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a b s t r a c t 

Wireless Sensor Network (WSN) monitoring takes a primary role in many industrial and 

research processes. Huge amounts of WSN sensor readings are nowadays available and can 

be analyzed to discover fruitful knowledge. 

This paper focuses on analyzing historical WSN sensor readings to identify the combi- 

nations of sensors whose readings show an unexpected trend. Although significant vari- 

ations of single sensor readings may be easily detected, discovering correlations between 

multiple sensor readings is challenging without using advanced data analytics tools. To 

tackle this issue, we present an itemset-based data mining approach to analyzing WSN 

data. It identifies the combinations of sensors (of arbitrary size) whose readings are unex- 

pectedly low in a given time period. Since the readings acquired by multiple sensors may 

decrease in an alternate fashion, the discovered patterns provide new information com- 

pared to single sensor analysis. To make the mined patterns manageable by domain ex- 

perts for manual inspection, the mining algorithm is driven by spatial constraints defined 

on the WSN topology. 

The experimental results, achieved on real WSN data, demonstrate the effectiveness of 

the proposed approach in detecting heating system malfunctioning. 

© 2018 Published by Elsevier Inc. 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

In the last few years, the interest in Wireless Sensor Networks (WSN) has continuously grown in both the industrial

and research fields. The attention has been focused on the design, implementation, and exploitation of novel technologies

and applications to support WSN management (e.g., sensor interface [33] , network architecture [27,41] , integration of WSN

and RFID technologies [38] ). A parallel interest has been devoted to developing novel analytics tools to gain insights into

WSN data [5,7,13,23,24,35] . Following these trends, in recent years many multi-utility companies have deployed WSNs based

on sensors and smart meters to remotely control the provided services [1,2,9,25] . For example, companies operating in the

sectors of electricity, thermal energy for district heating, gas, management of integrated water services, and waste collection

and disposal all need to monitor WSNs. 

Wireless Sensor Networks monitor the environment in different time slots and periods, even when inhabitants or visitors

are not present (e.g., during nighttime or holidays). Detecting anomalous behaviors may help domain expert to prevent

damages, wastes, or malfunction of electronic or electrical systems. Let us consider, for example, a server farm hosting tens
∗ Corresponding author. 
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Fig. 1. Toy example of WSN topology. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

or hundreds of servers in air-conditions environments. Capturing anomalous situations in the temperature measurements

acquired by the WSN can prevent damages to the hardware. 

Even though WSNs allow providers to effectively monitor different phenomena, little profits can be gained from WSN

data unless discovering actionable knowledge from data. As a matter of fact, few companies analyze their owned data to

support decision-making [21] . Since the largest part of WSN data remain unused, companies get a late and incomplete

feedback on the evolution of the industrial processes and/or on the quality of the offered services. Hence, there is a need

for novel and effective analytics systems aimed to support business decisions through the advanced analysis of historical

WSN data. Since the number of sensor readings continuously grows, an increasing research interest has been devoted to

applying data mining techniques to analyze WSN data (e.g., [26,32,40] ). In this paper we analyze the historical readings of

WSN sensors with the goal of identifying the combinations of sensors whose reading values show an unexpected trend. The

position of this work with respect to the existing literature is discussed in Section 2 . 

Example. Let us consider a WSN deployed in a workplace to monitor the environmental temperature. The topology of the

network is depicted in Fig. 1 . It consists of four sensors s j (1 ≤ j ≤ 4). The acquired readings of the sensors in the network are

collected into a relational dataset. For the sake of simplicity, let us consider the extract of the dataset reported in Table 1 ,

which collects the temperature measurements acquired by each sensor at 6 sampling time instants t i (1 ≤ i ≤ 6). For example,

at time t 1 sensor s 2 read 27 °C. 

We look for the combinations of sensors whose temperature readings are relatively low in a given time period. These

combinations may indicate a malfunction of the heating system. Notice that the problem we address in the context of

heating system maintenance is common in other contexts, such as smart city monitoring. For example, if the topology would

represent a city map and sensors would measure the environmental conditions in different city areas (e.g., temperature,

pressure) a similar analysis can be performed to study the impact of pollutant agents on the environmental conditions.

Experts may manually explore WSN data to analyze the temperature readings of individual sensors. 

Example. Both sensors s 1 and s 2 measured an average temperature above 19 °C over all the sampling time instants (i.e.,

19.9 °C for both sensors). Thus, apparently, they do not show any malfunction of the heating system. However, analyzing the

correlation between the temperature measurements acquired by the two sensors it turns out that the reading of one of the

two sensors in the set { s 1 , s 2 } is, on average, less than or equal to 19 °C over all the sampling time instants. Specifically,

at each sampling instant the least temperature reading acquired by sensors s 1 and s 2 is 15 °C at times t 1 (by sensor s 1 ),

t 2 ( s 1 ), t 3 ( s 2 ), and t 4 ( s 2 ); 22 °C at time t 5 ( s 2 ); 20 °C at time t 6 ( s 1 ). The average least temperature computed over all

the sampling time instants is 17 °C, which is below the average temperature of livable places. The automatic discovery of

potentially critical sets of sensors helps domain experts to drive monitoring activities. For instance, in light of the achieved

results, the reasons behind the unexpected behavior of sensors s 1 and s 2 can be further investigated using domain-specific

knowledge. 

This paper proposes a novel type of pattern to automatically discover the sets of sensors in the WSN showing unexpected

behaviors. This pattern, named unexpected pattern , represents an arbitrary set of sensors whose readings are unexpectedly

low during the considered time period. To the best of our knowledge, this work is the first attempt to discover this type of

pattern from WSN data. The proposed pattern allows us to discover trends in WSN data that cannot be discovered based on

single sensor analysis. 

Example. Unexpected pattern { s 1 , s 2 } contains at least one sensor reading that is, on average, less than or equal to a given

threshold (19 °C) over all the sampling time instants. A separate analysis of sensors s 1 and s 2 ’s readings is not sufficient to

identify a similar unexpected behavior. 

Unexpected patterns can be specialized by enforcing constraints derived from the spatial topology of the WSN. Specif-

ically, two main categories of patterns have been identified: (i) patterns satisfying the closeness constraint , which consist

of a set of nearby sensors, and (ii) patterns satisfying the distance constraint , which consist of a set of distant sensors. On

the one hand, to optimize the position of the sensors, experts may analyze the readings of nearby sensors. On the other

hand, to highlight unexpected behaviors in WSNs they may analyze the correlation between distant sensor readings. To cus-

tomize the analyses on different use cases, an extended version of a state-of-the-art itemset mining algorithm [10] , which
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integrates the newly proposed constraints, has been proposed. According to the selected use case, only the combinations of

nearby/distant sensors are extracted. Therefore, the mining result contains only the patterns that are worth considering for

targeted analyses. 

The proposed approach currently relies on in-memory data analyses. Since WSN data are expected to continuously grow

in the number of historical sensor readings, a parallel issue is the extension of the proposed approach in a Big Data scenario.

To address this issue, this paper also envisages perspectives of extensions of the proposed approach towards a distributed

architecture. 

The effectiveness of the proposed approach in detecting heating system malfunctioning was evaluated on real data ac-

quired from a WSN located in a University campus network. 

This paper is organized as follows. Section 2 compares this work with the existing literature. Sections 3 and 4 thoroughly

describe the proposed approach and summarize the main experimental results, respectively. Section 5 discusses the perspec-

tives of extension of the proposed system towards a scalable service, while Section 6 draws conclusions and discusses future

works. 

2. Related works 

A relevant research effort has been devoted to applying existing data mining algorithms to WSN data. They addressed 

(i) WSN data clustering [5,26,40] , to group sensors acquiring correlated readings with the aim at reducing network com-

munication costs, 

(ii) WSN data classification [14,15,34] , to predict the class of heterogeneous sensor readings [14,34] or to approximate the

reading values of nearby sensors [15] , and 

(iii) Pattern mining from WSN data [8,11,31,42] , to study the underlying correlations between sensor readings. 

This paper addresses the problem of pattern mining from WSN data. Hence, it belongs to category (iii). 

Recent pattern mining approaches tailored to WSN data entail 

(1) Discovering spatial correlations between sensors [8] , and 

(2) Mining temporal correlations from data streams acquired from WSNs [31] . In [8,31] the authors extracted frequent pat-

terns to characterize WSN data. Sensors were deemed as correlated if they acquired similar measurements in the analyzed

time period. The discovered correlations between sensor readings highlight common behaviors, which can be useful for

resizing or reconfiguring the network. In contrast, this work addresses the complementary goal of discovering unexpected

behaviors in WSNs. The patterns proposed in this work represent the combinations of sensors whose readings are signif-

icantly different. Since we look for anomalous situations, the mined patterns rarely occur in the analyzed data. To extract

them, we exploited an infrequent itemset mining algorithm. 

An attempt to use infrequent patterns in WSN data analysis has been made in [42] . The authors focused on detecting

salient events by discovering patterns which represent series of sensor readings. Per-sensor readings are processed in real

time and then transmitted to a fusion center. Unlike [42] , in this work we do not study the sequences of individual sensor

readings, but the correlations among multiple sensors. To tackle this issue, sensor readings are processed offline. 

A parallel research issue is the study of new itemset mining algorithms. To the best of our knowledge, the algorithms

presented in [10,17,29] is the most recent solutions to the problem of discovering infrequent itemsets. In this work, we

exploit an infrequent itemset mining algorithm to extract the unexpected patterns from WSN data. Among the existing so-

lutions, we applied the MIWI algorithm [10] , because it can be easily customized to WSN data. Furthermore, we customized

the MIWI mining process to discover only the patterns of interest according to the WSN topology. 

3. Wireless Sensor Network Analyzer 

Wireless Sensor Network Analyzer (WSNA) is new data-driven approach to analyzing sensor readings acquired by Wire-

less Sensor Networks (WSNs). The analytical flow of WSNA is depicted in Fig. 2 . A WSN acquires measurements through

sensors distributed across the monitored environment. Sensor readings are prepared to the next analytical processes and

then collected into a unique data repository. Next, an itemset mining technique is applied to the prepared dataset to dis-

cover unexpected behaviours in sensors’ readings. The significance of the extracted patterns is manually validated by human

experts based on their domain-specific knowledge. For example, a physical model of the environment where sensors are

placed can be developed and exploited to assess the significance of the mined patterns. 

A more detailed description of the steps of data preparation and pattern mining is given in the following sections. 

3.1. Wireless sensor data preparation 

Monitoring Wireless Sensor Networks (WSNs) entails collecting all the measurements of interest. A WSN can be modeled

as a topology of sensors [30] . Let us denote as S = { s 1 , . . . , s N } the set of sensors in the topology. Each sensor is character-

ized by a unique identifier and by its geographic coordinates (i.e., latitude and longitude). For example, the WSN topology

depicted in Fig. 1 consists of 4 sensors. For the sake of simplicity, let us suppose that the network topology is given by

construction and it does not change over time, i.e., the sensor coordinates are fixed. 
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Fig. 2. Wireless Sensor Network Analyzer (WSNA). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To perform advanced data analyses, sensor readings are usually scheduled at a fixed rate and then stored into a cen-

tralized data repository [15,22] . Hence, a uniform temporal sampling of the physical measurement of interest is performed.

At each sampling time, the readings acquired by all the sensors in the network are considered. Note that the phenomena

monitored by WSNs often tend to have unknown spatial distributions, which potentially change over time. For this reason,

changes in the topology (e.g., node suppression) or in the sampling schema are sometimes needed. The readings acquired

with different sampling schemata should be separately analyzed to avoid introducing bias in the mining results. Possibly, a

new mining session should be scheduled as soon as the sampling schema or the topology changes. 

A WSN dataset collects all the sensor readings for a given measure m (e.g., temperature, humidity). To suit WSN data to

the itemset mining process, the WSN dataset is tailored to a transactional data format. The concept of weighted item [39] is

exploited to map sensors with the corresponding measurements. Specifically, for each sampling time instant t i a weighted

item associates a sensor s j with its current measurement v ji . In the context of WSNs, the concepts of item, weighted item,

and WSN dataset can be formalized as follows. 

Definition 1. Item and weighted item. Let M be a set of measures, S be the set of sensors in a WSN, and T be a set of points

of time. Given a measure m ∈ M (measured by sensors in S ) and V a set of measurements for m , a function f m 

: S × T → V

is defined. The following definitions hold. (i) Every sensor s j ∈ S is an item . (ii) a weighted item is a pair 〈 s j , v ji 〉 , where the

measurement v ji is the weight associated with sensor s j at time t i , i.e., v ji = f m 

(s j , t i ) . 

A weighted dataset collects all the measurements for a measure m ∈ M associated with any sensors in S for all the points

of time in T . It is modeled as a set of pairs (i) point of time and (ii) a set of weighted items. Each set of weighted items will

be hereafter denoted as transaction . An example of weighted dataset for the temperature measure is shown in Table 1 . 

Definition 2. WSN weighted dataset. Let S be the set of sensors in a WSN, m be a measure in M, T be a set of points of time,

and V be a set of measurements. 

A WSN weighted dataset D is a set of pairs ( t i , tr i ) where t i ∈ T and tr i = {〈 s j , v ji 〉| s j ∈ S} is a set of weighted items. For

D the following properties hold. (i) Every s j ∈ S is an item in D. (ii) Each transaction tr i ∈ D is associated with a unique 

sampling time instant t i . 

The dataset in Table 1 reports the WSN weighted dataset. It collects the temperature measurements (sensor readings)

sampled at 6 time instants by the example WSN in Fig. 1 . At time t 1 sensors s 1 and s 2 read values 15 °C and 27 °C, respec-

tively. These values represent the weights of sensors s 1 and s 2 at time t 1 . Sensors s 1 and s 2 are items, while pairs 〈 s 1 , 15 °C 〉
and 〈 s 2 , 27 °C 〉 are weighted items. 

While monitoring a measure over a large time interval, a few sensor readings could be missing. To replace missing data

values in WSNs, Various approaches have been proposed [16] . For each sensor, WSNA replaces its missing values by taking

the average of the last value before and of the first value after the gap. However, more sophisticated strategies can be easily

integrated as well. 

3.2. Unexpected pattern mining 

We mine infrequent itemsets from the WSN weighted dataset to discover the combinations of WSN sensors showing

unexpected behaviors. To this purpose, we applied the MIWI mining [10] . The fundation behind itemset mining techniques

and the motivations behind the choice of the MIWI mining algorithm are summarized below. 

Traditional itemset mining approaches (e.g., Apriori [4] , FP-Growth [19] ) cannot be applied to WSN data, because all

the data items are assumed to be equally relevant within the analyzed data. Conversely, in the context of WSNs, items
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Table 1 

Example of WSN weighted dataset for the temperature mea- 

sure. 

Time stamp Sensor readings 

t 1 〈 s 1 , 15 °C 〉 , 〈 s 2 , 27 °C 〉 , 〈 s 3 , 20 °C 〉 , 〈 s 4 , 22 °C 〉 
t 2 〈 s 1 , 15 °C 〉 , 〈 s 2 , 18 °C 〉 , 〈 s 3 , 16 °C 〉 , 〈 s 4 , 22 °C 〉 
t 3 〈 s 1 , 18 °C 〉 , 〈 s 2 , 15 °C 〉 , 〈 s 3 , 18 °C 〉 , 〈 s 4 , 18 °C 〉 
t 4 〈 s 1 , 27 °C 〉 , 〈 s 2 , 15 °C 〉 , 〈 s 3 , 18 °C 〉 , 〈 s 4 , 27 °C 〉 
t 5 〈 s 1 , 24 °C 〉 , 〈 s 2 , 22 °C 〉 , 〈 s 3 , 15 °C 〉 , 〈 s 4 , 22 °C 〉 
t 6 〈 s 1 , 20 °C 〉 , 〈 s 2 , 22 °C 〉 , 〈 s 3 , 15 °C 〉 , 〈 s 4 , 22 °C 〉 

Table 2 

Patterns mined from the dataset in Table 1 . ξ = 19 °C. 

Pattern IWI- MIWI/ Pattern IWI- MIWI/ 

support Not MIWI support Not MIWI 

{ s 3 } 17 °C MIWI { s 1 , s 2 , s 4 } 17 °C Not MIWI 

{ s 1 , s 2 } 17 °C MIWI { s 2 , s 3 , s 4 } 16 °C Not MIWI 

{ s 2 , s 4 } 19 °C MIWI { s 1 , s 2 , s 3 } 15 °C Not MIWI 

{ s 3 , s 4 } 17 °C Not MIWI { s 1 , s 3 , s 4 } 15 °C Not MIWI 

{ s 1 , s 3 } 16 °C Not MIWI { s 1 , s 2 , s 3 , s 4 } 15 °C Not MIWI 

{ s 2 , s 3 } 16 °C Not MIWI 
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(i.e., sensors) are characterized by different weights (sensor measurements) at different sampling times. The problem of

extracting itemsets from weighted data is known as the weighted itemset mining problem [39] . A weighted itemset I is a set

of k distinct items occurring in a weighted dataset [39] . In the context of WSNs, a weighted itemset is a set of k sensors in

the WSN dataset D. 

Example. { s 1 }, { s 2 }, and { s 1 , s 2 } are examples of weighted itemsets mined from the dataset in Table 1 . 

The notation used above is in compliance with the previous works on weighted itemset mining (e.g., [39] ). In our con-

text, item weights occurring in the WSN dataset are used to drive the weighted itemset mining process. Hence, the mined

itemsets are denoted as weighted , even if they do not include weights. For the sake of clarity, hereafter weighted itemsets

will be simply denoted as itemsets whenever it is clear from the context. 

The traditional (not weighted) itemset mining problem is commonly driven by well-known itemset quality measures. For

example, the support of an itemset in a transactional dataset is the percentage of dataset transactions containing it [3] . For

our purposes, the itemset support measure is extended, similar to [39] , to the case of weighted data. Specifically, weighted

itemset extraction is driven by the IWI-support measure. The IWI-support was introduced in [10] to efficiently address the

Infrequent Weighted Itemset (IWI) mining problem. 

Let I be a weighted itemset (i.e., a set of sensors) in D. The IWI-support of an itemset I in the WSN dataset D is a

weighted frequency of occurrence of I in D. To weigh the occurrence of an itemset I in an arbitrary transaction tr i ∈ D, an

aggregation function f (e.g., min, max, average, mode) is used to combine the weights of the I ’s items in tr i . A more formal

definition follows. 

Definition 3. IWI-support. Let D be a WSN weighted dataset, let I be a weighted itemset in D, let MS f in (R ) be the set of all

finite multisets over R and let M I,tr i 
be the finite multi-set of measurements of the sensors in I associated with transaction

r i ∈ D. Let f : MS f in (R ) → R be a function (e.g., minimum, maximum, average) that aggregates the sensor measurements. 

The IWI-support of I in D is given by 

IWI-support (I, D) = 

∑ 

tr i ∈D f (M I,tr i ) 

|D| 
The choice of the aggregation function depends on the considered use cases. Hereafter, we will consider f = min (i.e.,

it takes the least measurement acquired by any sensor in I at time t i ), because the selected patterns are particularly use-

ful for pinpointing unexpected behaviors in WSNs. The integration of different aggregation functions will be discussed in

Section 3.2.3 . 

Example. The IWI-support of itemset { s 1 , s 2 } in Table 1 is 17 °C. This value is the average of the least temperature mea-

surements acquired by either s 1 or s 2 at each sampling time instant from t 1 to t 6 . For example, at time t 1 sensor s 1 measured

the least temperature (15 °C against 27 °C measured by s 2 ). The weight contributions to the IWI-support of { s 1 , s 2 } are 15 °C
at times t 1 − t 4 , 22 °C at time t 5 , and 20 °C at time t 6 . 

Given a WSN dataset D and an IWI-support threshold ξ , let us denote as Infrequent Weighted Itemsets (IWIs) the weighted

itemsets whose IWI-support( I, D) ≤ ξ . Table 2 reports the set of IWIs extracted from the WSN dataset in Table 1 by enforcing

ξ = 19 °C. In the performed experiments, ξ was set to values between 19 °C and 21 °C, because these values were assumed

to be the minimum temperature of livable habitats [12] . Each IWI represents a combination of sensors for which at least

one sensor reading is, on average, less than or equal to ξ at every sampling time instant. With convenient abuse of notation,
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hereafter this situation will be also denoted as correlation between sensor readings. For example, { s 1 , s 2 } indicates that, on

average, either sensor s 1 or s 2 (or both of them) have measured a temperature less than or equal to 19 °C for every sampling

time instant (possibly in an alternate fashion). 

Experts are commonly interested only in the minimal combinations of sensors representing anomalous situations. WSNA

selects a worthwhile IWI subset, namely the Minimal IWIs (MIWIs). MIWIs are IWIs of minimal size, i.e., IWIs for which

none of their proper subsets is an IWI. MIWIs represent the minimal combinations of sensors for which at least one sensor

reading is, on average, below the temperature threshold ( ξ = 19 °C) for every sampling time instant. 

Example. { s 1 , s 2 } is a MIWI because neither s 1 nor s 2 satisfies the IWI-support threshold. Conversely, { s 1 , s 2 , s 3 } is a non-

minimal IWI because at least one of its proper subsets (e.g., { s 1 , s 2 }) is an IWI. Column 3 of Table 2 differentiates between

minimal and non-minimal IWIs. 

While considering decreasing functions (e.g., f = min) MIWI extraction can be efficiently accomplished thanks to the

following property. 

Lemma 1. Let f be a decreasing aggregation function, i.e., given two multi-sets of item weights V 1 and V 2 , such that V 1 ⊆V 2 ,

the following condition holds: f ( V 1 ) ≥ f ( V 2 ). Assume that the IWI-support measure of an itemset is computed using function f.

The IWI-support values of itemsets X and Y, X ⊆Y, based on function f satisfy the following property: IWI-support( X, D) ≥ IWI-

support( Y, D). 

Proof. Let D be a weighted WSN dataset and let tr i be an arbitrary transaction in D. Let V( X, tr i ) = { v ji |〈 s j , v ji 〉 ∈ tr i ∧ s j ∈ X }

be the multi-subset of weights in tr i associated with items in X . Since X ⊆Y then V( X, tr i ) ⊆ V( Y, tr i ). Thus, applying the

decreasing function f the following inequality holds: f (V( X, tr i )) ≥ f (V( Y, tr i )). By summing up the values returned by function

f over all the transactions in D, we get 
∑ 

tr i ∈D f (V (X, tr i )) ≥
∑ 

tr i ∈D f (V (Y, tr i )) . Therefore, if X ⊆Y then IWI-support (X, D) ≥
IWI-support (Y, D) . �

If an IWI I is infrequent, then all of its supersets can be deemed as not useful for manual inspection by domain experts,

because they do not provide any additional information. 

3.2.1. Distance-based constraints 

While analyzing WSN measurements experts may be interested in analyzing only the measurements acquired by (a)

nearby sensors, because readings acquired in the same environment are most likely to be correlated with each other, or (b)

distant sensors, to correlate sensor measurements acquired in different environments or under different conditions. 

Experts may consider the spatial distance between the sensors in the WSN topology to drive the exploration of the mined

patterns. Specifically, WSNA allows experts to constrain the minimum or maximum distance (computed on the WSN topol-

ogy) between each couple of sensors in the selected MIWIs, according to the use case of interest. Given a distance threshold

δ, WSNA extracts (a) the MIWIs satisfying the closeness constraint , i.e., the combinations of nearby sensors such that the

spatial distance between each couple of sensors is no greater than δ or (b) the MIWIs satisfying the distance constraint , i.e.,

the combinations of distant sensors such that the spatial distance between each couple of sensors is above δ. 

Definition 4. MIWI selection criteria. Let D be a WSN weighted dataset, S the set of sensors in D, and d( s i , s j ) the distance

between two arbitrary sensors s i , s j ∈ S | i � = j , in the WSN topology. Let δ be a sensor distance threshold. MIWIs are selected

according to one of the following constraints: 

a) A MIWI I in D satisfies the closeness constraint iff ∀ s i , s j ∈ I , d( s i , s j ) ≤ δ
b) A MIWI I in D satisfies the distance constraint iff ∀ s i , s j ∈ I , d( s i , s j ) > δ

In the performed experiments, d ( s i , s j ) was computed as the Euclidean distance between s i and s j [20] . Notice that a

sensor may occur in several MIWIs (see Definition 4 ). 

Example. let us consider the MIWIs { s 1 , s 2 } and { s 2 , s 4 } extracted from the WSN dataset in Table 1 . Let us assume that

the maximum distance threshold δ is set to 2 m (2 m), which implies that the selected combinations of sensors are likely to

be placed within the same environment. { s 1 , s 2 } satisfies the closeness constraint because d ( s 1 , s 2 ) ≤ 2 m . A complementary

analysis could prompt experts to consider only the correlations between relatively distant sensors. Since d(s 2 , s 4 ) > 2 m ,

MIWI { s 2 , s 4 } satisfies the distance constraint. 

3.2.2. The algorithm 

Given a WSN weighted dataset D, an IWI-support threshold ξ , and a distance-based constraint C , we extract all the

MIWIs from D satisfying both ξ and C . To accomplish this task, we exploit a newly proposed algorithm, i.e., the Tuned MIWI

Miner algorithm. The Tuned MIWI Miner algorithm extends the MIWI Miner algorithm [10] in the following directions. 

(i) Extraction of a more compact set of patterns . MIWI Miner extracts all the possible MIWIs, whereas Tuned MIWI Miner

mines only the subset of MIWIs satisfying a distance-based constraint (see Section 3.2.1 ). 

(ii) Pushing constraint into the knowledge extraction process . Tuned MIWI Miner pushes the distance-based constraints

deep into the mining process, whereas MIWI Miner would need an ad hoc postpruning phase to select the subset of MIWIs

of interest. 

As shown in Section 4 , pushing the distance-based constraints into the MIWI mining process significantly limits the

number of mined MIWIs. Thus, the output pattern set is more compact and manageable by domain experts. 
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The pseudo-code of the Tuned MIWI Miner is reported in Algorithms 1 and 2 . The algorithm relies on three main steps: 

Algorithm 1 Tuned MIWI-Miner( T, ξ , C ). 

Input: T , a weighted transactional dataset 

Input: ξ , a maximum IWI-support threshold 

Input: C, a distance-based constraint 

Output: F , the set of MIWIs satisfying ξ
1: F ← ∅ /* Initialization *//* Scan T and build its the equivalent transaction set*/ 

2: T E ← equivalentTransactionSet( T )/* Create the initial FP-tree from T E */ 

3: T ree ← FP-tree( T E) 

4: F ← Tuned-MIWIMining( T ree , ξ , C, ∅ ) /* Recursive mining function */ 

5: return F 

Algorithm 2 Tuned-MIWIMining( Tree, ξ , C, px ). 

Input: T ree , a FP-tree 

Input: ξ , a maximum IWI-support threshold 

Input: C, a distance-based constraint 

Input: px , the set of items/projection patterns with respect to which Tree has been generated 

Output: F , the set of IWIs extending px 

1: F ← ∅ 
2: for all item i j in the header table of T ree |∀ i q ∈ px, distance (i j , i q ) satisfies the distance-based constraint C do 

3: I ← px ∪ { i j } /* Generate a new potential infrequent itemset I by joining px and i j *//* If I is infrequent store it */ 

4: if IWI-support( I) ≤ ξ then 

5: F ← F ∪ { I} 
6: end if /* Build I’s conditional FP-tree */ 

7: T ree I ← createFP-tree( T ree , I) 

8: if T ree I � = ∅ then 

9: F ← F ∪ Tuned-MIWIMining( T ree I , ξ , C, I) /* Recursive mining*/ 

10: end if 

11: end for 

12: return F 

(a) Creation of an equivalent transaction set, in which weights are uniformly distributed within each equivalent transac-

tion ( Algorithm 1 , line 2), 

(b) Creation of a compact in memory representation of the transactional dataset based on an FP-tree-like structure

( Algorithm 1 , line 3), and 

(c) Recursive itemset mining from the FP-tree-like structure ( Algorithm 1 , line 4). 

Steps (a) and (b) rely on the functionalities provided by the baseline algorithm version (MIWI Miner [10] ), while step

(c) is peculiar to the extended version. Specifically, at step (a) the equivalentTransactionSet function is used to transform

the initial dataset, in which each transaction may contain items with different weights, in an equivalent dataset where all

the items of the same transaction have the same weight. This transformation is exploited to efficiently mine infrequent

itemsets. Specifically, each weighted transaction corresponds to an equivalent weighted transaction set. Item weights in the

original transaction are spread, based on their relative significance, among the corresponding equivalent transactions. While

using the minimum weighting function, the equivalence procedure first considers the least weight occurring in the original

transaction as current reference weight and generates an equivalent transaction of equally weighted items. Next, an iterative

procedure only considers, for the subsequent steps, the set of items S contained in the original transaction and having

weight strictly higher than the reference weight. Items in S are combined in a new equivalent transaction. At this stage,

the new value of reference weight is set to the minimum weight among the items in S reduced by the previous reference

weight value. Next, set S is further pruned by excluding items with the current reference weight once more. The above

procedure is iterated until S is empty. The proposed transformation is particularly suitable for compactly representing the

original dataset by means of an FP-tree index [19] . A more detailed description of the above-mentioned data transformation

procedure is given in [10] . 

Once the equivalent set has been generated, at step (b) it is stored in main memory by using a prefix-tree data structure.

Specifically, an FP-tree is created [19] . Finally, (c) the recursive Tuned-MIWIMining algorithm is invoked on the generated

FP-tree ( Algorithm 1 , line 4). In the recursive itemset mining step, the newly proposed distance-base constraint is enforced.

Specifically, Tuned MIWI Miner adopts a different item pruning strategy with respect to MIWI Miner [10] . To generate a

potentially new MIWI I , prefix px is extended with an item i j ( Algorithm 2 , line 3). To prevent the generation of the MIWIs

that do not satisfy the distance-based constraint, the aforesaid extension is performed only for the items i j that satisfy the

distance-based constraint C with respect to all the items i q ∈ px ( Algorithm 2 , line 2). 
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Items satisfying the distance constraint are considered one at a time and used to extend the current prefix p x and to

generate new candidate itemsets I . If I is infrequent, then it is included in the set of infrequent itemsets ( Algorithm 2 , line

5). To generate further extensions of the current candidate itemset, a conditional FP-tree, containing only the transactions

containing the items in I , is created by using the same createFP-tree function described in [10] ( Algorithm 2 , line 7). Finally,

the recursive Tuned MIWI Mining function is invoked on the new conditional FP-tree ( Algorithm 2 , line 9). 

3.2.2.1. Complexity analysis. Tuned MIWI Miner is an FP-growth-like mining algorithm with an embedded distance-based

constraint. Similar to FP-growth [19] , the complexity of Tuned MIWI Miner is linear with respect to the number of mined

itemsets, which is combinatorial with the number of items ( 2 # items in the worse case) [19] , if the distance-based constraint

is not enforced. However, thanks to the distance-based constraint, which has been pushed deep into the itemset mining

process (see Algorithm 2 ) the actual number of explored attribute combinations is significantly lower. 

The Tuned MIWI Miner algorithm is complete (i.e., it extracts all the MIWIs satisfying the IWI-support and the distance-

based constraint). Tuned MIWI Miner is not correct , because, similar to other FP-Growth-like itemset mining algorithms

(e.g., [28] ), it potentially generates a superset of the patterns satisfying the constraints. Below, we report a proof of com-

pleteness and a counterexample showing the non-correctness of the Tuned MIWI Miner algorithm. 

3.2.2.2. Proof of completeness. By contradiction, let us suppose that an itemset satisfying the given constraint is not extracted.

Since the FP-Growth-like itemset extraction is complete [19] , then the distance-based constraint strategy wrongly prunes the

candidate itemset. According to Definition 4 , itemset I is pruned if it contains any pair of items not satisfying the constraint.

If function f = min then, thanks to Lemma 1 , all the extensions I 1 , I 2 of I ( I ⊂ I 1 , I 2 ) are pruned because, by construction,

they do not satisfy the constraint as well. Contradiction. �

3.2.2.3. Non-correctness: a counterexample. Similar to most FP-Growth-like itemset mining algorithms (e.g., [28] ), the Tuned

MIWI Miner algorithm may generate a superset of the non-minimal itemsets. According to the algorithm described in

Algorithm 2 , projection trees are recursively generated and visited. However, the order in which items occur in the header

table matters. 

Let us consider the triplet of items a, b , and c . Let us suppose that itemsets { a, c } and { a, b, c } are both infrequent with

respect to the IWI-support threshold ξ , whereas all the other combinations of the aforesaid items are frequent. Hence, { a,

c } is a MIWI, whereas { a, b, c } is not. While generating the projection tree associated with item a the order of appearance

of items b and c matters. Specifically, if the two items have the same local IWI-support value, item b is considered first,

because it precedes c in alphabetical order. In this case, itemset { a, b, c } is generated even if it is not minimal. 

The presence of redundant (non-minimal) itemsets slightly affects the quality of the mining result. For example, in the

experiments performed on synthetic data less than 5% of the mined itemsets were non-minimal, while redundant itemsets

were not extracted at all from real data. 

3.2.3. Use of different aggregation functions 

The use of aggregation functions f other than min could enable the application of the proposed approach in different use

case scenarios. Tuned MIWI Miner supports of aggregation measures f other than min provided that a splitting procedure is

applied to the raw WSN readings prior to MIWI mining. Specifically, each transaction of the original WSN weighted dataset

has to be replaced with an equivalent transaction set corresponding to all the possible item subsets. In other words, for

every transaction tr i ∈ D consisting of N sensor readings, the splitting procedure generates up to 2 N transactions, each one

corresponding to a distinct subset of items in tr i . This procedure potentially generates Big datasets, because the cardinality

of the WSN weighted datasets combinatorially increases. To guarantee the scalability of the mining process towards Big

datasets, the proposed centralized solution can be extended towards a distributed architecture. Perspectives of extension of

the current architecture are given in Section 5 . 

4. Experimental results 

The efficiency and effectiveness of the proposed approach were evaluated on real and synthetic data. 

Real WSN data. We considered two real WSN datasets related to different case studies. The first dataset, named Heat ,

concerns heating system monitoring. It relates a WSN deployed in April 2009 within a campus network. The WSN consists

of a network of autonomous sensors that were placed in different research laboratories in the same building and floor as

well as in their adjacent corridor. The WSN topology is depicted in Fig. 3 . The campus WSN consists of 16 nodes. Each node

consists of a Tmote Sky module, which is a low power wireless module for use in sensor networks. It features an IEEE

802.15.4 wireless transceiver with antenna, a USB connection, and integrates humidity, light, and temperature sensors. All

the nodes were configured to transmit their daily measures in bulk at a certain time of the day. Specifically, antennas were

switched on for half hour at 5.30 pm each day. The half-hour period allowed us to avoid transmission losses due to drift

in the mote clocks. The bulk transmission were chosen instead of the real-time monitoring because it greatly improved the

mote lifetime, which was, on average, up to a month. 

The second dataset, named Pollution , concerns the analysis of the impact of polluting agents on environmental condi-

tions in a urban scenario. It is an open dataset provided by ARPA Lombardia, an organization devoted to the protection of
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Fig. 3. WSN topology associated with the Heat dataset 

Table 3 

Combinations of nearby sensors (Weekdays. Working hours. Maximum 

distance threshold δ = 8 m) . 

Average Patterns (IWI-sup) Average temperature 

temperature measured by 

threshold ξ ( °C) each sensor ( °C) 

20.6 { s 10 } (17.64) 

{ s 8 , s 22 } (20.54) { s 8 } (22.31) − { s 22 } (20.63) 

{ s 15 } (20.34) 

21.8 { s 6 , s 9 } (21.73) { s 6 } (21.97) − { s 9 } (21.94) 

{ s 10 } (17.64) 

{ s 13 } (21.61) 

{ s 15 } (20.34) 

{ s 22 } (20.63) 

22.2 { s 6 } (21.97) 

{ s 9 } (21.94) 

{ s 10 } (17.64) 

{ s 11 , s 23 } (22.04) { s 11 } (22.23) − { s 23 } (22.44) 

{ s 13 } (21.61) 

{ s 15 } (20.34) 

{ s 22 } (20.63) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the environment. Pollutant concentrations are gathered by ARPA Lombardia through some monitoring stations located in the

Italian Region Lombardia. Each station is equipped with a set of sensors, each one measuring the levels of a given pollutant.

The provided data consist of a set of hourly or daily readings, depending on the type of pollutant. Each reading is charac-

terized by the monitoring station identifier, the sensor identifier, the name of the measured pollutant, the concentration of

the pollutant, and the date and hour of the reading. The dataset considered in this study collects the percentage level of

Nitrogen dioxide ( NO 2 ) acquired by different sensors located all over the city of Milan (Italy) on each day of 2013. 

Synthetic data. To test the scalability of our approach, we used the public dataset generator described in [10] . 

All the experiments were performed on a 3.0 GHz Intel Xeon system with 16 GB RAM, running Ubuntu 12.04 LTS. 

4.1. Unexpected behavior discovery 

The section analyzes the unexpected patterns mined in two different case studies and compares the information provided

by the mined patterns with that provided by the analysis of individual sensor’s readings. 

4.1.1. Heating system monitoring 

To detect possible malfunction of the heating system in the campus network, we analyzed the historical temperature

readings acquired by the WSN. Temperature measurements in the Heat dataset were acquired every 15 min. over a time

period of one month. 

Let us analyze first the correlations between sensor readings acquired over the weekdays during the time slot from

9 A.M. to 6 P.M. To analyze the correlations between the readings of sensors placed within the same laboratory/in different

laboratories, we set the maximum/minimum distance threshold δ to 8 m (i.e., a rough estimate of the lab size). Following

the recommendations of the technical staff of the campus network, we considered 21 °C as a reliable estimate of the mini-

mum temperature of a livable habitat. We assume that average temperatures below the aforesaid value are supposed to be

critical [12] . In Tables 3 and 4 the itemsets mined by enforcing three representative temperature thresholds ξ close to the

critical value are reported. Tables 3 and 4 compare also the average temperature associated with each pattern with the av-

erage reading values associated with each sensor in the pattern. As discussed below, the information provided by individual

sensors is not sufficient to infer the same knowledge provided by unexpected patterns. 

For example, pattern { s 8 , s 22 } is an unexpected pattern representing a combination of two nearby sensors extracted by

setting ξ to 20.6 °C. Both sensors s 8 and s 22 are located in Lab7 (see Fig. 3 ). It indicates that, on average, at least one of

the two sensors measured a temperature below the threshold during the considered time slot (see Column 2 in Table 3 ).

This pattern may highlight a malfunction of the heating system in Lab7. This pattern is unexpected because considering the
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Table 4 

Combinations of distant sensors (Weekdays. Working hours. Minimum distance threshold 

δ = 8 m). 

Average temperature Unexpected patterns (IWI-sup) Avg. temperature measured by 

threshold ξ ( °C) each sensor ( °C) 

20.6 { s 6 , s 22 } (20.48) { s 6 } (21.97) − { s 22 } (20.63) 

{ s 6 , s 13 } (20.59) { s 6 } (21.97) − { s 13 } (21.61) 

{ s 8 , s 13 } (20.58) { s 8 } (22.31) − { s 13 } (21.61) 

{ s 9 , s 22 } (20.58) { s 9 } (21.94) − { s 22 } (20.63) 

{ s 9 , s 13 } (20.53) { s 9 } (21.94) − { s 13 } (21.61) 

{ s 10 } (17.64) 

{ s 11 , s 13 , s 19 } (20.59) { s 11 } (22.23) − { s 13 } (21.61) 

− { s 19 } (23.03) 

{ s 13 , s 22 } (19.77) { s 13 } (21.61) − { s 22 } (20.63) 

{ s 15 } (20.34) 

{ s 22 , s 23 } (20.56) { s 22 } (20.63) − { s 23 } (22.44) 

21.8 { s 6 , s 8 } (21.75) { s 6 } (21.97) − { s 8 } (22.31) 

{ s 8 , s 9 } (21.67) { s 8 } (22.31) − { s 9 } (21.94) 

{ s 8 , s 11 , s 19 } (21.72) { s 8 } (22.31) − { s 11 } (22.23) 

− { s 19 } (23.03) 

{ s 8 , s 19 , s 23 } (21.75) { s 8 } (22.31) − { s 19 } (23.03) 

− { s 23 } (22.44) 

{ s 10 } (17.64) 

{ s 13 } (21.61) 

{ s 15 } (20.34) 

{ s 22 } (20.63) 

22.2 { s 2 , s 8 } (22.18) { s 2 } (24.22) − { s 8 } (22.31) 

{ s 6 } (21.97) 

{ s 8 , s 11 } (21.88) { s 8 } (22.31) − { s 11 } (22.23) 

{ s 8 , s 17 } (22.20) { s 8 } (22.31) − { s 17 } (24.31) 

{ s 8 , s 19 } (21.96) { s 8 } (22.31) − { s 19 } (22.44) 

{ s 8 , s 23 } (21.96) { s 8 } (22.31) − { s 23 } (22.44) 

{ s 9 } (21.94) 

{ s 10 } (17.64) 

{ s 11 , s 19 } (22.06) { s 11 } (22.23) − { s 19 } (22.44) 

{ s 13 } (21.62) 

{ s 15 } (20.35) 

{ s 19 , s 23 } (22.17) { s 19 } (22.44) − { s 23 } (22.44) 

{ s 22 } (20.63) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

two sensors separately both of them measured an average temperature above the threshold (see Column 3). Hence, the two

sensors measured low temperature values in an alternate fashion. 

Experts may further investigate the correlation between the subsets of sensors identified by the unexpected patterns

using their domain-specific knowledge. The relevance of the discovered patterns could be validated according to physical

models, such as the model representing the distribution of air in a room [6] . For instance, according to the model of im-

perfectly mixed ventilated rooms, slight temperature variations in the same room (approximately 1 °C) can be deemed as

acceptable. Therefore, by comparing the measurements of all the sensors in the same pattern, pattern can be classified as

normal or critical. Fig. 4 (a) and 4 (b) plot the measurements acquired by sensors s 8 and s 22 and the corresponding temper-

ature gap, respectively. Based on these results, low temperatures were measured by the two sensors in an alternate fashion

(the temperature gap reached 4 °C). Imbalances in temperature readings can be due, for example, to the presence of faulty

radiators, which give off heat in a suboptimal manner. A similar validation process can be perform on each extracted pat-

tern. According to the heat transfer model [6] , experts may classify all the unexpected patterns as critical or normal. For

example, Fig. 4 (c) and 4 (f) show similar trends associated with patterns { s 6 , s 9 } and { s 11 , s 23 }. These patterns were extracted

by setting ξ to 21.8 °C and 22.2 °C, respectively. Even in these cases, the temperature variations are above 4 °C at certain

time instants, even if significant variations rarely occur. 

A complementary analysis may focus on distant sensors, i.e., sensors located in different labs. Since all labs were supplied

by the same heating system, analyzing this type of patterns can be useful for supporting heating system maintenance. 

For example, pattern { s 22 , s 23 } represents a correlation between the readings of sensors s 22 and s 23 , located in Lab7 and

Lab5, respectively (see Table 4 ). Experts suppose that while radiators in Lab5 were giving off an excessive amount of heat,

the supply for the other labs on average dropped. To back up this conclusion, we analyzed the average temperatures read

by each sensor. The large gap between the average temperature readings of sensors s 22 and s 23 (i.e., 22.44 °C for sensor s 23 

in Lab5 against the 20.63 °C for sensor s 22 in Lab7) confirms the soundness of their hypothesis. 

Finally, we analyzed also the patterns mined over the weekend with different configuration settings (due to space con-

straints, the detailed results have been omitted). Since over the weekend the heating system has commonly turned off, no

unexpected behavior appeared. 
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Fig. 4. Comparison between the readings of the sensors appearing in the same pattern. Weekdays. Working hours. 

 

 

 

 

 

 

 

 

 

Spatial stratification of sensors. To mine unexpected patterns, we considered the measurements acquired from all the

sensors located in each room. Therefore, we assumed a spatial stratification of the sensors within each room. Within each lab

we empirically tested the hypothesis of spatially stratified heterogeneity [36] (i.e., the significance of sensor stratification) on

the analyzed Wireless Sensor Network data by using the q-statistic method described in [37] . We made similar assumptions

and tests for the corridor adjacent to the laboratories. Specifically, in [37] the authors proposed a method to measure the

degree of spatial stratified heterogeneity and to test its significance. The q-statistic measures the correlation between the

variances of population and per-stratum sampling. The q value is within [0,1] (0 if a spatial stratification of heterogeneity is

not significant, and 1 if there is a perfect spatial stratification of heterogeneity). The probability density function F of the q-

statistic is derived as a non-central chi-square function [37] . To test hypothesis of spatially stratified heterogeneity according

to the procedure described in [37] we performed the following steps: 

1. We computed the parameters of the F-distribution. 

2. We estimated the critical value F α at significance level α = 0.01. 
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3. We quantitatively evaluated the size of the small area F ∗ of the F-distribution to the right of the critical value using the

GeoDetector tool available at http://www.geodetector.org/ as well as the Web interface available at http://keisan.casio.

com/exec/system/1180573166 . 

4. We tested the initial hypothesis of spatial stratified heterogeneity. If the area size F ∗ exceeds the critical value F α (i.e.,

F ∗ > F α), then we accept the hypothesis, otherwise we reject it. 

The achieved result confirmed the validity of the initial hypothesis for all the considered rooms ( F ∗
cor r idor 

= 570.45 > F 0.01 

= 9.20, F ∗
Lab2 

= 115.99 > F 0.01 = 3.56, F ∗
Lab5 

= 23.94 > F 0.01 = 3.89, F ∗
Lab7 

= 506.11 > F 0.01 = 6.17). Therefore, sensors within

room represent spatially diversified temperature samples. 

The resulting q values indicate the spatial stratification is almost perfect in Labs 2 and 5 ( q equal to 0.024 and 0.095,

respectively) and it is fair in Lab 7 and in the corridor ( q equal to 0.277 and 0.245, respectively). 

4.1.2. Analysis of the air pollution in a urban scenario 

We used the historical WSN readings collected in the Pollution dataset to analyze the correlations between sensors mea-

suring to level of air pollution in the city of Milan. Specifically, sensors acquire the level of Nitrogen dioxide (NO 2 ) in the

air every 10 min for a time period of one year. 

We analyzed the correlations between couples of nearby sensor readings by enforcing a maximum distance threshold

equal to 5 km (i.e., a rough estimate of the diameter of a city area) and we set ξ to 50 μ g/m 

3 , because experts recommend

this threshold value to discriminate between polluted areas and not. For example, the mined pattern { s 10 , 279 , s 5504 } repre-

sents a combination of nearby sensors s 10 , 279 and s 5504 placed 3.6 km far from each other. Since they are close to each other,

they are expected to measure similar NO 2 values. However, this is not the case. While single sensors measured an averagely

high pollution level, their combination is, on average, below the maximum threshold. Therefore, sensors s 10 , 279 and s 5504 

should be carefully monitored to detect possible causes of imbalances or malfunctioning. 

4.2. Effect of the average temperature threshold 

We analyzed the effect of the minimum IWI-support threshold on the characteristics of the patterns mined from the Heat

dataset. Tables 3 summarizes the results achieved on the subset of WSN data acquired over the weekdays (from Monday

to Friday; from 9 A.M. to 6 P.M.) by setting three representative temperature thresholds. While increasing the temperature

threshold, a larger number of combinations become infrequent. Thus, the number of mined patterns increases. Although

unexpected patterns may represent combinations of sensors of arbitrary size, even while setting relatively high threshold

values the number of patterns discovered is still in the order of a few dozens for all the performed experiments. Conversely,

decreasing the average temperature threshold results in a very compact and easy-to-read pattern set (e.g., only 3 patterns

were extracted by enforcing ξ = 20.6 °C and δ = 8 m). 

4.3. Effect of the distance threshold 

We also analyzed the effect of the distance threshold on the characteristics of the patterns mined from the Heat dataset.

To perform our analyses, we considered the WSN data collected over the weekdays (from Monday to Friday; from 9 A.M.

to 6 P.M.). Let us consider first the correlations between nearby sensor readings (i.e., closeness constraint). The distance

threshold indicates for each mined pattern the maximal pairwise distance between its sensors. The number of mined pat-

terns increases roughly linearly while increasing the distance threshold, because the pairs of nearby sensors are more likely

to occur. 

Let us consider now the correlations between distant sensor readings (i.e., distance constraint). The distance threshold

indicates the minimal distance between each pair of sensors. The number of mined patterns is inversely proportional to the

minimum distance threshold. 

4.4. Scalability 

This section analyzes the scalability of the proposed approach on synthetic data. We compared the performance of the

WSNA system, in terms of execution time and number of mined patterns, with that of two baseline system versions, called

PostMIWI and PostMINIT. Baseline systems perform (i) WSN data preparation, (ii) MIWI extraction driven by the support

threshold, and (iii) Pattern selection based on postprocessing, to discard those patterns not satisfying the closeness/distance

constraint. To extract unexpected patterns, PostMIWI relies on the MIWI Miner algorithm [10] , whereas PostMINIT relies on

the MINIT algorithm [18] . 

We compared the system execution times by varying the number of dataset transactions (i.e., the number of WSN read-

ings). Specifically, we generated synthetic datasets with size ranging from 10,0 0 0 to 10,0 0 0,0 0 0 readings. Fig. 5 summarizes

the results achieved by enforcing ξ = 50 and the closeness constraint ( δ = 1 m ). Similar results were obtained with different

values of ξ and δ. Both algorithms based on IWI Miner scale approximately linearly with the dataset cardinality. However, in

all the performed tests, Tuned IWI Miner performs at least one order of magnitude better than PostMIWI. Unlike PostMIWI

and Tuned IWI, PostMINIT was unable to process datasets with more than 10 0,0 0 0 transactions (i.e., readings). On the other
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Fig. 5. Scalability with the number of transactions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

hand, thanks to the pushing of the distance-based constraints Tuned MIWI Miner achieved a significant time reduction w.r.t.

MIWI Miner. Specifically, both PostMIWI and PostMINIT need an ad hoc postprocessing phase to filter out the uninteresting

patterns, whereas Tuned MIWI Miner WSNA prevents their extraction. For most of the considered settings, the reduction in

the number of generated MIWIs achieved by Tuned MIWI Miner with respect to MIWI Miner ranges between 95% and 99%.

5. WSNA: Perspectives of extension in a distributed environment 

With the diffusion of smart cities, Wireless Sensor Networks (WSNs) have generated and collected readings at an un-

precedented rate, to such an extent that WSN data rapidly scale towards “Big Data” [43] . Even when the number of network

sensors is limited, collecting measurements for a long time at a high frequency produces huge data collections. Hence,

analyzing WSN datasets often becomes computationally prohibitive. To efficiently analyze Big Data, a promising research di-

rection is the study of distributed solutions. The extension of the Tuned MIWI Miner algorithm in a distributed environment

entails the following steps, which can be performed by one or more MapReduce tasks running on an Hadoop cluster: 

1. Dataset sharding . Each sensor periodically sends a reading file containing all the readings acquired over a given time

period. The content of these files must be transformed to generate the transactional data representation of the readings. To

achieve this goal, each node implements a mapper that receives as value the collected readings and generates a set of pairs

( key, value ), where key is a time stamp and value a pair ( sensor identifier, reading ). The reducer aggregates all the pairs with

the same key (i.e., the same time stamp) and generates one transaction for each time stamp. Each transaction is a list of N

pairs ( item, weight ), where item is a sensor identifier, weight is its corresponding reading, and N is the number of network

sensors. 

2. Parallel counting . This activity entails IWI-support counting for each item in the WSN dataset. This task is performed

by means of a MapReduce job that exploits a word count-like solution to compute the complete set of items and their

corresponding IWI-support values. 

3. Item clustering . All the items in the dataset are split into disjoint groups. Since a WSN dataset typically contains a

limited number of items (sensors), this step can be performed in main memory. Items are ranked by IWI-support and clus-

tered by maximizing the similarity between their IWI-support values. Each item group identifies a distinct dataset portion

on which the Tuned MIWI miner can be separately run. To reduce the computational overhead of the following steps more

advanced strategies for item clustering can be also implemented (e.g., generating large/small clusters of frequent items or

large clusters of infrequent items). 

4. Parallel MIWI mining . This activity will be performed by means of a MapReduce job. The Mapper instance receives

as input the groups of items generated at Step 3, processes the complete dataset one shard at a time, and generates for

each group of items the corresponding set of projected transactions. The reducer instance receives as input the output of

the mapper (i.e., a set of projected transactions for each group of items) and runs the Tuned MIWI miner algorithm (see

Section 3.2.2 ) on the transaction set of each group. Each reducer instance outputs a disjoint subset of patterns. 

5. Partial result aggregation . This job collects the patterns discovered at step 4 and it merges them to generate the com-

plete set of interesting patterns. 

6. Conclusions and future work 

This paper presents a novel data mining approach to discovering unexpected behavior in Wireless Sensor Networks

(WSNs). It focuses on supporting domain experts in the analysis of potentially large sets of past sensor readings. The experi-

ments demonstrate the efficiency and applicability of the proposed approach. Real WSN data, acquired in different contexts,

were analyzed and the achieved results were validated with the help of domain experts. Future extensions of this work
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entail the development of scalable services for WSN data monitoring (see Section 5 ) and the application of the proposed

approach to data coming from diverse contexts (e.g., social networks, healthcare systems). 
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