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a b s t r a c t

Air pollution, being especially severe in the fast-growing developing world, continues to post a threat to
public health. Yet, few studies are capable of quantifying well how different groups of people in different
places experience different levels of air pollution at the global scale. In this paper, we use worldwide
Chinese as a lens to quantify the spatiotemporal variations and geographic differences in PM2.5 exposures
using unprecedented mobile phone big data and air pollution records. The results show that Chinese in
South and East Asia suffer relatively serious PM2.5 exposures, where the Chinese in China have the
highest PM2.5 exposures (52.8 mg/m3/year), which is fourfold higher than the exposures in the United
States (10.7 mg/m3/year). Overall, the Chinese in Asian cities (35.5 mg/m3/year) experienced the most
serious PM2.5 exposures when compared with the Chinese in the cities of other continents. These results,
partly presented as a spatiotemporally explicit map of PM2.5 exposures for worldwide Chinese, help
researchers and governments to consider how to address the effects of air pollution on public health with
respect to different population groups and geographic locations.

© 2018 Published by Elsevier Ltd.
1. Introduction

Air pollutants, especially fine particulate matter such as PM2.5

(particles with an aerodynamic diameter of less than 2.5 mm), have
been the focus of increasing public concern because of their po-
tential adverse impacts on human health (Apte et al., 2015; Franklin
et al., 2007; Kioumourtzoglou et al., 2016; Kloog et al., 2013; Pope III
et al., 2009). Numerous epidemiologic studies have established
robust associations between long-term exposure to PM2.5 and
premature mortality associated with various health con-
ditionsdsuch as heart disease, cardiovascular and respiratory dis-
eases, and lung cancerdthat substantially reduce life expectancy
(Apte et al., 2015; Franklin et al., 2007; Kioumourtzoglou et al.,
e by Haidong Kan.
Laboratory for Earth System
Tsinghua University, Beijing
2016; Kloog et al., 2013; Pope III et al., 2009). Previous air pollu-
tion exposure studies have worked to obtain refined exposure es-
timates with fine spatiotemporal resolutions (Apte et al., 2015; Han
et al., 2016; Ma Z 2016; Park and Kwan, 2017; Van Donkelaar et al.,
2010) in order to better address public health issues associatedwith
PM2.5 exposure (Di et al., 2017; Kioumourtzoglou et al., 2016; Kloog
et al., 2013; Pope III et al., 2009). However, assessing how people in
different places experience different levels of air pollution is still a
major challenge, especially for specific groups of population at the
regional or global scale.

Currently, demographic data based on administrative bound-
aries is the most widely used data for estimating people's expo-
sures to air pollution (Fleischer et al., 2014; Gray et al., 2014). It
provides accurate population census information over a certain
period based on the smallest administrative unit (e.g., census
block). However, such kind of data has limitations for comparing
the exposures of the people in different countries since the data
collection procedures used to collect demographic informationmay
not be consistent among different nations. In addition, census data
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was collected based on census units. It does not consider the spatial
variability in population distribution and has very low update fre-
quency (5e10 years), which inevitably introduce considerable un-
certainty to the accurate exposure assessment. In contrast, global
gridded population data such as LandScan Global Population
(Dobson et al., 2000), and Gridded Population of the World (GPW)
series (Center for International Earth Science Information Network,
2016) are able to depict the geographic distribution of humans at
large scales (e.g., covering many countries) with finer spatial de-
tails. However, the main data source of these gridded population
data is census population data. Therefore, these datasets will still be
affected by the potential concerns mentioned above (Center for
International Earth Science Information Network, 2016; Dobson
et al., 2000). More importantly, these datasets just regard popula-
tion as a homogeneous entity and thus cannot be used to identify
and differentiate population groups with respect to ethnicity or
other socio-economic attributes, which prevents previous studies
from investigating the spatial differences and the long-term cu-
mulative differences in air pollution exposures for specific groups
of the population. Fortunately, the popularization of mobile
computing platforms (e.g., smartphones) and rapid growth of
mobile apps (applications designed to run on smartphones and
other mobile devices for social networking, navigation, shopping,
and dining) produce large amounts of geotagged information and
provide researchers with unprecedented opportunities to discover
the spatiotemporal characteristics of human activities (Cheng et al.,
2011; Lee and Sumiya, 2010; Preoţiuc-Pietro and Cohn, 2013).
Moreover, the high geographic correlation between the distribu-
tion of geo-spatial big data (e.g., mobile phone records, social media
check-in records, taxi trajectories, and smart card records) and
human distribution has been widely revealed in previous studies
(Fang et al., 2013; Lelieveld et al., 2015; Van Donkelaar et al., 2015;
Zhou et al., 2010). The advent of geospatial big data has led to the
promising direction of incorporating the socio-economic attributes
and mobility of human beings in environmental exposure assess-
ments to discover more specific facets of population exposure to air
pollution. From GPS trajectory data of cars to social media check-in
records and mobile phone data, a growing number of data sources
have been used in relevant studies (Dewulf et al., 2016; Gariazzo
et al., 2016; Nyhan et al., 2016). By identifying individuals' behav-
ioral patterns in continuous space-time, geospatial big data may
also be used to address the uncertain geographic context problem
(UGCoP), which is a common problem in environmental health
research because data with coarse spatial and temporal resolution
cannot accurately assess individuals' actual environmental expo-
sures (Kwan, 2012; Park and Kwan, 2017).

Meanwhile, some existing caveats concerning the use of geo-
spatial big data should be pointed out here. First, geotagged infor-
mation derived from multi-source platforms tends to contain
considerable noises and discrepancies caused by the different
number and composition of active users in terms of ethnicity,
culture, education, occupation, income, and age groups. It is thus
difficult to obtain geospatial datasets adequately characterize the
socio-economic attributes of different groups of population at the
regional or global scales. Second, most open-source geospatial
datasets have limited spatial and temporal coverage, which hinders
the characterization of long-term human activity patterns at the
global scale. Third, despite the above issues, limited studies have
attempted to combine geospatial big data to investigate how
different groups of people who live in different places (at a global
scale) experience different levels of air pollution.

Globalization of the 21st century has ushered in an era of fluidity
and openness, in which changes in transportation, technology and
culture are encouraging people to move across national borders
with multiple purposes (e.g., work, settlement, study, professional
advancement, marriage, retirement, or lifestyle change) (Castles,
2010), thus leading to the movement of different groups of peo-
ple among different geographic areas at various spatial scales. For
example, with roughly a 12.6% increase (~5 million) in overseas
Chinese population during the period 2001e2011, this trend is
significant for China (Poston and Wong, 2016). However, knowl-
edge of the fine-resolution distribution of Chinese worldwide still
remains limited despite national or international consensus on the
distribution and size of oversea Chinese population. Similarly,
knowledge of the geographic distribution of other population
groups at the global scale is also highly limited to date.

This study seeks to address the challenges in assessing air
pollution risks from the perspective of a specific population group
and the difficulties in characterizing the geographic distribution of
different population groups at the global scale. It uses the global
Chinese population as a lens to quantify how people living in
different places in the world experience different levels of air
pollution. Specifically, this paper presents a spatiotemporal analysis
of PM2.5 exposures for the global Chinese population using un-
precedented mobile phone big data and air pollution records.

2. Data and methods

2.1. Mobile phone location-based big data

In this study, we use the location information in a big mobile
phone dataset from Tencent (China) to portray the geographic
distribution of the global Chinese population. All of the location
data is produced by Tencent through retrieving real-time locations
of active mobile phone users when they are using Tencent appli-
cations and Tencent's location-based service (LBS) invoked by other
mobile apps. As one of theworld's largest internet service providers
for ethnic Chinese, and given the widespread use of Tencent's ser-
vice and apps (e.g., Wechat, QQ, etc.), the daily location records
have reached 38 billion from more than 450 million users globally
in 2016 (Tencent, 2016). It can be argued that the geography of
Tencent location data presents a unique geographic distribution of
worldwide Chinese. The dataset in this study was collected from
March 14, 2016, to August 13, 2016. It has a spatial resolution of 36
arc-second (~1.2 km) and a temporal resolution of 5-min, and is
retrieved and updated using the application program interface
(API) from the Tencent location big data website (http://heat.qq.
com). All the information regarding users' identities and privacies
were removed from the public released dataset.

2.2. Global PM2.5 concentration dataset

The time-series PM2.5 observation records used in this study
came from the global PM2.5 concentration dataset (Van Donkelaar
et al., 2010). Using a simulation of GEOS-Chem chemical transport
model, this PM2.5 concentration dataset was estimated from an
integration of Moderate Resolution Imaging Spectroradiometer
(MODIS) and Multi-angle Imaging SpectroRadiometer (MISR)
aerosol optical depth (AOD) data with aerosol vertical profiles and
scattering properties (Van Donkelaar et al. 2010, 2013). It has a
spatial resolution of 10 km and a temporal coverage from 1999 to
2011 as a 3-year moving average, which was applied to reduce the
retrieval biases of the annual PM2.5 concentrations. Additionally,
this dataset has been validated with ground observations at the
global scale (Van Donkelaar et al. 2010, 2013, 2015). Experimental
tests show that there is a significant agreement between satellite-
based estimates and ground-based measurements across different
continents (Van Donkelaar et al. 2010, 2013, 2015). The dataset thus
provides us a spatially explicit and temporally consistent PM2.5
concentration dataset for this study.
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2.3. Representing the geographic distribution of Chinese worldwide

Locations in the original dataset were the real-time locations of
active mobile users recorded as pairs of geodetic coordinates
(longitude, latitude). To utilize this location information, we first
constructed a grid with a spatial resolution of 36 arc-second
(~1.2 km) (which is consistent with the spatial resolution of the
location data). Using this grid structure, we assigned people to
particular grid cells based on the location in their mobile phone
records. In this way, the geographic distribution of the global Chi-
nese population was represented and visualized using the grid
structure. Generally, people are mobile and the geographic distri-
bution of the population is not spatially stationary and temporally
constant. As the location data was recorded with a 5-min update
frequency, thereby providing dense time-series dynamics of pop-
ulation movements from daily, to weekly or monthly temporal
scales. Here we incorporated all the location data in the phone
records to achieve the general geographic distribution of global
Chinese. Specifically, we aggregated the 5-min location records per
day to produce the daily sum of all location records, which repre-
sents the daily geographic pattern of global Chinese. We then
averaged all the daily records from March 14, 2016 to August 13,
2016 to get the final geographic pattern, which incorporates all the
daily-, weekly-, and monthly-fluctuations of population movement
and average them to obtain the general pattern.

2.4. Global administrative boundaries and world urban areas

Since PM2.5 concentrations and the population distribution
pattern obtained using the method describe above vary across
space, the spatial heterogeneity of both PM2.5 concentrations and
human distribution should be considered to better estimate the
PM2.5 exposures at different spatial scales. Meanwhile, the modi-
fiable areal unit problem (MAUP) illustrates the need for consid-
ering scale in real-world analysis. The scale at which we choose to
analyze PM2.5 exposures, be it for the entire country, by state, by
county, or by city, may produce different results. Therefore, three
different spatial scales were analyzed in this study. Specifically,
level-0 administrative division boundaries (country; see Fig. 1a)
and level-2 administrative division boundaries (county; see Fig. 1b)
were adopted to extract the smallest units of PM2.5 concentrations
and population density. Taking the Unite States as an example
(Fig. 1c), for the level-0 administrative division, the entire national
boundary will be the smallest unit for extracting the PM2.5 con-
centrations and calculating population density. For the level-2
administrative division, the county (e.g., specific counties in
Texas) will be the smallest unit for extracting PM2.5 concentrations
and calculating population density.

In addition, it should be noted that different countries may have
different administrative division systems and thus administrative
divisions may not be consistent among different countries. There-
fore, for convenience, we named the level-0 administrative division
as “high-level administrative unit,”while the level-2 administrative
division is called “low-level administrative unit” in this study. All
the administrative boundaries were downloaded at http://www.
gadm.org/version2.

Urban air quality has been recognized to be closely correlated
with citizens' health (Lelieveld et al., 2015; Pascal et al., 2013). Thus,
we further focused on investigating the spatiotemporal differences
in PM2.5 exposures for Chinese in different cities in the world. Here
we adopted the global urban areas dataset (https://www.arcgis.
com/home/item.html?id¼2853306e11b2467ba0458bf667e1c584)
to extract PM2.5 concentrations and calculate population density at
the city level. This dataset maps the world's major urban areas with
populations than 10,000 as discrete polygons and classifies all the
urban areas (i.e., cities) into four categories, ranking them from 1st
to 4th according to the level of importance (LOI). The rank is
calculated based on the source field LOI which numerically ranks
feature importance using a DeLorme numbering scheme (DeLorme
Publishing Company, 2010). The lower rank, the more importance
the city is.
2.5. Estimation of population-weighted PM2.5 concentrations

Since the levels of PM2.5 concentration and population density
are spatially varied (see the test of spatial stratified heterogeneity
(Wang et al., 2016; Wang et al., 2010) in Supplementary Materials),
the population-weighted metric is likely to be more representative
of exposure of population at different spatial scales to ambient air
pollution. Here we adopted the population-weighted method
(Equation (1)) to estimate the actual PM2.5 concentrations.

PMj
Exp ¼

XN
i¼1

ðpopi,pmiÞ
,XN

i¼1

popi (1)

where popi and pmi denote the population (derived from mobile
phone location records in this study) and PM2.5 concentration
volume in the ith pixel, N is the total number of pixels within the
corresponding administrative unit. PM j

Exp is the population-
weighted PM2.5 concentration volume in the jth unit.

Given the differences of physical environment and socio-
economic development in different areas, the population-
weighted PM2.5 concentrations estimated at the national- or
continental-scale will undoubtedly result in the underestimation of
Chinese density in rural areas and overestimation of that in urban
areas, thereby raising uncertainties and biases in the estimates of
actual PM2.5 concentrations. Here we first calculated the
population-weighted PM2.5 concentrations based on the low-level
administrative units (i.e., level-2 administrative units). Specif-
ically, for the estimates based on low-level administrative units,
both the geographic distribution map of Chinese and the time-
series annual PM2.5 concentrations dataset were divided into
46579 regions, and then the subsequent divisions will be used to
compute the population-weighted PM2.5 concentrations according
to Equation (1) unit by unit.

Similarly, we further calculated the population-weighted PM2.5
concentrations based on the high-level administrative units (i.e.,
level-0 administrative units). Specifically, both the geographic
distribution map of Chinese and the time-series annual PM2.5
concentrations dataset were divided into 256 nations/districts, and
then the subsequent divisions will be used to compute the
population-weighted PM2.5 concentrations unit by unit.

Regarding the spatiotemporal difference in PM2.5 exposures for
Chinese across different cities at the global scale, we extracted 664
major cities in the world from the world urban areas dataset to
calculate their population-weighted PM2.5 concentrations. All the
selected cities were categorized with labels from 1 to 3 that rep-
resents their importance in the function of urbanities. In this way,
we could not only compare the differences in PM2.5 exposure risk
for Chinese across global different cities, but also investigate the
differences in PM2.5 exposure along with different levels of city
development.
2.6. Temporal trend of PM2.5 concentrations

To detect the temporal trend of PM2.5 concentrations over the
entire study period (1999e2011), a least-square linear regression
model was applied as follows:

http://www.gadm.org/version2
http://www.gadm.org/version2
https://www.arcgis.com/home/item.html?id=2853306e11b2467ba0458bf667e1c584
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Fig. 1. Global administrative division boundaries. (a) Level-0 administrative boundaries (e.g., countries). including 256 regions (high-level administrative unit) (b) Level-2
administrative boundaries (e.g., counties); including 46579 regions (low-level administrative unit); and (c) taking the United States as an example.
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y ¼ aþ bt þ ε (2)

where y represents annual PM2.5 concentration volume, t is year, a
and b are the least-square fitted coefficients (a is the intercept and b
is the trend slope), and ε is the residual bias.

3. Results

3.1. Geographic distribution of worldwide Chinese

Here we derived the geographic distribution of worldwide
Chinese (Fig. 2) at a spatial resolution of 36 arc-second (~1.2 km)
usingmobile phone location data. The distribution and densitymap
of worldwide Chinese population provides us a spatially explicit
visualization of the spread of Chinese across the world (Fig. 2).
While the vast majority of Chinese population are found within
mainland China, the remaining proportion spreads all over the
world with several highlighted hot spots, e.g., the Southeast Asian
region (including Singapore, India, Thailand, Malaysia, and
Indonesia), the East Asian region (including South Korea and
Japan), the Middle East area, Europe (including Southeast England,
Germany, France, Italy, and Spain), the eastern and western sea-
boards of the United States andMexico, and so forth. Globally, cities
have higher density of Chinese than areas outside cities, such as
rural areas (Fig. 2), and city centers generally have the highest
density (subplot in Fig. 2).

To validate the performance of the location data in revealing the
actual geographic distribution of Chinese at the global scale, we
selected four experimental sites including China, the United States,
the United Kingdom, and Japan to quantify the correlation between
the geographic pattern of Chinese derived from the mobile phone
location data and census data (detailed description of the methods
and results are provided in the Supplementary Material). The
county-level census datasets of Chinese population in these four
experimental sites were collected to compare with the county-level
aggregation of the mobile phone location data. As shown in Fig. 3,
the spatial patterns between the county-level aggregation of the
mobile phone location data (Fig. 3b, e, h, and k) and the county-
level census data (Fig. 3c, f, i, and l) are very similar in all testing
sites. The correlation coefficient is 0.78 for China, 0.96 for the
United States, 0.73 for England, and 0.97 for Japan, thus verifying
the reliability of Tencent-based location data for identifying the
pattern of geographic distribution of global Chinese.
3.2. Estimates of PM2.5 exposure risk based on low-level
administrative units

By combining the geographic location of Chineseworldwide and
the long-term annual PM2.5 concentration records during
1999e2011, we calculated county-level spatiotemporal variation of
PM2.5 exposures for Chinese worldwide. Globally, Southeast China,
North India, the Middle East, and North Africa are the hotspots with
the highest PM2.5 exposures while South/North America, Europe,
South Africa, Southeast Asia, and Australia/Oceania are regions
with relatively low PM2.5 exposures (Fig. 4a). Regarding the annual
temporal changes of PM2.5 exposures (Fig. 4b), many areas expe-
rienced an elevated rate, especially for the Southeast China (>2 mg/
m3/year), the North India (>2 mg/m3/year), and theMiddle East area
(1e1.5 mg/m3/year).
3.3. Estimates of PM2.5 exposure risk based on high-level
administrative units

To investigate the spatiotemporal differences of PM2.5 exposures
for Chinese living in different countries/districts, we calculated the
annual exposures to PM2.5 for global Chinese based on the low-level
administrative units. Results showed that themajority of Chinese in
Asian countries experienced relatively high PM2.5 exposures
(Fig. 5), and the temporal variation of PM2.5 concentrations (from
upper to bottom chart in Fig. 5) also indicated higher PM2.5 expo-
sures for most countries and districts. Based on the 13-year average
population-weighted PM2.5 concentrations for the 40 countries
having the largest location records, we identified the top five
countries for Chinese in order of PM2.5 exposures as China (52.8 mg/



Fig. 2. The geographical distribution and population density of worldwide Chinese derived from the mobile-phone location big data.

Fig. 3. Comparison between Tencent-based Chinese distribution, Tencent-based clustered Chinese distribution, and Chinese population census data in China (aec), United
States (def), United Kingdom (gei), and Japan (jel). The left panel (a, d, g, j) represents the pixel-based Chinese density derived from Tencent location data, the middle panel (b, e,
h, k) represents the clustered sum of Chinese in terms of the administrative division corresponding to the census data of Chinese population in the right panel (c, f, i, l).
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Fig. 4. Estimates of PM2.5 exposure risk and its temporal trend based on low-level administrative units. (a) The 13-year mean PM2.5 exposure levels estimated by combining
mobile phone locating-request big data and air pollution records in the administrative division of worldwide 46579 counties. (b) The linear regression trend of (a) over the period
1999e2011, and the significance test is shown in Figure S1.
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m3/year), Iraq (41.9 mg/m3/year), United Arab Emirates (37.6 mg/m3/
year), Saudi Arabia (37.5 mmg/m3/year), India (36.1 mg/m3/year);
while the five countries with the lowest PM2.5 exposures are
Australia (3.8 mg/m3/year), Singapore (4.8 mg/m3/year), South Africa
(7.5 mg/m3/year), Argentina (7.5 mg/m3/year), and Brazil (8.2 mg/m3/
year). Compared with the Chinese living in the U.S. (10.7 mg/m3/
year) and Canada (9.2 mg/m3/year), Chinese who live in China suf-
fered approximately five-to six-fold of their exposures. The ratio of
PM2.5 exposures between China and European countries with
considerable Chinese habitants could also reach four and five, e.g.,
Italy (19.0 mg/m3/year), Spain (11.5 mg/m3/year), France (13.5 mg/m3/
year), U.K. (11.6 mg/m3/year), Germany (16.1 mg/m3/year).
3.4. PM2.5 exposure risk in major cities in the world

As shown in Fig. 2, the majority of Chinese are concentrated in
major cities in the world. However, the high PM2.5 concentration
levels in urban environments pose greater health risks for most
Chinese. We further investigated the annual exposures to PM2.5 for
the Chinese distributed in 664 major cities in the world (Fig. 6). The
PM2.5 exposures in these cities, aggregated with respect to conti-
nent, are ranked in order of average PM2.5 concentration levels:
Asia (35.5 mg/m3/year), Africa (17.2 mg/m3/year), Europe (14.6 mg/
m3/year), North America (9.0 mg/m3/year), South America (6.6 mg/
m3/year), and Australia and Oceania (3.1 mg/m3/year). Within each
continent, PM2.5 exposures varied across locations. For example,
the Eastern seaboard cities in the U.S. exhibited higher PM2.5 ex-
posures than Western seaboard cities; Southern and Eastern Eu-
ropean cities exhibited higher PM2.5 exposures than cities in
Northern and Western Europe; North African cities suffered
distinctly higher PM2.5 exposures than cities in South Africa; and
three obvious city agglomerations with high PM2.5 exposures are
located in the Middle East area, South Asia, and East Asia. To
differentiate the impacts on PM2.5 exposures, we analyzed the
spatiotemporal difference in PM2.5 exposures across cities with
different levels of importance (ranks from 1 to 3). The results



Fig. 5. Estimates of PM2.5 exposure risk and its temporal trend based on high-level administrative units.
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showed that only Asia exhibited obvious differences in PM2.5 ex-
posures between cities of different ranks according to the 13-year
mean PM2.5 concentrations: third-rank cities (46.1 mg/m3/year),
first-rank cities (33.9 mg/m3/year), and second-rank cities (19.3 mg/
m3/year), whereas there are no significant difference in PM2.5 ex-
posures between cities of different ranks in other continents:
specifically, first-rank (17.6 mg/m3/year) and second-rank (17.4 mg/
m3/year) cities were slightly higher than third-rank cities (14.4 mg/
m3/year) in PM2.5 concentrations in Africa, third-rank (16.2 mg/m3/
year) and first-rank (14.9 mg/m3/year) cities were slightly higher
than second-rank (13.4 mg/m3/year) cities in Europe, first-rank
(9.3 mg/m3/year) and third-rank (9.1 mg/m3/year) cities were
slightly higher than second-rank (8.3 mg/m3/year) cities in North
America, third-rank (7.9 mg/m3/year) cities were slightly higher
than first-rank (6.1 mg/m3/year), second-rank (6.5 mg/m3/year) in
South America, and first-rank (3.3 mg/m3/year) cities were slightly
higher than third-rank (2.4 mg/m3/year) cities in Australia and
Oceania.
4. Discussion

4.1. The spatiotemporal differences in PM2.5 exposures for global
Chinese

Estimates based on the three different spatial scales showed
that ambient PM2.5 exposures for Chinese vary spatially across
counties, countries, and cities. That is, for Chinese, living in
different places or for different periods will lead to differences in
PM2.5 exposures and accumulated PM2.5 exposures, suggesting that
Chinese habitants in different areas may have different levels of
health concerns. At the continental level, Chinese who live in Asia,
especially Central, South, and East Asia, suffered higher PM2.5 ex-
posures than those living in other continents. At the national level,
Chinesewho live in China suffered the highest PM2.5 exposures, and
the 13-year average population-weighted PM2.5 concentrations
from 1999 to 2011 in China were four to five times higher than that
in the U.S. and Canada, and three to four times higher than that in



Fig. 6. PM2.5 exposure risk and its change trend in global major cities. (a) Annual PM2.5 exposure change in different continents by the division of first-, second-, and third-rank
cities. (b) The geographic difference of the 13-year mean PM2.5 exposure in global major cities in the division of continents.

Fig. 7. Chinese immigrant population in the world. (a) Chinese immigrant popula-
tion change in the division of continents, 1990e2015. (b) The geographic distribution
of Chinese immigrant in 2010, and Chinese immigrant population change from 2000 to
2010.
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European countries (Fig. 5). The same situation was also identified
at the city level. Furthermore, the estimated PM2.5 exposures wit-
nessed an increasing trend from 1999 to 2011. In the front of
worsening air pollution, there remains to be possible to lead a new
form of global immigration from the polluted world to the clean
world. Based on the official statistics from the United Nations
Population Division (United Nations, 2015), it can be found out that
the Chinese immigrant population are continuously increasing
from 5.7 to 8.6 million during 1990e2015 (United Nations, 2015),
and North America, Asia, Europe, and Oceania are the most popular
immigration destinations (Fig. 7a). Focusing on the period from
2000 to 2010, we could find out that globally, the United States,
Canada, Australia, New Zealand, Japan, European countries, and
southeast Asian countries are the top destinations for Chinese
immigrants (Fig. 7b), accounting for the vast majority of oversea
Chinese. With the comparison of the destination of Chinese im-
migrants (Fig. 7b) and the estimates of PM2.5 exposures for global
Chinese (Fig. 4a), we can find that these top destinations for Chi-
nese immigrants are all enjoying relative better air quality with low
PM2.5 exposures than the mainland China. As shown in Fig. 7b, it is
interesting to figure out that the Chinese immigrant population in
the North America, Europe, and Oceania continued to be increasing
during 2000e2010, whereas the Chinese immigrant population
witnessed an obvious decrease in Southeast Asia. Besides other
socio-economic factors, the decreased air quality in Southeast Asia
will also have the potential to account for the cooling-off attrac-
tiveness to Chinese immigrants.

4.2. Implementing regulations and improving air quality

In addition to particulate matters PM2.5 and PM10, air pollutants
such as carbon monoxide (CO), sulphur dioxide (SO2), nitrogen
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dioxide (NOx), and ozone (O3) are emitted by combustion processes
that also contribute to emissions of greenhouse gas (Requia et al.,
2017; Shah et al., 2013; Watts et al., 2017). Therefore, public ac-
tions and policy-driven regulations should be put into effects to
reduce ambient air pollutant emissions. For example, as shown in
Fig. 6, PM2.5 concentrations in most cities are well above the level of
PM2.5 concentrations at the national level, with particularly high
concentrations in cities in Central, South, and East Asia. Therefore,
urban air quality managementdincluding traffic control, phasing
out vehicles that do not meet emission standards, promoting the
use of clean-energy vehicles, and increasing urban greenspacedis
highly required. At the same time, additional steps are needed to
ensure that countries cooperate and effectively take actions. First,
to increase transparency, there needs to be timely and accurate
public databases of detailed emission sources that will allow gov-
ernments and international communities to differentiate and
assess the socio-environmental impacts of different emission
sources to advance related polices. Second, voluntary actions and
policy-driven regulations should be supported and surveilled by
spatially-explicit and temporally-consistent observational records.
Such surveillance will allow for more accurate and timely assess-
ments of air quality dynamics, which is a prerequisite for estab-
lishing, implementing, assessing, and adjusting polices to mitigate
emissions from energy, industry, transport, and other sectors.
Third, developed countries should provide adequate, predictable,
and sustainable financial resources and technologies to support the
implementation of emission reduction in developing countries to
balance the trade-offs among economic development, local
ecosystem services, and human livelihoods. Reducing air pollutant
emissions will be a long-term investment that contributes to green
development and ultimately yields substantial benefits. Imple-
menting these regulations and strategies would help underpin
polices that aim at improving global ambient air pollution and in
particular offer a better opportunity of reversing decade-long tra-
jectories of severe air pollution in Asian countries.

4.3. Incorporating geospatial big data into public health issues

Geospatial big data have beenwidely recognized as being able to
provide great support and opportunities for public health research
(Dewulf et al., 2016; Gariazzo et al., 2016; Nyhan et al., 2016). In this
study, with the unique geotagged information from the active
Tencent apps and location-based service users, we inferred the
geographic distribution of Chinese in the world with unprece-
dented spatial details at various spatial scales, thereby providing a
new way to assess how specific groups of people live in different
places experience different levels of air pollution at varied spatio-
temporal scales. To our best knowledge, it is the first time long-
term estimates of exposure to PM2.5 for Chinese at the global
scale is provided, which can be used as a reference for assessing air
pollution risks of global Chinese, especially in alarming the
emerging need in the mitigation of air pollutants that contribute to
higher PM2.5 concentrations in Asian countries. Moreover, the
proposed method and dataset can be easily extended to estimate
other ambient pollution exposures, and they may be used to
address the health effects of air pollution with respect to different
population groups and different geographic locations.

Meanwhile, some potential concerns about our research
methods and results should be addressed. First, the distribution
pattern of Chinese at the global scale is assumed to be stable. In
this study, the PM2.5 concentrations data set was retrieved from
1999 to 2011, whereas the daily record for Chinese population (to
identify the distribution and density) were from 2016 (March-
eAugust) because of the difficulty in obtaining such data before
2016. Even the validation shows the relative stability of the
distribution pattern of Chinese at the global scale to some extent
(see detailed validations in Supplementary Material), it is still an
assumption which may deviate from the facts, especially for some
local areas that experience surges of incoming Chinese. Second,
the estimates of PM2.5 exposures are computed with a yearly scale.
However, air pollution and population distribution need to be
investigated at much finer spatiotemporal resolutions in order to
obtain accurate exposure estimates (Park and Kwan, 2017). In
additions, the volunteer-produced geospatial big data such as the
mobile-phone location data used in this study tend to leave out
some population groups because children, elderly, and the poor
are less frequent active users of mobile phones. Nevertheless, such
data can still provide us opportunities for capturing the dynamics
of population movements and distribution, which can be closely
related to the temporal pace of air pollution monitoring. Third, it
will be more interesting to investigate the differences in air
pollution exposure between different groups of population at the
global scales. However, in this study, we mainly used worldwide
Chinese as a lens as a preliminary attempt to address this chal-
lenge. Identifying the socioeconomic attributes of different pop-
ulation groups by making use of social media and mobile phone
big data (such as Twitter, Facebook, WeChat, Google Maps, Baidu
Maps, and Weibo), and combining this geotagged information in
the study of public health issues will be important topics for
future research.
5. Conclusions

Having better knowledge of how people in different places
experience different levels of air pollution is of great importance
to both researchers and the public. Taking worldwide Chinese as a
lens, this study investigated the spatiotemporal variation of their
PM2.5 exposures using unprecedented mobile phone location big
data and air pollution records. The results showed that PM2.5
exposures for global Chinese exhibited considerable differences
between geographic regions. That is, Chinese living in different
locations or for different periods will experience different levels of
PM2.5 exposures and accumulative PM2.5 effects. This will likely
lead to different public health concerns for the Chinese habitants
living in different locations. Globally, Chinese who live in main-
land China suffered the most severe PM2.5 exposures over the
decade 1999e2011, which is fourfold higher than the exposures in
the United States and Canada, and threefold higher than the ex-
posures in European countries. Our work presents spatiotempo-
rally explicit estimates of PM2.5 exposures for worldwide Chinese,
which is a new attempt to address the health effects of air
pollution with respect to different population groups and
geographic locations.
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The value of the q-statistic is between [0,1], and it increases along with the 46 

significance of the stratified heterogeneity increases. By adjusting Eq. (1) into three 47 
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where N1 represents the 46579 stratums (i.e., counties in this scale).  53 
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where N2 represents the 256 stratums (i.e., nations/districts in this scale).  56 

For the global major cities’ division, 57 
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where N3 represents the 664 stratums (i.e., cities in this scale).  59 

 60 

Table S1. The q-statistic for the worldwide Chinese and PM2.5 concentrations across 61 

different scale. 62 

 Level-0 Level-2 City level 

Population 0.55 0.65 0.69 

PM2.5 0.86 0.60 0.75 

 63 

 64 

 65 

 66 

 67 

  68 

 69 

 70 

 71 



Comparability validation between geographic pattern of Chinese derived from 72 
Tencent-based location data and census data 73 

To validate the performance of Tencent location data in revealing the actual 74 

geographic distribution of Chinese at the global scale, we selected four experimental 75 

sites including China, the United States, the United Kingdom, and Japan to quantify 76 

the correlation between geographic pattern of Chinese derived with the Tencent-based 77 

location data and census data. Specifically, (i) in China, the latest county-level 78 

population census of China in 2014 obtained from the national scientific data sharing 79 

platform for population and health (http://www.ncmi.cn) was used. This dataset was 80 

established and maintained by infectious disease network reporting system, and it was 81 

derived based on population census released by the State Statistics Bureau. It 82 

collected all population census including permanent resident and registered resident at 83 

the county level since 2004. Thus, we first extracted the Mainland-China area from 84 

the global Chinese distribution (Figure 3a), and then aggregated the Tencent-based 85 

Chinese into the county-based division (Figure 3b) corresponding to the county-based 86 

census data (Figure 3c).  87 

Similarly, (ii) in the United States, the county-based Chinese population census 88 

data in 2010 was collected from Pew Research Center based on USA 2010 census 89 

(http://www.pewsocialtrends.org/asianamericans/) (Figure 3f); (iii) in England, the 90 

county-level Chinese population data based on UK 2010 census (Figure 3i) was 91 

collected from the Nomis, a web-based database of labor market statistics of 92 

University of Durham (https://www.nomisweb.co.uk/default.asp); and (iv) in Japan, 93 

the county-based Chinese population census data in 2010 (Figure 3l) was collected 94 

from the National Statistics Center of Japan (http://www.nstac.go.jp/index.html). 95 

Then, the number of ethnic Chinese recorded by census data (Figure 3c,f,i,l) and the 96 

volume of Tencent-based MPL records (Figure 3b,e,h,k) was quantitatively compared 97 

county by county for each selected country. 98 

Despite the existing time-lag between the census data (2010) and Tencent-based 99 

location data (2016), their overall correlations in four selected counties are relatively 100 

high and stable (i.e., correlation coefficient: 0.78 for mainland China; 0.97 for the 101 

United States, 0.73 for England, and 0.97 for Japan), thereby revealing that Tencent-102 

based location data could help to represent the geographic distribution of Chinese 103 



worldwide.  104 

 105 

Spatiotemporal stability in the geographic distribution of Chinese worldwide 106 

 Although it has been witnessed to show a great significance with roughly 12.6 % 107 

gain (~ 5 million) in oversea Chinese population over the period 2001-2011 (3), the 108 

general spatiotemporal distribution of Chinese in oversea countries and cities seems to 109 

be stable, characterized by absolute gains in oversea Chinese population and relative 110 

stabilities in oversea Chinese distribution and density. In order to validate this 111 

assumption in this study, we used another social media data source “Weibo check-in 112 

records” (Figure S2) from 2014-2016 to quantify the dynamics of global Chinese 113 

footprints distribution. As the Tencent-based mobile phone location data was launched 114 

since late 2015 without inter-annual records over the past years, here we used the 115 

check-in records from the Weibo (microblog), which is also one of the most popular 116 

social media platforms in domestic and oversea Chinese, as Twitter in America. Its 117 

monthly active users reached 222 million in September 2015 and mobile Weibo users 118 

cover 85% of the total users (4). Although the check-in records of Weibo may not 119 

present a complete distribution characteristic of Chinese footprints as Tencent-based 120 

location data does, the Weibo data can also perfectly represent a part of Chinese who 121 

are active users of Weibo. That is to say that Weibo check-in records can be seen as a 122 

subset of Chinese or Tencent-based location data. Therefore, it is reasonable for us to 123 

use Weibo check-in records for a substitution to test the spatiotemporal stability of 124 

Chinese distribution.  125 

We compared the grid-based Chinese proportion between 2014 and 2016 at the 126 

nation- and city- scales. For each grid, we calculate its Chinese proportion ݌௜ 127 

according to Equation (S1), 128 

௜݌ ൌ
ோ೔

∑ ோ೔
ಿ
೔సభ

        (S1) 129 

where ܴ௜ denotes the number of check-in records in the ith grid, N is the total number 130 

of the grids within the administrative boundary (i.e., city or nation in this study). 131 

The spatiotemporal stabilities of Chinese distribution in selected sample nations 132 

and cities were shown as scatter plots in Figures S3-4. Results showed that the grid-133 

based Chinese proportion keeps a relatively high consistency along with the period 134 



from 2014 to 2016 (e.g., r2 > 0.7 for the selected nations, and r2 > 0.8 for the selected 135 

cities). We further applied this method in worldwide nations and cities, and results in 136 

Figures S5-6 also confirmed the assumption that global Chinese kept spatiotemporal 137 

stabilities in distribution and density. Specifically, as the histogram shown in Figure 138 

S7, the majority of cities (Figure S7a) and nations (Figure S7b) achieved high 139 

correlation coefficients (r > 0.60) of grid-based Chinese proportion between 2014-140 

2016. In the lack of mobile-phone location data over the study period 1999-2011, we 141 

used the Tencent location data in 2016 to reveal the global distribution of Chinese 142 

footprints and assumed it to be stable during this period.  143 



 144 

 145 
Figure S2. The weibo check-in records collected in 2014 (a) and 2016 (b). 146 
   147 



 148 

 149 
Figure S3. Scatter plots of grid-based Chinese footprint proportion in 2014 (horizontal 150 
axis) versus 2016 (vertical axis) in selected nations. i.e., (a) Germany, (b) Italy, (c) New 151 
Zealand, (d) South Korea, (e) Thailand, and (f) Japan.  152 
 153 



 154 
Figure S4. Scatter plots of grid-based Chinese footprint proportion in 2014 (horizontal 155 
axis) versus 2016 (vertical axis) in selected cities. i.e., (a) Bangkok, (b) New York, (c) 156 
Paris, (d) Rome, (e) Seoul, (f) Shenzhen, (g) Taipei, (h) Tokyo, and (i) Japan.  157 
   158 



 159 

 160 
Figure S5. Geographic distribution of correlation coefficients between grid-based 161 
Chinese footprint proportion in 2014 and 2016 in city-scale. Note that q-statistic is 0.67 162 
for 2014 and 0.63 for 2016.  163 
   164 



 165 
Figure S6. Geographic distribution of correlation coefficients between grid-based 166 
Chinese footprint proportion in 2014 and 2016 in nation-scale. Noted the background 167 
is the Geographic distribution of global Chinese footprints. 168 
 169 
 170 
   171 



 172 
Figure S7. Histogram of correlation coefficients between grid-based Chinese footprint 173 
proportion in 2014 and 2016 at city- (a) and nation- (b) scales.  174 
 175 
   176 
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