under 999 Monte-Carlo 

runs in this paper. Significant level of statistic z is determined by p-value, which is acceptable 

when p＜0.01 as we set in this paper. 

3 The queen criterion determines neighboring units as those that have any point in common, including both 
common boundaries and common corners.
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2.2.2 Local spatial autocorrelation analysis

While global statistics such as global Moran’s I are frequently used in the analysis of spatial 

autocorrelation, stationarity over space could be unreliable as the number of spatial observations 

increases. To test local instabilities in overall spatial association, Local Indicators of Spatial 

Association (LISA) is introduced in this paper. Here we use local Moran’s I(Anselin, 1995), of 

which the formula is as follows:

     (6)1 1
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where yi, yj, , wij and S are the same as in Equ. (1) and Equ. (2). y

The results of local Moran’s I are tested using z-score, which is computed as:
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When Ii＞0, positive correlations exist between region i and adjacent regions with similar PM2.5 

concentrations, and spatial clusters exists when z-score is statistically significant at 5% level 

(p<0.05), namely High-High cluster or Low-Low cluster; when Ii＜0, negative correlations exist 

between region i and adjacent regions with dissimilar PM2.5 concentrations, and spatial outliers 

exist when z-score is statistically significant, namely High-Low outlier or Low-High outlier. 

Both global and local autocorrelation analysis are completed in GeoDa software (Anselin, 

2005) and all data (in the form of ERIS shapefiles) used in the analysis are preprocessed in the 

ArcGIS 10.2 software.

2.2.3 Geographical detector model (GDM)

Although the study of spatial autocorrelation breaks through the hypothetical conditions under 

which the data are independent and identically distributed (IID), the problem of spatial stratified 

heterogeneity has arisen gradually. Proposed by Wang et al. (2010), geographical detector model 

wjf
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(GDM) is a newly developed method to identify the pattern of spatial stratified heterogeneity and 

the factors responsible for the risk (Wang et al., 2010). The basic idea is that if a factor (e.g. 

population density) takes on a similar spatial distribution to that of the risk (e.g. PM2.5 

concentration), this factor does contribute to the certain risk. The power of determinant of 

influencing factor  on the risk can be examined as follows:x

   (8)
 22

1 1 1
2 21 1

n n m

i i i i i ih
i i h

N N y y N
q

N N


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  
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where q is the power of determinant; N is the number of units in the whole study region; based 

on spatial stratified heterogeneity, the whole region is classified into n sub-regions, donated by 

i=1,2,…,n; Ni is the number of sub-regions; σ2 and σi
2 are the variances of the whole study region 

and sub-region i, respectively; yi is the risk observations within sub-region i;  is the mean value iy

of risk observations within sub-region i; Nih is the number of observations yi in sub-region i. As 

shown in Fig. 3, the study region, where PM2.5 concentrations are recorded in raster grid cells, 

would be transformed into dot files, each dot containing a PM2.5 concentration value. Then the 

dependent variable x and independent variable y in the study region are separated into 2 layers. In 

the x layer, the whole region is classified into n sub-regions, according to geographical factors 

(e.g. population density). The strata of y is obtained by overlaying y layer with x layer, from which 

we can calculate q. Usually, q∈[0,1], which is the power of determinant assessing the relationship 

between y and x. The closer q is to 1, the greater the influence x is on y. For instance, if q value is 

0.5, it means that x can explain 50% of y. 

It’s worth mentioning that, based on the idea of Analysis of Variance (ANOVA), GDM has no 

linear assumption on variables, which means that the multicollinearity of input factors can be 

eliminated and ignored. Therefore, adding new factors or excluding existing factors does not 

affect the results of other factors, which is one of the advantages of GDM. The analysis of GDM 

in completed in GeoDetector program, which can be obtained at http://www.geodetector.org 

(Wang and Xu, 2012).

wjf
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Fig. 3. The principle of geographical detector models

2.2.4 Natural Breaks classification method

The GDM has been proved advantageous as no linear hypothesis is needed in the analysis, 

because the dependent variables are categorial rather than numerical. Therefore, numerical 

classification technique should be applied to convert numerical variables to categorial ones. Here 

we used the Natural Breaks classification method (Jenks, 1967) as the classification method. 

Natural Breaks is a data classification method to optimize the arrangement of a set of value into 

“natural” classes. The basic idea of Natural Breaks is to seek to minimize each class’s average 

deviation from the class mean, and to maximize each class’s deviation from the means of other 

classes. Given the number of classes, threshold values for classification would be determined 

according to the algorithm of Natural Breaks. Here we classify the values of each dependent 

variable into 5 levels for each year, by the means of ArcGIS software. 

Due to space limitation, Table 2 provides an example of threshold values in classifications for 

the year 2015. In Table 2, square brackets “[” and “]” mean boundary values included, while 

round brackets “(” means boundary values excluded. Spatial distributions of classifications for 6 

dependent variables in 2015 are shown in Fig. 4. 

Table 2. Threshold values of dependent variables in 2015
threshold PD GDPPC NVPC IS CC EC 

level 1 [0.027, 1.441] [26165, 31999] [0.074, 0.085] [19.74, 23.65] [1071.92, 4728.13] [40.53, 658]

level 2 (1.441, 3.962] (31999, 43805] (0.085, 0.102] (23.65, 40.69] (4728.13, 9805.31] (658, 1334.32]

level 3 (3.962, 7.844] (43805, 52321] (0.102, 0.136] (40.69, 45.96] (9805.31, 13826.07] (1334.32, 2160.34]

level 4 (7.844, 13.42] (52321, 77644] (0.136, 0.177] (45.96, 48.42] (13826.07, 23719.94] (2160.34, 3553.9]

level 5 (13.42, 32.919] (77644, 107960] (0.177, 0.246] (48.42, 50.48] (23719.94, 40926.94] (3553.9, 5310.69]
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Fig. 4. Spatial distributions of classifications for 6 dependent variables in 2015

3.Results and discussions

3.1 Temporal-spatial patterns of PM2.5 concentrations

3.1.1 Global spatial autocorrelation analysis

As shown in Table 3, the global Moran’s I of PM2.5 concentrations for the year 2000-2015 are 

all positive and the z-score all statistically significant at the 1% level (p<0.01). Positive Moran’s I 

indicates that spatial agglomeration exists among regional PM2.5 concentrations. Regions with 
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high PM2.5 concentration values tend to cluster near other high value regions, and low values 

cluster near other low ones. Note that the Moran’s I values appear in a narrow band around 0.55 

for the year 2000-2015, with maximum value of 0.587 and minimum 0.530, which reveals a 

relatively high level of stability in spatial autocorrelation within the study period. With help of 

GeoDa software, the Moran’s I scatterplots of regional PM2.5 concentration for the year 2000-2015 

were drawn. Due to space limitation, only 4 years are reported among others. In the scatterplots 

(Fig. 5), the horizontal axis represents the standardized regional PM2.5 concentrations, while the 

vertical axis represents standardized lagged regional PM2.5 concentrations. As shown in Fig. 5, 

most of the dots appear in the first and third quadrants, meaning that the positive spatial 

autocorrelations of PM2.5 concentration exist in most regions of China during the study period. 

From the internal point distribution of the scatterplots, the positive spatial correlations of PM2.5 

has long-term stability (Anselin, 1995).

Table 3. Global Moran’s I of PM2.5 concentrations for the year 2000-2015
Year Moran’s I z-score Year Moran’s I z-score

2000 0.530 4.942*** 2008 0.566 5.275***

2001 0.560 5.437*** 2009 0.544 5.094***

2002 0.557 5.027*** 2010 0.544 4.796***

2003 0.587 5.276*** 2011 0.573 5.487***

2004 0.572 5.171*** 2012 0.558 5.172***

2005 0.544 4.963*** 2013 0.564 5.281***

2006 0.556 5.503*** 2014 0.558 5.331***

2007 0.586 5.578*** 2015 0.560 5.176***

*** The 1% level of significance (p < 0.01)
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Fig. 5. Global Moran’s I scatterplots of PM2.5 concentrations in 2000, 2005, 2010 and 2015

3.1.2 Cluster and outlier analysis (Local Moran's I)

As we can see from Fig. 5, a few dots appear in the second and fourth quadrants, which reveals 

local patterns of association in certain regions. Therefore, local Moran’s I was calculated to 

identify spatial clusters or outliers of regional PM2.5 concentrations. As previously mentioned, a 

local Moran’s I value, a z-score, a p-value, and a code representing the cluster type for each region 

would be calculated to identify spatial clusters or outliers. 

Given the space limitation, we present the calculation results of all regions in the year 2015 as 

an example (Table 4), where “HH” means High-High cluster and “LL” Low-Low. As shown in 

Table 4, the z-score of 11 regions are statistically significant at 5% level (p<0.05), among which 6 

regions are High-High cluster and 5 regions Low-Low. No High-Low outliers nor Low-High 

outliers exist between any regions, which reveals that no regions tend to cluster with regions of 
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dissimilar PM2.5 pollution. 

Table 4. Local Moran’s I of 34 regions in the year 2015
Region Regional average PM2.5 

concentration (μg/m3)

Local Moran's I z-score p-value Cluster type

Beijing 48.918 2.936 2.196** 0.028 HH

Tianjin 75.632 3.982 2.962*** 0.003 HH

Hebei 45.295 4.230 1.892 0.058  

Inner Mongolia 11.120 -0.095 0.060 0.952  

Liaoning 46.652 0.432 0.318 0.751  

Jilin 44.327 -0.078 0.008 0.994  

Heilongjiang 30.693 -0.006 0.040 0.968  

Shanghai 61.244 2.824 2.114** 0.035 HH

Zhejiang 30.494 0.062 0.104 0.917  

Jiangsu 65.003 7.970 4.328*** 0.000 HH

Anhui 55.756 6.613 3.071*** 0.002 HH

Fujian 19.079 0.031 0.074 0.941  

Jiangxi 32.571 0.166 0.157 0.875  

Shandong 61.658 7.795 4.235*** 0.000 HH

Henan 50.345 3.697 1.753 0.080  

Hubei 40.975 1.171 0.611 0.541  

Hunan 35.490 -0.043 0.063 0.950  

Guangdong 26.453 0.111 0.128 0.898  

Guangxi 28.738 0.077 0.106 0.915  

Hainan 14.623 - - -  

Chongqing 25.849 0.171 0.157 0.875  

Sichuan 12.769 4.683 2.085** 0.037 LL

Guizhou 23.508 0.576 0.354 0.723  

Yunnan 14.960 2.022 1.147 0.252  

Tibet 4.617 5.320 2.911*** 0.004 LL

Shaanxi 23.141 0.863 0.449 0.654  

Gansu 10.745 5.237 2.449** 0.014 LL

Qinghai 4.966 5.546 3.032*** 0.002 LL

Ningxia 17.488 1.503 0.969 0.333  

Xinjiang 7.900 4.063 2.525** 0.012 LL

Shanxi 25.196 -0.118 0.002 0.999  

Taiwan 6.971 - - -  

Hong Kong 23.700 0.063 0.095 0.924  

Macau - - - -  
** The 5% level of significance (p < 0.05)
*** The 1% level of significance (p < 0.01)

Representative examples of local Moran’s I scatterplots in 2000 and 2015 are presented in Fig. 

6, where orange area corresponds to “HH” and blue area “LL”. As shown in Fig. 6, High-High 
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clusters are mainly distributed in Beijing, Shandong, Jiangsu and so on, while Low-Low cluster 

mainly distributed in Xinjiang, Tibet, Qinghai and so on. During the study period 2000-2015, 

frequencies of being cluster are counted and presented in Fig. 7, where Jiangsu, Shandong, Anhui 

and Tianjin manifest as HH in every year, while Xinjiang, Tibet and Qinghai manifest as LL in 

every year. In general, it appears that high PM2.5 concentration clusters mainly distribute in the 

Beijing-Tianjin-Hebei region and the Yangtze River Delta region with long-term stability. 

From the results above, it can be seen that the spillover effect of PM2.5 pollution does exist. 

Despite stricter environmental regulations and lower secondary industry proportion, Beijing 

manifest as HH in most of years over the study period (12 out of 16). This fact shows that short-

distance industrial transfer does not lead to a complete improvement of the atmospheric 

environment. In fact, industrial transfer is regarded by many environmental economists as one of 

the important reasons for the improvement of environmental quality in developed countries, and 

may also be the real motivation behind the EKC hypothesis, in which environmental quality 

would first deteriorate and then improve along with the economic growth (Stern, 2004). However, 

due to the spatial spillover effects of air pollution, Beijing's industrial transfer to neighboring 

regions does not lead to improvements in air quality, nor can it obtain all the benefits of strict 

environmental regulations (Fredriksson and Millimet, 2002).

Fig. 6. Local Moran’s I scatterplots in 2000 and 2015
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Fig. 7. Frequencies of being HH or LL during the year 2000 to 2015

3.2 Driving factors on PM2.5 concentrations

  As described in the previous section, positive spatial autocorrelations exist mainly in the 

relatively developed regions. The agglomeration pattern of regional PM2.5 concentration was 

influenced by many factors. In order to identify the driving factors and their power of determinant 

on PM2.5 pollution, geographical detector model was employed in this section. Here we examined 

the effect of 6 socioeconomic indicators on PM2.5 concentration by the means of GeoDetector 

program. Definitions of 6 indicators are shown in Table 1. Since the variables of driving factors 

used in GDM must be categorial variables, the Natural Breaks classification method is applied to 

convert the original dependent variables from numerical variables to categorial ones, including 

PD, GDPPC, NVPC, IS, CC and EC, during the study period of 2000 to 2015. The power of 

determinant values (q) were then calculated using GDM (Table 5), and all the results of q values 

are significant at 1% level (p<0.01). Consider the results of the year 2015, based on the power of 

determinant on spatial heterogeneity, the driving factors can be ranked as follow: PD > IS > 

GDPPC > EC > CC > NVPC. 

Population density, compared to other driving factors, contributed a remarkably prominent 

impact on PM2.5 pollution in China, generating a q value from 0.425 to 0.658. Existing studies 

have demonstrated that anthropogenic emissions were the key factors which significantly give rise 

to PM2.5 concentrations (Karagulian et al., 2015; Lou et al., 2016). Anthropogenic emissions are 
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also the essentially and originally causes of secondary aerosols, which are the most abundant 

source of PM2.5(Liang et al., 2016). Salim and Shafiei (2014) found that high population density 

lead to more non-renewable energy consumption (Salim and Shafiei, 2014), which is generally 

believed to be a major source of PM2.5. This idea is also supported by the relatively high q values 

of coal consumption, which indicate significant correlations between coal consumption (CC) and 

PM2.5 concentrations. 

As shown in Table 5, GDP per capita has a q value ranging from 0.042 to 0.210, revealing a 

rather significant impact on PM2.5 concentration. Represented by GDP per capita, economic 

development is usually believed to have non-ignorable effect on environmental degradation. In the 

famous theoretical hypothesis of Environmental Kuznets Curve (EKC), economic development is 

regarded to have an inverted U-shaped relationship with environmental degradation, as indicated 

by Simon Kuznets (Kuznets, 1955). However, as to whether EKC really exists, different studies 

have reached different conclusions. For example, by detailed review of 35 literatures on EKC, 

Kaika et al. (2013) found that conflicting results were reached depending on different analysis 

(cross-country or time-series) and on different periods under analysis, including positive, inverted 

U-shaped or non-significant relationships between economic growth and environmental 

degradation.

The q values of NVPC indicate the impact of vehicle emissions on PM2.5 concentrations, which 

in Table 5 shows a range from 0.139 to 0.376, meaning that NVPC can explain about 13.9% to 

37.6% of the annual average PM2.5 concentration. As revealed in the China Vehicle 

Environmental Management Annual Report (2018), vehicle emissions accounts for about 10% to 

30% of PM2.5 sources, varies according to different cities. Although the contribution of PM2.5 

concentrations in most cities is dominated by coal combustion, in some cities, vehicle emissions 

have become the primary source of PM2.5 in 2017 (MEE, 2017).

The factor EC generates a q value from 0.209 to 0.573, indicating a significantly high 

determinant power of electricity consumption on PM2.5 pollutions. As a matter of fact, up to 70 % 

of electricity consumption happen in the secondary industry, while the rest happen in agriculture, 

service sector and residents. Since electricity consumptions such like agricultural irrigations or 

household electrical appliances have almost little impact on air quality. Therefore, we can assume 
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that industrial electricity consumption has important influence on PM2.5 concentration. 

Interestingly, q values of industry structure (IS) are obviously lower than those of electricity 

consumption (EC), which result in the inconsistence between strong influence of industrial 

electricity consumption and smaller influence of industry structure. One possible explanation 

could be that: in this paper, IS is measured by the percentage of value added of industry in GDP, 

which can probably not best reflect the environmental impact of industrial activities. In other 

words, compared to industrial electricity consumptions, spatial distributions of industrial 

economic output have lower similarity to the spatial distribution of PM2.5 concentrations. With 

energy efficient technologies applied, environmental impact of economic activities become 

smaller (Kaika and Zervas, 2013).

Table 5. Power of determinant value (q) of each driving factor from 2000 to 2015
PD GDPPC NVPC IS CC EC

2000 0.475 0.067 0.252 0.309 0.377 0.473

2001 0.548 0.165 0.271 0.294 0.337 0.383

2002 0.565 0.098 0.175 0.298 0.380 0.449

2003 0.523 0.078 0.144 0.360 0.417 0.573

2004 0.658 0.115 0.272 0.242 0.318 0.462

2005 0.593 0.184 0.245 0.333 0.314 0.450

2006 0.586 0.080 0.139 0.386 0.288 0.366

2007 0.615 0.063 0.193 0.376 0.296 0.375

2008 0.590 0.042 0.183 0.229 0.252 0.434

2009 0.568 0.141 0.248 0.305 0.244 0.384

2010 0.562 0.146 0.269 0.199 0.294 0.387

2011 0.574 0.202 0.268 0.341 0.362 0.415

2012 0.604 0.121 0.162 0.239 0.229 0.284

2013 0.548 0.169 0.166 0.376 0.184 0.378

2014 0.575 0.113 0.219 0.376 0.179 0.423

2015 0.425 0.210 0.147 0.318 0.184 0.209

All the results of q value are significant at 1% level.

To obtain a more intuitive understanding of q values in all years, the results were illustrated in 

the box-whisker plot (Fig. 8), from which we can know: in the study period, the mean of q values 

for population density is relatively the highest among others, following electricity consumption, 

industry structure, coal consumption, number of vehicles per capita and GDP per capita. With the 

smallest interquartile range, PD has an influence of long-term stability on PM2.5 pollution, which 

means that population density can predominantly explain the spatial heterogeneity of PM2.5 

wjf
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pollution stably. EC and GDPPC also have relatively narrow interquartile ranges. There are 

relatively high dispersions in data of factors like NVPC, IS and CC, revealing unstable or 

changing patterns of trend for them on PM2.5 pollution.

Fig. 8. Box-whisker plot of q values for each driving factor over 2000 to 2015

To explore the changing patterns of these driving factors, the results of q values were also 

illustrated in scatter plots (Fig. 9). The year trend lines were pictured by quadratic polynomials, 

with R-squared labeled near the lines. As shown in Fig. 9, the trend of PD is basically stable over 

the study period, revealing a gentle trend to rise first and then fall. Long term uptrend exists in 

both GDPPC. The upward trend of GDPPC indicates an increasing power of determinant on PM2.5 

concentrations, meaning that the relationship between GDPPC and PM2.5 has an increasing 

marginal effect. 

Interestingly, though relatively high at the very beginning, the q values of CC and EC show 

remarkable decline over the years, which means the impact of these two factors on PM2.5 

concentrations have weakened gradually. One possible explanation could be the implementation 

of air pollutant standard policies. Since thermal power generation accounts for up to 70% of the 

country’s total power generation, and thermal power coal consumption accounts for 50% of total 

coal consumption, the policies for thermal power plants can greatly affect the environmental 

impact of coal consumption. The Emission Standard of Air Pollutants for Thermal Power Plants 

(GB13223-2011) (MEE, 2011) was first published by the Chinese Ministry of Environmental 
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Protection in 1991 and then revised in 1996, 2003 and 2011, with increasingly stringent emission 

standards. In order to meet stringent air emission standards, for example, post-combustion 

technologies or emission monitoring systems have been implemented to lower the impact of coal 

consumption on PM2.5 concentrations. Similarly, in China, industrial electricity consumption 

accounts for 70% to 75% of total electricity consumption (2000-2016). Therefore, the q values of 

EC largely reflect the impact of industrial activities on PM2.5 concentrations. From this we can 

argue that, compared to value added of industry in GDP, industrial coal consumption and 

industrial electricity consumption can better explain the environmental press of industrial activity.

As to NVPC and IS, the R2 values of trend lines are 0.0253 and 0.0636, respectively, meaning 

that nonnegligible fluctuations of determinant power exist for these two indicators. Therefore, the 

trends of NVPC and IS are not that clear as with the other factors. Nevertheless, it is notable that, 

in spite of the increasing ownership of vehicles and the elevating contribution of nitrate which 

mainly from vehicle emission, the determinant power of NVPC did not reveal steady upward trend 

along the study period. The possible reason for this might have been the reduction in air pollutant 

emissions from vehicles, influenced by air pollution control policies. 

According to existing research, ions in the air contributing (approximately 30%) to PM2.5, 

mainly include nitrate ions and sulphate ions, of which nitrate ions are mostly formed by nitric 

oxide (NOx) emitted from vehicles. However, despite the increasing ownership of vehicles, air 

pollutant emissions from vehicle have been declining recently. For example, vehicle emission of 

NOx was firstly included and recorded in 2012, from when the emissions of NOx have reduced 

from 5.829 million tons to 5.328 million tons in 2017 (MEE, 2018), which would reduce the 

impact of vehicles emissions on PM2.5 concentrations through reduced nitrate formations. 

Moreover, series of stricter standards for new vehicle production and vehicle fuels have been 

adopted ever since the year 2000. For instance, the National I Standard, National II Standard, 

National III Standard and National IV Standard for light gasoline vehicles were enforced in 2001, 

2005, 2008 and 2011, respectively (MEE, 2018), making vehicle emissions meeting more and 

more strict emission standards. Other favorable policies include elimination of older cars which 

are heavy polluting vehicles, and increasing promotion of new energy vehicles.
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Fig. 9. Scatter plots with trend lines of q values for each driving factor over 2000 to 2015
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  Moreover, up on closer inspection, we can find an interesting fact that the q values of GDPPC, 

IS, NVPC, CC and EC all show an obvious decrease in the year 2012 compared to the previous 

year. Combined with the trend of average PM2.5 concentrations in China (Fig. 2), in which the 

average PM2.5 concentration of 2012 shows a relatively lowest level among recently years, we 

believe that, there exist other potential factors making significant impact on PM2.5 concentrations. 

Specifically, the impact of policy factors such as stricter environmental regulations, has made the 

impact of the drivers examined in this paper less effective. For instance, the Ambient Air Quality 

Standards (GB3095-2012) was implemented in the year 2012, in which the readings of PM2.5 were 

included and monitored for the first time in China (MEE, 2012). Another example is, with the goal 

of improving air quality, the Ministry of Environmental Protection of China has signed the 

“Responsibility Letter for Air Pollution Prevention and Control Targets” with 31 provinces, 

municipalities and autonomous regions in China in the year 2014, clearly specifying the targets of 

decreasing the average annual concentration of PM2.5 in each region. The implementation of these 

regulations has aroused the attention of both the government and the public to the environmental 

hazards of PM2.5, and may also greatly promote the governance of PM2.5 and the improvement of 

air quality.

4.Conclusions and policy recommendations

  In this paper, we firstly studied the temporal-spatial patterns of PM2.5 concentrations using 

global Moran’s I and LISA. Based on the results of spatial autocorrelation analysis, geographical 

detector method was applied to explain the spatial heterogeneity of regional PM2.5 concentrations 

in China over the study period from 2010 to 2015 and identify the driving factors and their impact 

on PM2.5 pollution. The main results are as follows:

1) PM2.5 concentrations in China showed a notably rise from 2000 to 2007 and a basically flat 

and slightly downward trend from 2007 to 2015. Among the three major economic growth poles, 

the PM2.5 situations in the Beijing-Tianjin-Hebei region (ranging from 30.6 μg/m³ to 53.3 μg/m³) 

and the Yangtze River Delta region (ranging from 28.8 μg/m³ to 48.8 μg/m³) are relatively serious, 

with the annual average reaching the highest both in 2007. The annual average concentration of 

PM2.5 in the Pearl River Delta region is relatively low (ranging from 17.5 μg/m³ to 35.0 μg/m³), 

but it is still about twice the national average (ranging from 11.5 μg/m³ to 18.7 μg/m³). 
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2) Regional PM2.5 concentrations revealed significant global and local spatial autocorrelation. 

The global Moran’s I of PM2.5 concentrations over the study period indicates a stable and high 

level of spatial autocorrelations. With the help of LISA, we found that High-High cluster mainly 

distributed in relatively developed regions such as Beijing, Shandong, Jiangsu, and Shanghai, 

while Low-Low cluster mostly distributed in western China such as Xinjiang, Tibet and Qinghai. 

No sign of significant High-Low outlier or Low-High outlier exist.

3) By the means of geographical detector, all the 6 driving factors explored in this paper have 

significant impact on PM2.5 concentration. From a long-term perspective, population density, 

among others, has the greatest power of determinant on PM2.5 pollution, followed by electricity 

consumption, industry structure, coal consumption, number of vehicles per capita and GDP per 

capita. The impact of coal consumption and electricity consumption has a significant downward 

trend along the study period, while the impact of population density show a trend to first rise and 

then fall.

4) From the results of GDM analysis, we found that the impact of most factors (PD, NVPC, 

CC and EC) showed downward trends. Even though the trend of NVPC had fluctuations, it had no 

dramatical raise during the study period. Therefore, consider the totally upward trend of PM2.5 

pollution during the study period, there might be other factors influencing PM2.5 concentration 

with increasing power of determinant, which leaves us questions about the impacts of other factors 

on PM2.5 pollution. Moreover, despite the power of determinant of certain factors, in GDM 

analysis, the influence directions cannot be told, which is also a problem to be overcome in future 

research.

Based upon the findings above, we propose some policy recommendations as follows.

1) Due to the significant spatial autocorrelations between regions, the government should pay 

attention to the importance of regional joint governance mechanisms in the PM2.5 governance 

process. Considering the spatial spillover effect of air pollution, air quality improvement brought 

by short-distance industrial transfer can only be short-term and temporary. In addition, if regional 

linkages of environmental regulation are not emphasized, implementation of strict environmental 

regulations in a separate region cannot bring the full benefits to this region. 

2) Strict emission standards and exhaust gas purification technologies turned out effective and 
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need further implementations. Even though the total coal consumption in China increased year by 

year during the study period, the PM2.5 pollution situation was basically flat and slightly decreased 

from 2006 to 2012. Specifically, though the proportion of lignite imports rose from 0.9% in 2004 

to 12.3% in 2010, the increasing consumption of lignite did not result in increasing impact on 

PM2.5 pollution, consider the combustion of lignite would cause heavy pollutant emission.  In 

fact, according to the analysis results above, q values of coal consumption have been declining 

significantly during these years. This reveals the importance of clean utilization of coal, namely, 

strict emission standards, advanced exhaust gas purification technologies, and a sound supervision 

system for coal consumptions. As is widely believed, the high proportion of coal consumption in 

the total energy structure in China would not change in the near future, thus, clean utilization of 

coal should be enhanced and continued.
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