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a b s t r a c t

With growing haze episodes in China, comprehensive air quality management has been frequently
proposed and implemented during major events or heavy pollution episodes. However, except for such
heavily polluted regions as the Beijing-Tianjin-Hebei region, regional integration of air quality man-
agement in other parts of China has rarely been discussed, due to limited research on the spatio-
temporal aggregation of PM2.5 concentrations. To fill this gap, we employed a repeated-bisection
method, which supports high dimensional datasets and bootstrap clustering, for spatio-temporal clus-
tering of city-level PM2.5 concentrations in China using time-series PM2.5 data and the test of
geographical detector proved the reliability of the clustering. Since no weighted geographical informa-
tion was employed during the clustering process, this research suggested that PM2.5 concentrations in
China were of strong spatial self-aggregation effects, which proved the necessity for regional integration
of air quality management. Based on the spatio-temporal clustering of PM2.5 concentrations, we further
proposed six divisions of PM2.5 concentrations across China, within which PM2.5 concentrations display
similar variation patterns and specific emission-reduction measures can be implemented accordingly.
The division output of PM2.5 concentrations was highly consistent with the recent “2017 air pollution
prevention and management plan for the Beijing-Tianjin-Hebei region and its surrounding areas” plan,
indicating the reliability and practical significance of the national division of PM2.5 concentrations based
on spatio-temporal clustering. The findings and methodology from this research provide useful reference
for improving regional air quality management by better understanding spatio-temporal aggregation of
PM2.5 concentrations.

© 2018 Elsevier Ltd. All rights reserved.
1. Introduction

With rapid social and economic growth in China, growing
emphasis has been placed on the sustainability of people's living
environment. Amongst a variety of environmental elements,
ambient air quality is one of the most concerning issues due to
severe air pollution episodes that have frequently occurred in
recent years. The haze, which is caused by high PM2.5 (fine partic-
ulate matter) concentrations, has attracted worldwide attention
since the outbreak of one serious haze episode in Beijing, in
December 2012. During this haze episode, the city suffered from
the worst PM2.5 pollution in history (the highest hourly PM2.5
concentrations once reached 886 mg/m3) (Zhang et al., 2013). The
haze episodes been witnessed across China at a much higher fre-
quency since then. For 2014, more than 90% of monitored cities in
China failed to satisfy the guideline of annual mean PM2.5 con-
centrations, 35 mg/m3, indicating that serious air pollution has
become a national environmental issue.

Recent studies revealed that airborne pollutants, especially
PM2.5, were closely related to all-cause and specific-cause mortal-
ity. Garrett and Casimiro (2011) revealed that the relative risk for
cardiovascular disease-related mortality for alder groups (>65
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years) was 2.39% (95%C.I. 1.29%, 3.50%) for each 10 mg/m3 PM2.5
increase. Qiao et al. (2014) found an interquartile range increment
in PM2.5 concentration (36.47 mg/m3) led to a 0.57% [95% confidence
interval (CI): 0.13%, 1.01%] increase in emergency room visits.
Through experiments in nine French cities, Pasca et al. (2014)
observed a notable effect of PM2.5 (þ0.7%, [�0.1; 1.6]) on all year
non-accidental mortality for all age groups. In five European cities,
estimation results suggested that a 12.4 mg/m3 increase in the PM2.5
concentration can lead to 3.0% [� 2.7%; 9.1%] increase in cardio-
vascular mortality (Lanzinger et al., 2015). In this case, more and
more cities have been added to a national network of air quality
monitoring. Furthermore, general public and local governments in
China are placing increasing emphasis on a better understanding of
airborne pollutants from different perspectives. Since the outbreak
of serious haze events in China, a large body of studies has been
conducted recently to analyze characteristics of PM2.5 in Beijing (Liu
et al., 2014; Chen et al., 2015; etc.), Wuhan (Zhang et al., 2015; etc.)
and a large number of major cities across China (Cao et al., 2012;
Zhang et al., 2016; etc.). At a large scale, Ma et al. (2014)
employed aerosol optical depth (AOD) retrieved by MODIS and a
national-scale geographically weighted regression (GWR) method
to map spatial variations of PM2.5 concentrations across China.

Recent studies have proved that air pollution in China had
strong regional characteristics in the Beijing-Tianjin-Hebei region
(Wang et al., 2015) and Shandong Province (Yang and Christakos,
2015). Chen et al. (2016a,b) further proved the strong bidirec-
tional interactions between the air quality in neighboring cities.
Given the key role of regional transport of airborne pollutants in
affecting local air quality, understanding the spatio-temporal vari-
ation patterns of airborne pollutants at a regional scale is more
likely to provide comprehensive and reliable reference for
improving both local and regional air quality. Take the Beijing-
Tianjin-Hebei region for example. The Beijing-Tianjin-Hebei re-
gion is one of the most influential and polluted regions in China.
Therefore, a strategy of regional air pollution management has
been proposed for the Beijing-Tianjin-Hebei area. Within the
framework of the proposed Beijing-Tianjin-Hebei integration, a
high priority is given to the regional, instead of isolated local,
environmental protection. Recently, based on the analysis of spatio-
temporal variation of PM2.5 concentrations in Beijing and its
neighboring cities, Ministry of Ecology and Environment of the
People's Republic of China (MEP) recognized that a regional PM2.5
transport network, which included Beijing, Tianjin, Hebei Province,
Shandong Province, Shanxi Province and Henan Province. To
further promote regional integration of air quality management,
Ministry of Environmental Protection of the People's Republic of
China released “2017 air pollution prevention and management
plan for the Beijing-Tianjin-Hebei region and its surrounding areas”
(MEP, 2017). According to this plan, unified emission-reduction
measures will be implemented simultaneously in Beijing, Tianjin
and another 26 cities (well-known as “2 þ 26”) within the four
neighboring provinces during local and regional heavy pollution
episodes. This“2 þ 26” regional integration strategy for air quality
improvement has been conducted twice in Beijing during two
heavy pollution episodes in November 2017 and March 2018, and
achieved satisfactory results in reducing local and regional PM2.5

concentrations. With the implementation of long-term and
contingent regional emission-reduction measures, the peak PM2.5

concentrations in Beijing during heavy pollution episodes can be
reduced by 20% (Cheng et al., 2017) and the annually mean PM2.5

concentrations in Beijing dropped to 58.0 mg/m3 in 2017 from
89.5 mg/m3 in 2013.

Although regional-integration air quality protection in the
Beijing-Tianjin-Hebei region was effective, it remains challenging
to transfer this strategy to other regions in China. The main
difficulty lies in properly dividing China into several regions, within
which airborne pollutants follow similar variation patterns, and
implementing comprehensive policies, regulations and laws to
improve regional air quality accordingly. Due to the notable varia-
tion across China (Chen et al., 2018), a better understanding of
spatio-temporal patterns of PM2.5 concentrations across China is
required for proper division of PM2.5 concentrations and con-
ducting regional-integration air quality protection. Traditional
spatial clusteringmethods based on socio-ecological attributes (e.g.
GDP and population) are not suitable for clustering based on time-
series data (Zhang and Cao, 2015). This is because traditional spatial
clustering methods can usually include only one value for a specific
feature, ignoring the temporal variations of the feature. Therefore,
traditional spatial clustering using the average of time series data
(Austin et al., 2013) can cluster those areas, which have close
average PM2.5 concentrations, yet a completely different time series
of PM2.5 concentrations, into one group and leads to impractical
clustering effects. For instance, Beijing and Chengdu, which located
in different regions, have a similar annual mean PM2.5 concentra-
tions and distinct PM2.5 variation patterns, may be wrongly clus-
tered into the same group based on pure spatial clustering
methods.

To fill these gaps, this research aims to investigate spatio-
temporal pattern of PM2.5 concentrations across China by clus-
tering time series PM2.5 data and appropriately divide the entire
country into several regions, within which PM2.5 concentrations
have similar temporal variation patterns. Based on the clustering
outputs and characteristics of PM2.5 concentrations within each
division, environmentalists and decision makers can propose spe-
cific measures accordingly. Furthermore, some potential sugges-
tions are discussed for improving local and regional air quality
based on proper division of PM2.5 concentrations.

2. Materials and methods

2.1. Data sources

PM2.5 data was obtained from the website (PM25.in). This
website collects official PM2.5 data provided by China National
Environmental Monitoring Center (CNEMC) and publishes hourly
air quality information for cities which have been monitored.
Before Jan 1st, 2015, there were 190 cities whose PM2.5 concen-
trations were monitored. Since Jan 1st, 2015, the number has
increased to 367 (Fig. 1). By calling a specific API (Application
Programming Interface) provided by PM25.in, we collected hourly
PM2.5 data, and daily PM2.5 concentrations for each city were
calculated by averaging over hourly PM2.5 concentrationsmeasured
at all available local observation stations. Since the complete na-
tional PM2.5 monitoring network was established in January 2015,
for a consecutive division of different seasons (the beginning of
spring in China is generally considered as March) and multi-year
analysis, we collected PM2.5 data from March 1st, 2015 to
February 28th, 2018 for following analysis.

2.2. Study area

For a comprehensive understanding of spatio-temporal patterns
of PM2.5 concentrations across China，363 of 367 cities (due to the
lack of continuous data, 4 cities，Ali, Changdu, Shannan and Chuji,
were excluded) within the national air quality monitoring network
were selected for this research. These cities included most major
cities (Beijing, Shanghai, Guangzhou, etc.) in China. For regions (e.g.
Beijing-Tianjin-Hebei region) with heavy air pollution, the density
of monitored cities was much higher than that for regions with
good air quality. As demonstrated in Fig. 1, the PM2.5 concentrations



Fig. 1. The spatial distribution of ground PM2.5 observation stations across China since
January 1st, 2015
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for these monitored cities can well present the spatial distribution
of air pollution across China.
2.3. Spatio-temporal clustering method

Due to the seasonal characteristic, we divided the time series
data into four groups according to seasons, namely Spring (from
March 1st to May 31st), Summer (from June 1st to August 31st),
Autumn (from September 1st to November 31st) and Winter (from
December 1st to February 28st). For each group, each city was
treated as an object and the PM2.5 concentrations of each day in this
season in three years were attached to them as high-dimensional
attributes. The Spring and Summer group have 276 attributes
respectively, Autumn group has 273 attributes and Winter group
has 271 attributes. The large number of high-dimension attributes
more likely leads to clustering outputs that fully considers the
temporal variation of PM2.5 concentrations. After the original data
sources have been pre-processed to meet format requirements of
the software, only few parameters are required to run this gcluto
model: Similarity Function (a function to explain the similarity
between two objects), Criterion Function (a function to evaluate the
output clusters during the clustering process for adjusting clus-
tering algorithms), Number of Iterations (Number of iterations
during the clustering process), Number of Trials (Number of Trials
before the clustering to find the optimal clustering parameters)，
Number of Clusters (The number of output clusters). As introduced,
the appropriate Similarity Function and Criterion Function for
repeated-bisection clustering are Cosine and I2. Through pre-
liminary tests, we found the increase of Iterations and Trials from
10 to 100 led to no difference in the clustering result. Therefore,
considering the clustering accuracy and computational efficiency,
the Number of Iterations and Trials was set 10 for this research. The
key parameter for most clustering methods is the Number of
Clusters.

The gCLUTO (Graphical Clustering Toolkit), which has excellent
capability in processing high-dimensional data was used to carry
out the clustering. Meanwhile, gcluto supports bootstrap clustering
for managing the uncertainty in monitoring data and thus pro-
ducing reliable results (Zhao and Karypis, 2003).

The repeated-bisection clustering method in gCLUTO, which
conducts clustering by recursively dividing the selected group into
two groups until the stopping criteria are met (Desikan and Grace,
2013), is employed for this research. Kou et al. (2014) evaluated six
frequently used clustering algorithms (k-means,
expectationemaximization (EM), COBWEB, repeated-bisection
method, graph-partitioning algorithm and density-based method)
using a multiple criteria decision making (MCDM) based approach
and suggested that the repeated-bisection method outperformed
other methods in all data sets. Zhao and Karypis (2004) also
pointed out that the repeated-bisection method led to clustering
results with high quality and low computational resources.

When running the repeated-bisection method, we did not
include geographical coordinates of cities in their attributes to force
spatial continuity although the location information is usually
given the largest weight in most spatial clustering methods.
Through this clustering strategy, it is highly possible that two
remotely distributed cities are clustered into the same group.
Therefore, if there exists clear regional patterns of PM2.5 concen-
trations, spatial aggregation effects of PM2.5 concentrations can be
revealed effectively.

The Cosine function in formula (1) is used as the similarity
measure (Zhao and Karypis, 2004) whilst the clustering criterion
function in equation (2) is optimized using a greedy strategy (Zhao
and Karypis, 2004).

cos
�
di; dj

� ¼ dti dj
didj

(1)

where di and dj are vectors containing attributes of two objects to

be clustered, dt
i is the transpose of di, di is the modulus of di.

I2 ¼
Xk
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
di;dj2Si

cos
�
di; dj

�s
(2)

where k is the numbers of clusters, Si is the ith cluster, di and dj are
two objects belonging to Si.
2.4. Assessment for spatio-temporal clustering

To evaluate the clustering result, the traditional “ISim” (average
of similarity between the objects within one cluster) and “ESim”

(average of similarity between the objects of one cluster and ob-
jects in other clusters) are not suitable, as the two metrics mix
PM2.5 concentrations of all days in one specific season (all high-
dimension attributes) together. By clustering cities with daily
PM2.5 concentration as high-dimensional attributes, clusters of
cites with similar temporal variations PM2.5 concentrations can be
extracted. Therefore, the aim for evaluating spatio-temporal clus-
tering was to examine whether the temporal variation of PM2.5
concentrations in cities categorized in the same cluster was similar
and notably different from that of cities categorized in other groups.

Geodetector is a widely used method to analyze spatial pattern
(Wang et al., 2016). It's has been employed and proved its efficiency
in the spatial pattern analysis based on PM2.5 concentrations and
socioeconomic development (Zhou et al., 2018), multiple de-
terminants (Zhan et al., 2018), anthropogenic and ecological factors
(Yun et al., 2018) and natural and socioeconomic factors (Yang et al.,
2018). The q index of Geodetector which measures the difference
among clusters versus the similarities within clusters, is a reliable
indicator for evaluating spatio-temporal clustering of PM2.5 con-
centrations. Since the spatio-temporal clustering for this research is
to group together cities that have similar temporal variations of
time series PM2.5 data, the q index for each day is calculated as
formula (3) and the average q index used to assess the clustering
results is calculated as formula (4)
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a. Spring b. Summer

c. Autumn d. Winter

Fig. 2. 3D mountain view for output clusters based on spatio-temporal clustering of
PM2.5 concentrations across China from 2015 to 2018.

Fig. 3. Spatio-temporal clustering of PM2.5 concentrations across China for different
seasons.
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qt ¼ 1� 1

Nd2t

XL
h¼1

Nhd
2
ht (3)

Where qt is the q value of the day t, N denotes the number of all
cities joining the clustering, L is the number of clusters, h is the ID of

each cluster, Nh is the number of cities in cluster h, d2t is the total

variance of PM2.5 concentrations of all cities on day t, d2ht is the
variance of PM2.5 concentrations of cities in stratum h on day t.

qavg ¼
XT
t¼1

qt (4)

where qavg is the average of time series qt , T is the number of days in
the season covered by the clustering.

qt falls into [0, 1], 0 if PM2.5 concentrations of cities in different
clusters on day t have no difference, 1 if the PM2.5 concentrations of
cities on day t are the same within each cluster and are completely
distinct from other clusters. Large qt indicated a satisfactory clus-
tering result. Similarly, a large qavg and spatially continuous clusters
indicates an efficient regional differentiation of PM2.5 concentra-
tions across China.

3. Results and discussion

3.1. Spatio-temporal clustering of PM2.5 concentrations using
different data sources

Since previous studies (Chen et al., 2016a,b, 2017.) have shown
significant seasonal variations for PM2.5 concentrations, we divided
the study period into four seasons according to traditional cate-
gory: Spring, from March 1st, 2015 (2016, 2017) to May 31st, 2015
(2016, 2017); Summer, from June 1st, 2015 (2016, 2017) to August
31st, 2015 (2016, 2017); Autumn, from September 1st, 2015 (2016,
2017) to November 30th, 2015 (2016, 2017); Winter, fromDecember
1st, 2015 (2016, 2017) to February 29th, 2016 (2017, 2018). The
spatio-temporal clustering of national PM2.5 concentrations at city
level was conducted for each season respectively. The gcluto exe-
cutes clustering automatically (Rasmussen and Karypis, 2004). A
3D mountain map can be produced to evaluate the quality of
clustering. As displayed in Fig. 2, each 3D peak represents a cluster.
Distances between neighboring peaks are inverse to the similarities
between to clusters, distant peaks indicate acceptable inter-cluster
differences whilst half-merged double peaks indicate insufficient
inter-cluster differences. The height of each peak is proportional to
average similarities of object within the same cluster, and its vol-
ume is proportional to the number of objects. The color of each
peak indicates standard deviation of objects belonging to the cor-
responding cluster. Red represents low deviation, whereas blue
represents high deviation.

In this research, we adjusted this parameter gradually and
selected the appropriate cluster number accordingly for each sea-
son. Based on a visual check of 3D view, the optimal cluster number
is the one that leads to the most peaks and retains no half-merged
peaks. We experimented clustering repeatedly and compared the
visual effects of 3D mountain maps to find a proper number of
clusters for each season. For each season, the 3D peaks for each
season are demonstrated as Fig. 2. The distinct mountain peaks
indicated a satisfactory discrimination among clusters. For each
mountain, the warm color indicates a small inner-cluster standard
deviation whilst the cold color indicates a large inner-cluster
standard deviation. The q value is controlled by the hierarchical
differentiation of the research sample and how clustering methods
explain the differences among clusters. Therefore, the range of q
value varies significantly for different data sets and there is no strict
threshold for an acceptable q value. The relative comparison of q
value between similar studies demonstrated the reliability of the
clustering-methods and parameter setting. Therefore, we collected
the calculated q value (directly citied from references) for national
PM2.5 clustering based on different influencing factors by recent
studies (Zhou et al., 2018; Zhan et al., 2018; Yun et al., 2018; Yang
et al., 2018), which ranged from 0.02 to 0.12, 0.16e0.34,
0.01e0.32, 0.01e0.12, 0.10e0.56 and 0.16e0.29 respectively.
Comparedwith clustering outputs from these studies, the average q
value of the spatio-temporal clustering outputs for each seasonwas
0.23 (Significance 0), 0.29 (Significance 0)，0.26 (significance 0)
and 0.31 (significance 0) respectively. The relatively large q value
indicated a distinct spatio-temporal clustering result for this
research. The spatio-temporal clustering outputs of PM2.5 concen-
trations for each season in China are demonstrated respectively as
Fig. 3.

As shown in Fig. 3, although weighted geographical information
was not included in the repeated-bisection clustering, notable
spatial continuity and aggregation effects were detected in the



Fig. 4. National division of PM2.5 concentrations in China.

Z. Chen et al. / Journal of Cleaner Production 207 (2019) 875e881 879
clustering outputs. For autumn and winter, the optimal number of
clusters was six whilst the optimal number of clusters for spring
and summer was five. A potential explanation is that during spring
and summer months there is weaker static stability, more vertical
mixing, and fewer cases of stagnant cold pools trapped by the local/
regional topography than in autumn and winter. For the most
polluted winter, the clustering results demonstrated the most
spatial homogeneity and presented the most notable regional
similarity (the largest q value), indicating temporal PM2.5 variations
within the same cluster are highly similar.

Liu et al. (2018) attempted to delineate the boundary of PM2.5
concentrations in China using a wave comparison and an un-
weighted pair group arithmetic averages (UPGMA) method based
on 157 cities. During the clustering process, Liu et al. (2018)
measured the similarities using the maximum correlation coeffi-
cient between PM2.5 concentrations of two cities at all time lags.
This strategy led to some clusters that included regions far distant
from each other, causing extra difficulties in implementing unified
regional integrative emission-reduction measures. On the other
hand, our spatio-temporal clustering without weighted geograph-
ical information achieved strong aggregation effects. In other
words, geographically adjacent cities possess similar patterns in
temporal variation of PM2.5 concentrations. Chen et al. (2016a,b)
proved that air quality in one city significantly influence that in
its neighboring cities and thus the improvement of local PM2.5

concentrations highly depends on the simultaneous variation of
regional PM2.5 concentrations. Similarly, spatial self-aggregation
effects of PM2.5 concentrations revealed in this research also sug-
gested the necessity of managing air quality at a regional scale,
which was consistent from previous studies (Chen et al., 2016a,b).
Compared with previous studies, the homogenous and continuous
spatio-temporal clustering outputs, as well as the Geodetector-
based accuracy assessment, proved that the repeated-bisection
method was a useful tool for extracting the spatio-temporal pat-
terns of PM2.5 concentrations across China and guiding regional
management of air pollution.

3.2. Division of PM2.5 concentrations across China and its
implementations

Recently, the Beijing-Tianjin-Hebei integrated air pollution
management and strategy has been proposed to improve the
regional economy, traffic and environment from a comprehensive
perspective. Specifically, a “2 þ 26” plan has been proposed in 2016
for instantly reducing PM2.5 concentrations in Beijing and its sur-
rounding areas by conducting simultaneous and contingent
emission-reduction measures during heavy local or regional
pollution episodes. This comprehensive regional-integration
strategy led to notably decreased PM2.5 concentrations in Beijing
during two air pollution episodes in November 2017 and March
2018. Similarly, regional control and management of air pollution
for other regions within China should also be investigated in-depth
before implementation. Previous studies (Chen et al., 2016a,b, 2017;
etc.) demonstrated that local air quality, especially PM2.5 concen-
trations, was influenced significantly by the transportation of
airborne pollutants from neighboring areas. Hence, proper division
of regions, within which PM2.5 concentrations have similar varia-
tion patterns, is crucial, yet highly challenging for regional inte-
gration of air quality management. Based on the spatio-temporal
clustering using PM2.5 data, we propose a national division of PM2.5

concentrations in China. Considering seasonal variations of clus-
tering results and the fact that PM2.5 concentrations are generally
the highest in winter, the clustering output for winter were given
the most emphasis during the division. The final division result is
demonstrated as Fig. 4.
As shown in Fig. 4, we categorized six divisions: Western Divi-
sion with moderate pollution (annually mean PM2.5 concentration
was 34.43 mg/m3), Northern Division with heavy pollution (annu-
ally mean PM2.5 concentration was 47.16 mg/m3), Middle Division
with heavy pollution (annually mean PM2.5 concentration was
62.39 mg/m3), Northeast Division with moderate pollution (annu-
ally mean PM2.5 concentration was 39.75 mg/m3), Eastern Division
with heavy pollution (annually mean PM2.5 concentration was
48.26 mg/m3) and Southern Division with moderate pollution
(annually mean PM2.5 concentration was 40.23 mg/m3). It is worth
mentioning that during the spatio-temporal clustering, temporal
variations of PM2.5 concentrations, instead of the annually mean
PM2.5 concentrations, were regarded as the key factor for gener-
ating output clusters. Furthermore, similar temporal variations of
PM2.5 concentrations provide direct and highly important refer-
ences for regional air quality management. Therefore, although
annually mean PM2.5 concentrations for the Middle, Northeast and
Eastern Division were very close, these Divisions cannot be merged
due to different temporal variations of PM2.5 concentrations within
specific Divisions.

The national division of PM2.5 concentrations based on spatio-
temporal clustering was consistent with relevant research. Based
on field survey and model simulation, Ministry of Environmental
Protection revealed that a large region, including Beijing, Tianjin
and another 26 cities in Hebei, Shandong, Shanxi and Henan
province, formed the transport network for PM2.5 pollution in the
Beijing-Hebei-region. For this research, the Middle Division
included Beijing, Tianjin and another 23 out of these 26 cities that
have been officially designated in the “2 þ 26” plan, indicating this
division output well fit the actual regional transportation of PM2.5
and provides reliable reference for regional integrative manage-
ment of PM2.5 in other parts of China. As mentioned above, the
implementation of “2 þ 26” regional emission-reduction measures
effectively mitigates long-term and short-term PM2.5 concentra-
tions within this region. However, due to the lack of appropriate
divisions of PM2.5 concentrations across China, research and rele-
vant policies for regional air quality management in other regions
are very limited. Therefore, in addition to the Middle Division, the
other five divisions proposed in this research provide important
reference for regional integrative air quality management in China.
With a similar variation pattern of PM2.5 concentrations within
each division, specific long-term and contingent emission-
reduction measures can be designed and implemented
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accordingly. For instance, for the Western Division with moderate
pollution level, relatively loose emission-reduction strategies can
be implemented when a local or regional pollution episodes occurs.
For the Middle Division with heavy pollution level, relatively strict
emission-reduction strategies can be implemented one or two days
before a predicted local and regional pollution episode (Cheng
et al., 2017).

Previous studies (Chen et al., 2017, 2018) suggested that mete-
orological factors exerted a strong influence on PM2.5 concentra-
tions. Therefore, we compared the map of climatic division of China
(Zheng et al., 2010) with the division of PM2.5 concentrations in
China from this research to examine the meteorological influences
on the spatio-temporal distribution of PM2.5 concentrations. Ac-
cording to Fig. 5, we can see that except for the Western division,
which was grouped as a large area due to limited monitoring cities
in the Northwestern China, the boundary of other divisions of PM2.5
concentrations demonstrated some similarities with that of cli-
matic divisions, proving that the distribution of meteorological
factors was an important driver for the spatio-temporal variations
of PM2.5 concentrations. Meanwhile, the differences between
boundaries of climatic divisions and PM2.5 divisions suggested that
anthropogenic emissions were also crucial for the distribution of
PM2.5 concentrations in China.

The division of PM2.5 concentrations in China based on spatio-
temporal clustering can be further improved. As demonstrated in
Fig. 4, due to limited monitoring cities (363 cities for this research),
the spatio-temporal clustering resulted in only six clusters, each of
which covered a very large area. In this case, regional integrative
emission-reduction measures can only be designed and imple-
mented at a relatively coarse scale. Given the large spatio-temporal
variations of PM2.5 concentrations across China, a much finer scale
of spatio-temporal clustering and divisions of PM2.5 concentrations
is highly necessary. Currently, environmental institutions and pri-
vate companies are installing a large number of PM2.5 monitoring
stations. For instance, there are hundreds of nonpublic PM2.5
monitoring stations in Beijing, compared with 35 public PM2.5
stations from the national monitoring station. In future studies,
with growing data availability from many more PM2.5 monitoring
stations, the repeated-bisection spatio-temporal clustering method
can better understand fine-scale spatio-temporal patterns of PM2.5
concentrations and extract fine-scale divisions of PM2.5 concen-
trations across China, based on which specific emission-reduction
measures for each province (even city) can be designed and
implemented accordingly.
Fig. 5. The comparison of climatic divisions and PM2.5 divisions in China.
4. Conclusions

We employed a repeated-bisection method for spatio-temporal
clustering of city-level PM2.5 concentrations in China using time
series PM2.5 data and the q value of the geographical detector
proved the validity of the clustering outputs.

Based on the clustering results, some major conclusions are as
follows:

(1) During the clustering process, the spatially homogenous
clusters were generated without the use of geographical lo-
cations of each city, indicating that PM2.5 concentrations in
China demonstrated notable spatial self-aggregation effects.
The revealed aggregation effects of PM2.5 concentrations
suggested the necessity of regional integration of air pollu-
tion management and proved that such regional integrative
strategies as the recent “2 þ 26” plan, which implement
unified emission-reduction measures within multiple prov-
inces simultaneously, are a valid approach to maintain
satisfactory air quality for a major city (e.g. Beijing) during
heavy pollution episodes.

(2) Based on the clustering results, we proposed six divisions of
PM2.5 concentrations across China: Western Division with
moderate pollution, Northern Division with heavy pollution,
Middle Division with heavy pollution, Northeast Division
with moderate pollution, Eastern Division with heavy
pollution and Southern Division with moderate pollution.
Specifically, the cities grouped in the Middle Division were
highly similar to the cities officially designated in the
“2 þ 26” plan, indicating this division strategy based on the
spatio-temporal clustering well fit the actual regional
transportation of PM2.5 and presents of reliability and prac-
tical significance.

(3) With growing data availability from many more PM2.5
monitoring stations, the repeated-bisection spatio-temporal
clustering method can better understand fine-scale spatio-
temporal patterns of PM2.5 concentrations and extract fine-
scale divisions of PM2.5 concentrations across China, lead-
ing to a better regional integrative management of PM2.5
pollution at the provincial (even city) level.
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