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ABSTRACT
When classical rough set (CRS) theory is used to analyze spatial data,
there is an underlying assumption that objects in the universe are
completely randomly distributed over space. However, this assump-
tion conflicts with the actual situation of spatial data. Generally, spatial
heterogeneity and spatial autocorrelation are two important charac-
teristics of spatial data. These two characteristics are important infor-
mation sources for improving the modeling accuracy of spatial data.
This paper extends CRS theory by introducing spatial heterogeneity
and spatial autocorrelation. This new extension adds spatial adjacency
information into the information table. Many fundamental concepts in
CRS theory, such as the indiscernibility relation, equivalent classes, and
lower and upper approximations, are improved by adding spatial
adjacency information into these concepts. Based on these fundamen-
tal concepts, a new reduct and an improved rulematchingmethod are
proposed. The new reduct incorporates spatial heterogeneity in select-
ing the feature subset which can preserve the local discriminant power
of all features, and the new rule matching method uses spatial auto-
correlation to improve the classification ability of rough set-based
classifiers. Experimental results show that the proposed extension
significantly increased classification or segmentation accuracy, and
the spatial reduct required much less time than classical reduct.
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1. Introduction

Spatial data play an important role in scientific research and real-world applications. It is
one of the most important types of data analyzed in many research fields, such as
geography, ecology, environmentology and meteorology. During the processing of
spatial data, it is almost inevitable to encounter the issue in which the target geogra-
phical process or phenomenon cannot be completely described or explained using all
available features or attributes of geographical objects. Pawlak (1982) found that this
issue arises from a new type of uncertainty, that is, roughness, and proposed using
rough set theory to manage datasets with roughness. Since then, many extensions of
rough sets have been proposed to address different challenges encountered while
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processing real-world data with roughness, such as rough fuzzy sets and fuzzy rough
sets (Dubois and Prade 1990), variable precision rough sets (Ziarko 1993), probability
rough sets (Ziarko 2005) and neighborhood system rough sets (Wu and Zhang 2002).

Recently, many researchers have applied rough set theory and its extensions to
model roughness in spatial data. These works can be roughly divided into two cate-
gories. One category is applying rough set theory to define rough objects and express
topological relations in spatial data (Beaubouef et al. 2004, Murgante et al. 2008), or
provide a geospatial representation of spatial data (Petry and Elmore 2015). The other
category is using rough set theory and the concept of multi-granulation to perform
machine learning tasks, such as feature extraction (Lei et al. 2008, Fiedukowicz 2015,
Patra et al. 2015), rule extraction (Liu et al. 2011, Yan et al. 2016), clustering (Pal and Mitra
2002), classification (Yun and Ma 2006, Leung et al. 2007, Jindal 2017), prediction (Bai
and Ge 2009, Bai et al. 2010, 2014), hierarchical inference (Sheikhian et al. 2015), outlier
detection (Albanese et al. 2014), similarity measurement (Sharmila Banu and Tripathy
2016) and accuracy assessment(Ahlqvist, 2005, Ahlqvist et al. 2000, 2003, Ge et al. 2012,
Banu and Tripathy 2018). This is an incomplete list of studies on the application of rough
set theory to the analysis of spatial data, and the number of related studies is still
increasing.

Although there have been a number of applications of rough set theory to spatial
data, the rough set model or extensions used, such as the dominance-based rough set
model, variable precision rough set model and fuzzy rough set model, have not taken
into account the spatial pattern of spatial data. Clearly, this does not correctly reflect the
actual situation of spatial data. Location gives rise to at least two classes of spatial
patterns: spatial autocorrelation and spatial heterogeneity (Anselin 1992). Spatial auto-
correlation refers to the concept in which objects with similar attribute values tend to
aggregate in space (Anselin 1992), and spatial heterogeneity refers to the concept in
which objects at a location have some degree of uniqueness relative to objects at
distant locations (Wikipedia 2016).

Currently, the measurement and exploitation of spatial autocorrelation and hetero-
geneity has attracted the attention of many researchers. In the field of measuring spatial
association, many methods, such as Ripley’s K-function (Ripley 1976), Moran’s I (Moran
1948), Getis’ G (Getis and Ord 1992), join count statistics (JCS) (Cliff and Ord 1970) and
normalized conditional probability Bai2016, have been developed for point-based data,
continuous data on lattice data and nominal data on lattice data. Many methods are also
available for analyzing heterogeneity in space. For example, the local indicators of
spatial association (Anselin 1995) and local indicators of categorical data (Boots 2003)
are used to measure the spatial heterogeneity of geographical phenomena. The
Q-statistic can be used to measure spatial stratified heterogeneity (Wang et al. 2016).
Simultaneously, many studies have exploited spatial association and heterogeneity
information in the analysis of spatial data, such as geo-statistics (Goovaerts 1997), spatial
filtering (Ursin 1983), spatial regression (Griffith 1989), spatial sampling (Haining 2003)
and the geographical detector (Wang et al. 2010a).

The ignorance of spatial heterogeneity and spatial autocorrelation may lead to
incorrect conclusions and solutions (Haining 2003, De Smith et al. 2007, Fisher and
Wang 2011). We consider the boundary region (the boundary region contains equivalent
classes that belong to at least two categories) in rough set theory as an example. In
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Figure 1, the square box in the gray area represents an equivalent class in the boundary
region. This equivalent class is mainly distributed over two parts of the study area.
Objects with a ‘red’ label are in the west of the study area and objects with a ‘blue’ label
are in the east of the study area.

Assuming that some unseen instances of this equivalent class are in the west of the
study area, the question arises of how to label these unseen objects. All unseen
instances are in the vicinity of the objects labeled ‘red’ in the west. As objects with
the same decision in spatial data tend to aggregate rather than randomly distribute over
space, it is more reasonable to label these objects ‘red’ than ‘blue’. However, using
classical rule matching methods, for example, standard voting (SV) (∅Hrn 1999), these
objects are more likely to be labeled as ‘blue’ because there are more objects with the
label ‘blue’ in the equivalent class. Clearly, the classical rough set (CRS) model will
probably incorrectly label most of these objects because it does not consider the spatial
pattern of objects.

From the perspective of rough set theory, if the conditional attributes can com-
pletely define the target concept, that is, there is no boundary region, then the
ignorance of the spatial pattern barely affects the classification accuracy. However,
it is difficult to collect all the necessary attributes to completely define the target
concept in real-world applications. In most cases, there exist some unknown or
unobservable attributes (UKO-attributes) that are necessary for defining the target
concept. Because classical rule matching methods cannot use the information of UKO-
attributes, most of the unseen objects in the previous example are incorrectly labeled
‘blue’. However, an interesting aspect is that the spatial pattern of objects can
uncover some of the information of UKO-attributes because many UKO-attributes
that are used to describe the target geographical phenomenon have some form of
spatial pattern.

In fact, the spatial pattern of objects is an important source of information rather than
causing a problem. Many classical statistical methods have been extended to use spatial
distribution information (Anselin 1988, Haining 1990, Goovaerts 1997, Wang et al. 2002,
Leslie and Kronenfeld 2011, Páez et al. 2012, Guo et al. 2013, Bai et al. 2016). Consider
linear regression as an example (Cressie 1993, Anselin 2002). Because traditional linear
regression cannot take into account spatial patterns, the linear regression of spatial data
may lead to non-Gaussian residuals. Spatial scientists have proposed using spatial linear
regression to analyze spatial data. Spatial linear regression uses a novel strategy to take
advantage of the spatial patterns of spatial data. This strategy uses a spatial weighted
matrix or simply an adjacency matrix to consider the spatial autocorrelation of depen-
dent variables or residuals. As spatial regression adjusts the dependent variable using
neighboring objects’ values and simultaneously ignores the influence of distant objects,
that is, takes into account both spatial autocorrelation and spatial heterogeneity, it
greatly reduces the prediction error for spatial data. In addition to spatial linear regres-
sion, this strategy has been adopted by many spatial data-oriented analysis tools and
methods.

Inspired by the previous studies in the area of spatial statistics, this paper attempts to
transfer the strategy used by spatial linear regression to CRS theory to take advantage of
the spatial heterogeneity and spatial autocorrelation of spatial data. The new model
proposed uses a spatial information system (SIS), which is a combination of a classical
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information system and an adjacency matrix, to represent spatial data. The target
concept is roughly approximated in the local spatial region of each object, and all
local rough approximations are aggregated to form an overall rough approximation of
the target concept with the help of the adjacency matrix. Based on the principle of
preserving the local discriminatory power of all attributes, two new types of reduct are
proposed. Finally, we improve the rule matching method by considering spatial auto-
correlation. Two experiments were performed to validate the effectiveness of the
proposed method. The first experiment predicted the occurrence of neural tube birth
defect (NTD) instances in Heshun, Shanxi, China. The results showed that the proposed
model was superior to the CRS. The second experiment used the spatial absolute reduct
(SAR) to select an appropriate set of textural features for high-resolution remotely
sensed imagery. The results showed that the spatial reduct was superior to the classical
reduct in terms of both effectiveness and efficiency.

There are two main advantages of this extension. First, the consideration of spatial
heterogeneity and spatial autocorrelation better reflects the characteristics of spatial
data and can improve the effectiveness of the rough set model. Second, the spatial
reduct requires substantially fewer computing resources than those of the CRS because
the spatial reduct only considers neighboring objects and ignores distant objects.

The remainder of the paper is organized as follows: In Section 2.1, the concept of an
SIS is proposed and a series of new concepts and their properties, such as the local
indiscernible relation, local lower approximation and local reduct, are introduced. Then,
the concept of a spatial reduct and corresponding spatial reduct finding algorithm are
proposed. In Section 2.3, a new rule matching method that considers spatial autocorre-
lation is proposed based on the traditional SV method. In Section 3.1, the prediction of
the occurrence of NTD instances and the segmentation of high-resolution remotely
sensed imagery are used as two examples to validate the effectiveness and efficiency
of the spatial rough set model. In Section 4, the paper is concluded.

2. Spatial rough set-based prediction model

The CRS uses an information system to organize data collected for the target problem.
Each row of the information system can represent an event or object. Each column of
the information system represents a feature, property or attribute of objects, for exam-
ple, ‘Whether a patient got a fever’. This is formally defined as follows:

Definition 1: An information system is a pair S ¼ ðU;A[ df gÞ, where universe U is a
non-empty finite set of objects, A is a non-empty finite condition attribute set and d‚ A
is the decision attribute. Any a 2 A can be regarded as mapping U� af g ! Va, where Va
is the domain of attribute a. Decision attribute d can be regarded as mapping
U� df g ! Vd, where Vd is the domain of attributed(Pawlak 1982).

Figure 2(b) is an example of an information system. It has three attributes a1; a2; a3
and one decision attribute dec. ‘id’ is used to identify different objects, and the object
with ‘id ¼ i’ is denoted by xi.

However, the information system is not sufficient for representing spatial phenomena
and processes because it does not take into account spatial relations among objects. For
example, it is impossible to determine whether objects x1 and x5 are neighbors in space
only from Figure 2(b). To take advantage of the spatial relations among objects, a simple
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solution is to add the adjacency information of objects to the information system using
an adjacency matrix. This is formally defined as follows:

Definition 2: The first-order adjacency matrix of the study area is defined as
M1 ¼ ½m1

xy�N�N, where m1
xy ¼ m1

yx ¼ 1 if the two objects x and y in the study area are 1-

adjacent; otherwise m1
xy ¼ m1

yx ¼ 0 (Bai et al. 2016).
In Definition 2, the 1-adjacency of two surface objects can be established using any

connectivity algorithm (Fortin and Dale 2005). Consider Figure 2(a) as an example.
Twelve objects in total are distributed over the study area. The 1-adjacency is calculated
by determining whether two polygons touch each other. The corresponding first-order
adjacency matrix M1 is shown in Figure 2(c).

k-th order adjacency matrices Mk can be established using the concept of relation

composition, that is, Mk ¼ MðkÞ � [k�1
i¼1 MðiÞ � E, where MðiÞ is the relation composition of

i Ms. The k-th order adjacency matrix is defined as Mk ¼ ½mk
xy�N�N, where mk

xy ¼ 1 only if

M1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 1 1 0 0 0 0 0 0
1 0 1 0 0 1 0 0 0 0 0 0
0 1 0 1 0 1 1 0 0 0 0 0
0 0 1 0 0 0 1 1 0 0 0 0
1 1 0 0 0 1 1 0 1 1 0 0
1 1 1 0 1 0 1 0 0 0 0 0
0 0 1 1 1 1 0 1 0 1 1 0
0 0 0 1 0 0 1 0 0 0 1 1
0 0 0 0 1 0 0 0 0 1 0 0
0 0 0 0 1 0 1 0 1 0 1 0
0 0 0 0 0 0 1 1 0 1 0 1
0 0 0 0 0 0 0 1 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

ID a1 a2 a3 d
0 1 2 1 1
1 1 2 1 1
2 2 1 1 1
3 2 1 1 1
4 2 3 1 2
5 2 3 1 1
6 3 2 3 1
7 3 3 2 2
8 4 3 2 2
9 3 2 3 2
10 1 2 1 2
11 1 2 1 2

(a) (b)

(c)

Figure 2. Example of an SIS: (a) map of the geographical objects of the study area; (b) information
system corresponding to the geographical objects in (a); (c) first-order adjacency matrix of geogra-
phical objects in (a).
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two objects x and y are adjacent to each other via other k � 1 surface objects and not

adjacent to each other via any k0 < k � 1 surface objects; otherwise, mk
xy ¼ 0.

By adding spatial adjacency information into the information system, we propose
using a SIS to represent spatial data. An SIS consists of two parts: the traditional
information system and union of different order adjacency matrices. This is formally
defined as follows:

Definition 3: An SIS is a pair SIS ¼ ðS;MðkÞÞ, where S ¼ ðU;A[ df gÞ is an information

system and MðkÞ ¼ [k
i¼0 M

i ¼ ½mðkÞxy�N�N is the union of all adjacency matrices from the

first order to the k-th order of the study area, k is a parameter that represents the
maximum order of adjacency that SIS takes into account, and mðkÞxy is the element of

MðkÞ that represents whether x and y are the α-th order neighbors of each other,
where 1 � α � k.

For convenience, an SIS can also be denoted by a triple SIS ¼ ðU;A[ df g;MðkÞÞ.
Figure 2(a) is an example study area from which a first-order adjacency matrix (see
Figure 2(c)) can be established. Figure 2(b) is the corresponding information system. If k
is set to one, then the corresponding information system and first-order adjacency
matrix form an SIS of the study area. Clearly, it is easy to determine that objects x1
and x2 are mutually first-order neighbors in terms of Figure 2(c).

As an SIS takes into account spatial adjacency and the CRS cannot take advantage of
this information, it is natural to improve the CRS for the SIS accordingly.

2.1. Rough set model for an SIS

The CRS uses an indiscernible relation to form a partition of the universe. Two objects
are indiscernible if they share the same attribute values for all conditional attributes. An
equivalent class of object x contains all the objects in the universe that are indiscernible
from x, and is defined as ½x�A0 ¼ fy 2 U : aðxÞ ¼ aðyÞ"a 2 A0g.

In spatial analysis, it is not sufficient to conclude that two objects are indiscernible
only in terms of attribute values when they are distant from each other in space. Spatial
heterogeneity may lead to the difference of some UKO features for the two distant
objects. Accordingly, the indiscernible relation must be adapted to accommodate spatial
heterogeneity. In the following, we propose using local indiscernible relation to replace
a traditional indiscernible relation to improve the CRS for the SIS.

Definition 4: For three objects x; y; z in an SIS SIS ¼ ðU; A[ df g;MðkÞÞ, two objects y
and z are x-local indiscernible if aðyÞ ¼ aðzÞ"a 2 A and mðkÞxz ¼ 1 and mðkÞxy ¼ 1, or

aðyÞ ¼ aðzÞ"a 2 A, where y ¼ x and mðkÞyz ¼ 1, or z ¼ x and mðkÞyz ¼ 1.
To summarize, two objects are x-local indiscernible if they share the same attribute

values and belong to the set constituted by object x and its adjacent objects. For conve-
nience, we call this set the x-centered region, which is denoted by

CðxÞ ¼ y 2 U : mðkÞxy ¼ 1
n o

[ xf g. Based on the concept of an x-local indiscernible rela-

tion, the following definition shows how to construct x-local indiscernible sets, which can be
considered as an x-local version of the equivalent classes in the CRS. For convenience, all the
following definitions and discussions share the same SIS, SIS ¼ ðU; A[ df g;MðkÞÞ, unless
otherwise specified.

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE 7



Definition 5: The local indiscernible set of y using attribute set A0 � A with respect to
x, or simply the x-local indiscernible set, is a set

LIndðy; x;A0Þ ¼ fz 2 U : aðyÞ ¼ aðzÞ"a 2 A0 ^ y 2 CðxÞ ^ z 2 CðxÞg:
It is easy to show that LIndðy; x;A0Þ ¼ ½y�A0 \ CðxÞ. Consider the SIS in Figure 2 as an

example: x0 and x1 are x5-local indiscernible. x5 centered region Cðx5Þ ¼
x0; x1; x2; x4; x5; x6f g and LIndðx1; x5; a1; a2; a3f gÞ ¼ x0; x1f g. Simultaneously, we found

that ½x1� a1;a2;a3f g ¼ x0; x1; x10; x11f g. Clearly, LIndðx1; x5; a1; a2; a3f gÞ ¼ ½x1� a1;a2;a3f g \Cðx5Þ.
Using the local indiscernible relation, objects that are spatially distant from each

other can be discerned regardless of whether they have different attribute values. If two
SISs of a study area share the same information system, then the corresponding
LIndðy; x;A0Þs satisfies the following property.

Proposition 1. For two SISs SIS1 ¼ S;MðkÞf g and SIS2 ¼ S;Mðk0Þf g, where S ¼
U;A[ df gf g and k0 > k, LIndðy; x;A0ÞSIS1 � LIndSIS2ðy; x;A0Þ for any x,y, and A0 � A.
Proof: For any x; y, and A; k< k0 ) CSIS1ðxÞ � CSIS2ðxÞ ) ½y�A0\CSIS1ðxÞg,

� ½y�A0\CSIS2ðxÞ ) LIndðy; x;A0ÞSIS1 � LIndSIS2ðy; x;A0Þ. The proof is complete. ⁏

The CRS uses two sets, lower approximation and upper approximation, to approx-
imate a target concept. The lower approximation contains all the equivalent classes that
belong to the target concept, and the upper approximation contains all the equivalent
classes that have a non-empty intersection with the target concept. For an SIS, the target
concept X � U can be approximated at each x-centered region using all x-local indis-
cernible sets.

Definition 6: The x-local lower approximation of concept X using A0 � A consists of
all the LIndðy; x;A0Þ that are subsets of X , that is,

apprx
A0 ðXÞ ¼ y : LIndðy; x;A0Þ � Xf g;

where A0 � A. The x-local upper approximation of concept X using A0 � A consists of all
the LIndðy; x;A0Þs that have a non-empty intersection with X , that is,

appr xA0 ðXÞ ¼ y : LIndðy; x;A0Þ \ X�;f g:
The x-local rough set of target concept X using A0 � A is a pair

apprx
A0 ðXÞ; appr xA0 ðXÞ

n o
:

Similar to the CRS, the x-local positive region and boundary region can also be
constructed in terms of x-local lower approximations.

Definition 7: The x-local positive region and x-local boundary region of d
using A0 � A is defined as POSxA0 ðdÞ ¼ [

di2Vd
apprx

A0 ð x 2 U : dðxÞ ¼ dif gÞ and

BNx
A0 ðdÞ ¼ CðxÞ � POSxA0 ðdÞ, respectively.
For example, in Figure 2,

appr x5
a1;a2;a3f gð½x0�dÞ ¼ x0; x1; x2; x6f g;

appr x5a1;a2;a3f gð½x0�dÞ ¼ x0; x1; x2; x4; x5; x6f g;

POSx5a1;a2;a3f gðd ¼ 1Þ ¼ x0; x1; x2; x6f g:

8 H. BAI ET AL.



The x-local rough sets are a local description of the target concept. To obtain an overall
description of the target concept in the entire study area, all x-local rough sets of target
concept X are aggregated to form an overall approximation of target concept X . This is
formally defined as follows:

Definition 8: The spatial rough set of target concept X using A0 � A is

set SRSA0 ðXÞ ¼ apprx
A0
ðXÞ; appr xA0 ðXÞ

n o
jx 2 Ug

n
:

2.2. Spatial reduct

The reduct in the CRS uses a minimal attribute set that can form the same approxima-
tion of target concepts as all attributes to remove redundant attributes, such as the
absolute reduct (AR) and positive region reduct (PR). However, the classical reduct only
uses the difference between the collected attributes between objects. In spatial analysis,
for objects that are distant from each other, the UKO features may have changed
because of spatial heterogeneity. This leads to two distant objects being discernible in
the SIS, even if the two objects have the same attribute values. Although it is difficult to
collect UKO features, the classical reduct concept can be improved for spatial data from
the perspective of spatial heterogeneity.

For convenience, a reduct for an x-centered region is proposed in advance. For each
x-centered region, the minimal attribute set required for approximating the target
concept can be defined from two perspectives. The x-local AR can preserve the x-local
indiscernible sets, and the x-local PR can preserve the x-local positive region of the
target concept. The x-local AR and x-local PR are collectively called the x-local reduct.
Definitions 9 and 10 are the definitions of the x-local AR and PR, respectively. The
difference between these two definitions is to preserve LIndðy; x; BÞ ¼ LIndðy; x;AÞ
or POSxBðdÞ ¼ POSxAðdÞ.

Definition 9: Suppose SIS ¼ U;A[ df g;MðkÞf g is an SIS. If LIndðy; x; BÞ ¼ LIndðy; x; AÞ
for B � A and LIndðy; x; B0Þ�LIndðy; x;AÞ for any B0 � B and any y 2 CðxÞ, then B is an
x-local AR of SIS.

Definition 10: Suppose SIS ¼ U;A[ df g;MðkÞf g is an SIS. If POSxBðdÞ ¼ POSxAðdÞ for
B � A and POSxB0 ðdÞ�POSxAðdÞ for any B0 � B, then B is an x-local PR of SIS.

The x-local reduct only preserves the discriminant power for a local area. Although it
considers spatial heterogeneity, the x-local reduct is not sufficient for the analysis of the
entire study area. Accordingly, it is necessary to calculate a minimal attribute set that can
preserve the discriminant power for each x-centered region. Definitions 11 and 12 are the
definitions of spatial AR and PR, respectively. Similarly, the difference between these two
definitions is to preserve LIndðy; x; BÞ ¼ LIndðy; x;AÞ or POSxBðdÞ ¼ POSxAðdÞ.

Definition 11: Suppose SIS ¼ U;A[ df g;MðkÞf g is an SIS. If LIndðy; x; BÞ ¼
LIndðy; x;AÞ for B � A and any object x 2 U, and there exists LIndðy; x; B0Þ�LIndðy; x; AÞ
for some x 2 U and any B0 � A, then B is called a spatial AR (SAR) of SIS.

Definition 12: Suppose SIS ¼ U;A[ df g;MðkÞf g is an SIS. If POSxBðdÞ ¼ POSxAðdÞ for
B � A and any object x 2 U, and there exists POSxB0 ðdÞ�POSxAðdÞ for some x 2 U and any
B0 � A, then B is called a spatial PR (SPR) of SIS.

For simplicity, the SAR and SPR are collectively called the spatial reduct. Consider the
SAR of the SIS in Figure 2 as an example. The x0-local AR is a1f g or a2f g. The x1-local AR

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE 9



is a2f g. The x2-local AR is a1; a2f g or a2; a3f g. The x3-local AR is a2f g or a3f g. The
x4-local AR is a1f g or a2; a3f g. The x5-local AR is a1; a2f g or a2; a3f g. The x6-local AR is
a1; a2f g or a2; a3f g. The x7-local AR is a1; a2f g or a2; a3f g. The x8-local AR is a1f g or
a3f g. The x9-local AR is a1f g or a2; a3f g. The x10-local AR is a1; a2f g or a3f g. The

x11-local AR is a1f g, a2f g or a3f g. Accordingly, the SAR is a1; a2f g or a2; a3f g. It is easy
to show that the AR of the information system is a1; a2f g.

Because calculating the x-local reduct concerns only a small number of objects, the
x-local reduct can be determined via limited computing resources. The difficult part of
calculating the spatial reduct is how to calculate a minimal set that can preserve the
discriminant power for all x-centered regions. For example, suppose that each x-cen-
tered region has T x-local reducts and there are N objects in the SIS, then there will be
T � N possible compositions of the x-local reduct that should be taken into account
when calculating the spatial reduct. Clearly, this is a typical combination explosion
problem. Accordingly, we propose using a greedy algorithm (see Algorithm 1) to
calculate an approximate spatial reduct for the SIS.

The greedy algorithm starts with an empty candidate spatial reduct red ¼ ;. For each
x-centered region, candidate reduct red is tested for whether it contains an x-local
reduct, that is, whether LIndðy; x; redÞ ¼ LIndðy; x;AÞ or POSxredðdÞ ¼ POSxAðdÞ. If red
does not contain an x-local reduct, then a minimal subset of A� red is added to red
to ensure that LIndðy; x; redÞ ¼ LIndðy; x;AÞ or POSxredðdÞ ¼ POSxAðdÞ. When all objects are
visited, the algorithm outputs an approximate spatial reduct of the target SIS. Because
the entire calculating process ensures that the final attribute set contains an x-local
reduct for each object x, it is easy to show that the attribute set can ensure that
LIndðy; x; redÞ ¼ LIndðy; x;AÞ (POSxredðdÞ ¼ POSxAðdÞ) for red � A and any object x 2 U.
Accordingly, the attribute set found is a superset of a spatial reduct.

Because each x-centered region only contains a small fraction of objects, the checking
of LIndðy; x; redÞ ¼ LIndðy; x;AÞ or POSxredðdÞ ¼ POSxAðdÞ is not time-consuming and can
be accomplished by checking each attribute for every pair of objects in the x-centered
region. During the checking process, new attributes can be added to red to ensure
LIndðy; x; redÞ ¼ LIndðy; x;AÞ or POSxredðdÞ ¼ POSxAðdÞ. Assuming that each x-centered
region averagely contains m objects, the time complexity for the checking process is
Oðm2 � Aj jÞ. Accordingly, the time complexity of Algorithm 1 is OðN�m2 � Aj jÞ.

In the CRS model, reduct finding is an NP-hard problem, and many approximate
reduct finding algorithms exist. Most of these algorithms’ time complexity is OðN2 � Aj jÞ
when the computing time of entropy and the positive region are taken into account
(Qian et al. 2010, Chen et al. 2012, Liang et al. 2012). Clearly, the computing time of
spatial reduct is closely related to m. When m is far less than N, the time complexity of
Algorithm 1 is approximately OðN� Aj jÞ, which is much smaller than that of the CRS
model. When m is very large, the calculation of spatial reduct approaches of the CRS
model and is time-consuming.

However, from the experiment in Section 3.1.3, it can be found that continuously
increasing parameter k, which determines m, first increases the classification accuracy,
but decreases the classification accuracy gradually when k is so large that there exists
spatial heterogeneity in the neighbors. In real-life applications, this parameter can be set
using spatial association measures to calculate from which order there are no statistically
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significant spatial associations of the decision attribute. An example is provided in
Section 3.1.

Generally, m is small compared with N in most real-life applications. Even if m is too
large to compute the spatial reduct in a reasonable amount of time, to balance the
computation time and accuracy, a small m can be used, and a small m can also increase
the classification accuracy according to our experimental results.

Spatial information system SIS ¼ U; A[ df g;MðkÞf g Spatial reduct red
FindSpatialReductU; A[ df g;MðkÞ red ¼ ; each x 2 U red does not contain an x-local reduct
of SIS. Add attributes of A� red to ensure red contains an x-local reduct of SIS red

Algorithm 1 Calculating the spatial reduct for an SIS

Input: Spatial information system SIS = {U, A∪{d}, M(K)}
Output: Spatial reduct red
function FINDSPATIAL REDUCT (U, A∪{d}, M(K))

red ⊘
for each x ∈ U do

if red does not contain an x-local reduct of SIS then
Add attributes of A−red to ensure red contains an x-local reduct of SIS

end if
end for
return red

end function

2.3. Rule matching for an SIS

In the CRS, rules can be extracted by reading off the information system using the reduct
red. The rules extracted are of the form Pre ) Succ, where Pre is called the predecessor
and is of the form ^a2redaðxÞ ¼ �, and Succ is called the successor and is a value in the
domain of d, where � is a value in the domain of a. The confidence of a rule is
defined as

confðredðxÞ ) dðxÞÞ ¼ jfx 2 Uj^a2redaðxÞ ¼ � ^ dðxÞ ¼ Succgj
jfx 2 Uj^a2redaðxÞ ¼ �gj :

Considering x0 in the SIS in Figure 2 as an example, the rules extracted from x0 using the
reduct a1; a2 is a1ðxÞ ¼ 1 ^ a2ðxÞ ¼ 2 ) 1. The confidence of the rule is 0.5 because
only half of the objects that match the predecessor in U have decision 1.

These rules form a rule set and can be used to predict or classify future unseen
objects. This process does not take spatial autocorrelation into account. However, spatial
autocorrelation has been proven to be effective in improving classification accuracy
(Gong 1992, Allard 1998, Ge and Bai 2011).

Based on the SV (∅Hrn 1999) method, we propose a spatial rule matching method,
that is, spatial SV(SSV), for the SIS. To take into account spatial autocorrelation, when
there are unsolvable conflicts or no rules can match the unseen object, the rule
matching process uses the neighbors of the unseen object to determine its decision
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value. The rule set constructed using the reduct is denoted by RUL. For unseen object x,
the voting process is as follows:

(1) Set RUL is scanned for rules that match the conditional attributes’ values of x.
These rules constitute a set that is denoted by RULðxÞ � RUL.

(2) If RULðxÞ ¼ ;, then RULðxÞ can be constructed using the rule of which antecedents
are most similar to those of x (Slowiński 1993). If RULðxÞ is still empty, then the
decision value that dominates CðxÞ is used as the decision value of x.

(3) An election is performed for RULðxÞ to resolve conflicts and rank all decisions for x.
The election process proceeds as follows:

(a) Each rule r 2 RULðxÞ casts one vote for its decision β 2 Vd and the vote is denoted
by votesðrÞ.

(b) Compute normalization factor normðxÞ ¼ P
r2RULðxÞ votesðrÞ.

(c) Calculate certainty coefficient certaintyðx; βÞ for each possible decision β 2 Vd of x
using the following three equations:

Rβ ¼ fr 2 RULðxÞjr predictsβg (1)

votesðβÞ ¼
X
r2Rβ

votesðrÞ (2)

certaintyðx; βÞ ¼ votesðβÞ=normðxÞ (3)

(4) If j argmax
β

ðcertaintyðx; βÞÞj ¼ 1, then the decision value for x is set to

argmax
β

ðcertaintyðx; βÞÞ. Otherwise, the decision value that dominates CðxÞ is

used as the decision value of x.
(5) If the decision value of x cannot be determined using CðxÞ, then its decision value

is set to the decision value that dominates the entire training set. If there is no
dominant decision value in the training set, then x is labeled as ‘Undefined’.

For example, to classify x1 in Figure 2, Rulðx1Þ includes F1 : a1ðxÞ ¼ 1 ^ a2ðxÞ ¼ 2 ) 1
and F2 : a1ðxÞ ¼ 1 ^ a2ðxÞ ¼ 2 ) 2. If the confidences of the rules are used as votes of each
rule, then normðx1Þ ¼ confðF1Þ þ confðF2Þ ¼ 1. Consequently, R1 ¼ F1f g and R2 ¼ F2f g,
and votesð1Þ ¼ votesð2Þ ¼ 0:5. Accordingly, certaintyðx1; 1Þ ¼ certaintyðx1; 2Þ ¼ 0:5, which
means that there is a conflict between rules. Because k ¼ 1, Cðx1Þ contains all the first-order
neighbors of x1. The dominant category in Cðx1Þ is 1. Therefore, x1 is labeled as 1. If SV is used,
then x1 is assigned to ‘Undefined’ because there is no single category that dominates the
entire study area. Clearly, SSV can correctly classify x2, whereas SV cannot.

SSV has two major parts: selecting candidate rules and electing the best rule. To
select candidate rules, the rule set is scanned once, and the time complexity is Oð RULj jÞ.
To elect the best rule, the candidate rule set needs to be scanned once, and its time
complexity is Oð RULðxÞj jÞ. Finally, to find the dominant category in CðxÞ, CðxÞj j needs to
be scanned once, and its time complexity is Oð CðxÞj jÞ. To summarize, the time complex-
ity of SSV is Oð RULj j þ RULðxÞj j þ CðxÞj jÞ. The time complexity of SV is
Oð RULj j þ RULðxÞj j. In many real-life applications, CðxÞj j is very small, in which case the
time complexities of SV and SSV are almost the same.
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2.4. Comparison with classical sets and some of its extensions

Similar to the CRS model and some of its extensions, the spatial rough set model
proposed a new binary relation between objects according to the needs of real-life
applications. Based on the new binary relation, the knowledge granule, approximations
of target concepts and positive regions are formally defined. Finally, the reduct calcu-
lated can be used to perform feature selection, and the rule extraction and matching can
be used to perform classification.

However, there are also some improvements that make the spatial rough set model
more suitable for analyzing spatial datasets. For example, because the binary relation,
that is, the x-local indiscernible relation, between objects not only relates to the
attributes of the two objects but also is influenced by which x’s neighboring area is
currently under investigation, two objects may have different binary relations with
respect to different x. Consequently, the subsequent concepts LIndðy; x;AÞ, and the
lower and upper approximations are closely related to the geographical object x
under inspection. Therefore, spatial rough sets approximate the target concept at each
local region, which can preserve the local variability information or the spatial auto-
correlation and heterogeneity information of geographical phenomena over space.

By contrast, CRS theory and its extensions calculate the binary relation for two objects
without considering their locations. For example, CRSs and probability rough sets (Yang
et al. 2017) calculate the relations between objects using the equivalence of attributes.
Rough sets for incomplete information systems (Leung and Li 2003) calculate the relations
between objects using the tolerance relation between objects. Although composite rough
sets (Zhang et al. 2014a, 2016) can consider several binary relations in approximating target
concepts, they also do not take into account the locations of objects. Moreover, the
locations of objects are also neglected in the concept of the basic knowledge granule,
and lower and upper approximations. Clearly, local variability information or spatial auto-
correlation and heterogeneity information, which are important for modeling geographical
phenomena, are neglected. Therefore, a spatial rough setmodel can better reflect the reality
of geographical phenomena than other rough sets extensions.

3. Experiments and discussion

To further validate the effectiveness of the proposed spatial reduct and spatial rule
matching method, two real-world examples are provided. The SPR and SSV methods
were used in the analysis of NTDs in Heshun, Shanxi, China. The SAR was used to select
relevant features for the segmentation of high-resolution remotely sensed imagery. The
experiments showed that the method proposed could be successfully applied in the
analysis of spatial data. All the related algorithms were implemented using Python. The
experiments were run using a computer with 8GB RAM and an Intel Core i7 4790 CPU.
The operating system was Ubuntu 16.04.

3.1. Prediction of the occurrence of NTDs

NTD data have been collected over several years and analyzed in many previous studies
(Wu et al. 2004, Liao et al. 2009a, 2009b, Bai et al. 2010, 2014, Wang et al. 2010b). In the
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study area, there were 322 villages and 1 town. The locations of the 322 villages were
determined by the Geographical Information System for spatial analysis. The data were
collected using our field survey. The research project was approved by the Ministry of
Science and Technology of the People’s Republic of China. The study used only local
statistical data. There were no experimental works or ethical issues. Because there were
no boundaries defined for the villages, we drew them for each village using a Voronoi
polygon (see Figure 3). All the villages that did not have new babies from 1998 to 2003
are not included in the figure and the following experiment.

Each village had 14 conditional attributes and 1 decision attribute. The conditional
attributes were gross domestic product per capita, number of children born, number of
children with NTDs, fertilizer used in the area (Fertilizer), access to a doctor (Doctor),
production of fruit (Fruit), production of vegetables (Vegetables), elevation, soil type,
rivers, roads, lithology type, land cover type and faulting attributes. All the maps of the
attributes can be found in Wang et al. (2010b) and Bai et al. (2010). The data were
transformed to an information system and discretized in the same manner as that of Bai
et al. (2010). A detailed description of the NTD data can be found in Wang et al. (2010b).
The decision attribute was whether there were NTD instances in a village. If there were
NTD instances, then the village was labeled ‘Yes’; otherwise, the village was labeled ‘No’.
The villages and all the attributes used constituted the information system part of the
SIS for the study area. MðkÞ of the SIS was constructed using the first-order to k-th order
adjacency matrices. In our experiment, two villages were mutually first-order neighbors
if their boundaries touched.

To determine the maximum order of adjacency (parameter k for the SIS) that the SIS
should take into account, the spatial autocorrelation of all villages in the study area was
analyzed using JCS (Cliff and Ord 1970). Table 1 shows the overall spatial autocorrelation

Legend

No
Yes

0 7.5 15 22.5 30 km

Figure 3. Map of the occurrence of NTDs in Heshun, Shanxi, China.
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and spatial autocorrelation for each category. It can be found that there was at least one
spatial autocorrelation index that was statistically significant when the order of adja-
cency was smaller than 4 and the significance level was set to 0.01. When the order of
adjacency was 4, the p-value for the spatial autocorrelation of ‘Yes’ was still very small,
that is, 0.016. Moreover, the number of fifth-order rs joins was larger than that from a
completely spatially random distribution. This means that there may exist spatial hetero-
geneity at this order of adjacency, although it is not statistically significant. Accordingly,
the order of adjacency was set to 4.

3.1.1. Comparison with the CRS model
Three models were compared to show the effectiveness of the spatial rough set model.
The first was the CRS (Bai et al. 2010) model. In this model, the PR was used to select
features. Then, rules were extracted from the information system using selected features.
Finally, SV was used to classify unseen objects. The second model replaced the PR with
the SPR in the CRS. Additionally, the other steps followed the same approach as those of
the CRS model. The third model used the SPR to perform the feature selection task and
SSV method to classify unseen objects. The rule extraction step of the third model
simply followed the same approach as those of the CRS model. For simplicity, these
three models are denoted by ‘PR + SV’, ‘SPR + SV’ and ‘SPR + SSV’, respectively.

To avoid the influence of the selection of training data, a comparison experiment was
performed on the NTD dataset 1000 times, and the average accuracy assessment indices
were used to compare the effectiveness of different models. In each round, half of the
villages were randomly drawn as training data. All other villages were used as validation
data. All three models used the training data to extract rules. Then, the extracted rules
were used to classify the villages in the validation data.

During the classification process, SV and SSV used different approaches to manage
conflicts between rules and the situation in which there were no rules matching the
unseen objects. For example, if two rules ‘watershedid = 0 and gradient < 8	 ) Yes’
and ‘watershedid = 0 and gradient < 8	 ) No’ match the predecessor of an unseen
object and have the same confidence 0:5, then there is a conflict between these two
rules. In SV, the unseen object was classified as the category that dominated the entire
study area. In SSV, the unseen object was classified as the category that dominated the
neighbors of the unseen object to take advantage of the spatial autocorrelation and
heterogeneity information.

Table 1. First- to fifth-order JCSs for Heshun, Shanxi, China.
k O01 � E01 O00 � E00 O11 � E11
1 � 49 477a 139
2 � 77 833a 241
3 � 57a 1240a 355
4 � 2a 1664a 484a

5 35a 2209a 589a

0 represents ‘No’ and 1 represents ‘Yes’; 00 represents joins between two villages both labeled ‘No’; 11 represents joins
between two villages both labeled ‘Yes’; 01 represents joins between two villages labeled ‘No’ and ‘Yes’; O denotes
the observed value; and E denotes the expected value under the assumption of completely spatial random
distribution.

aFailed to pass the permutation test.
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A confusion matrix (Wikipedia 2017) was used to access the classification accuracy.
The average overall accuracy, average precision of ‘Yes’, average recall of ‘Yes’, average
precision of ‘No’ and average recall of ‘No’ for all 1000 experiments are shown in Table 2.
The third model had the highest average overall accuracy, average precision of ‘Yes’ and
average recall of ‘No’ among all three models. Although the average recall of ‘Yes’ and
average precision of ‘No’ decreased by less than 0.005, the other indices increased by at
least 0.03 compared with the CRS. The average overall accuracy and average recall of
‘No’ increased by 0.0825 and 0.1221, respectively. This means that the combination of
SPR and SSV greatly increased the classification accuracy. Meanwhile, even if only SPR
was used, that is, the second model, the spatial rough set-based model increased the
classification accuracy. Compared with the CRS, only the average recall of ‘Yes’
decreased by 0.01. However, all the other indices increased. This means that the
attribute subset selected by the SPR outperformed the PR in the classification of unseen
objects. Accordingly, the consideration of spatial heterogeneity and spatial autocorrela-
tion increased the classification accuracy for spatial data.

3.1.2. Comparison with commonly used feature selection methods and
classification methods
To show the effectiveness of the SPR, we empirically compared it with five represen-
tative filter-based feature selection methods: Las Vegas filter (LVF) (Dash and Liu
2003), combination of weakest components (CWC) (Shin et al. 2011), INTERACT
(Zhao and Liu 2007), correlation-based feature selection (CFS) (Hall 2000) and RelieF
(Liu et al. 2004) The search time for LVF was set to 5000. The moderate denoising
algorithm was used for the CWC algorithm. The δ parameter of the INTERACT algo-
rithm was set to zero. The sample size of the RelieF algorithm was set to 10% of the
number of objects.

As different classifiers have different induction biases, different classifiers, including a
support vector machine (SVM), classification and regression tree (CART) and k-nearest
neighbor (kNN) (k ¼ 3), were used to maintain fairness between the classifiers. We used
the implementations in the ‘scikit-learn’ package (0.10.1 version) in Python for the four
classifiers. All algorithms used the default parameters except kNN, which used the three
nearest neighbors. The average accuracy assessment results of 1000 runs of the model that
combined different classifiers and different feature selection methods are shown in Table 3.

From Table 3, we found that, except for the averages of the recalls of ‘Yes’ for the
CART and 3NN classifiers, and the average recall of ‘No’ for the SVM classifier that
corresponded to the PR that decreased by less than 0.02 compared with that of the

Table 2. Accuracy assessment results of the three models.

Models
Average overall

accuracy
Average precision

of ‘Yes’
Average recall

of ‘Yes’
Average precision

of ‘No’
Average recall

of ‘No’

1. PR + SV 0.5989 0.4523 0.2936 0.7319 0.7388
2. SPR + SV 0.6149 0.4816 0.2836 0.7364 0.7658
3. SPR + SSV 0.6814 0.4938 0.2892 0.7278 0.8609

The first line is the average accuracy of results from the model using the PR and SV, that is, the CRS model; the second
line is the average accuracy of results from the model using the SPR and SV methods; and the third line is the average
accuracy of results from the model using the SPR and SSV methods.
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SPR, all the other 12 indices that corresponded to the SPR were larger than those of the
PR. Accordingly, it is reasonable to state that the SPR outperformed the PR in the
experiment.

Table 4 shows the comparison of the average overall classification accuracy between
SPR and other feature selection methods. ‘>’ (‘<’) indicates that the average overall
classification accuracy of the feature selection method is greater (less) than that of the
SPR. The Student’s two-tailed t-test was used to test if significant difference existed
between the overall classification accuracies. Obviously, among all 15 comparisons,
there were 11 in which the overall classification accuracy of the SPR was significantly
larger than that for other feature selection methods, whereas there were only two
comparisons in which the overall classification accuracy of the SPR was significantly
less than that for other feature selection methods. The remaining two comparisons were
not statistically significant. From the comparison, it can be found that SPR outperformed
the other feature selection methods in most cases.

Compared with other feature selection methods, SPR took spatial heterogeneity into
account. It did not neglect the detail of the spatial variations, which is important for
distinguishing different classes. Accordingly, SPR was superior to other feature selection
methods regarding analyzing spatial data in our experiment. However, SPR did not take
noise in data into account. In some cases, it was not as robust as expected. The reason
that the LVF and RelieF, which were less sensitive to noise in data, outperformed SPR
may be because they used random samples of objects to perform feature selection
when the CART classifier was used.

Compared with classical classifiers, SSV took advantage of spatial association informa-
tion. When there were contradictions in the classification process, it classified the current
object into the category that dominated the neighboring area, while other classifiers
labeled that object as the category that dominated the study area. Table 5 shows the
comparison of the average overall classification accuracy between SSV and other classi-
fiers when SPR was used as the feature selection method. ‘>’ (‘<’) indicates the average
overall classification accuracy of SSV is greater (less) than that of the classifier used. The
Student’s two-tailed t-test was used to test if a significant difference existed between the

Table 4. Comparison of the average overall accuracies between SPR and the other
feature selection methods.
Classifier Feature selection method SPR

SVM PR < (p-Value = 0.002)
LVF > (p-Value = 0.048)
RelieF > (p-Value = 0.892)
CWC < (p-Value = 0.010)
INTERACT < (p-Value = 0.000)

CART PR < (p-Value = 0.000)
LVF > (p-Value = 0.000)
RelieF > (p-Value = 0.000)
CWC < (p-Value = 0.000)
INTERACT < (p-Value = 0.000)

3NN PR < (p-Value = 0.000)
LVF < (p-Value = 0.000)
RelieF < (p-Value = 0.000)
CWC < (p-Value = 0.000)
INTERACT < (p-Value = 0.000)

p-Value reports the probability associated with the Student’s paired two-tailed t-test.
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overall classification accuracies. The accuracy of SSV was significantly larger than that of
SV, CART and kNN. The average overall accuracy of SSV increased by at least 0.03
compared with SV, CART and kNN. With respect to the SVM, although the accuracy of
SSV was significantly smaller, the average precision and recall of ‘Yes’ were approxi-
mately the half of those of SSV. The experiment results showed that SSV outperformed
other classifiers with the help of spatial association information.

3.1.3. Sensitivity analysis of the order of adjacency
To analyze the relation between the order of adjacency and prediction accuracy of the
third model, a comparison experiment for the prediction accuracy that corresponds to
the first- to fifth-order adjacency SIS was performed. The third model was performed on
different order adjacency SISs 1000 times. In each round, all villages were randomly
divided into two equal parts: the training dataset and validation dataset. The average
accuracy indices are summarized in Figure 4.

When the order adjacency was one, the average overall accuracy was the highest
compared with other orders of adjacency. However, the average precision of both ‘Yes’
and ‘No’, and the average recall of ‘No’ were the smallest compared with other orders of
adjacency. Particularly, the average recall of ‘No’ was only 0.0886. Accordingly, the result

Figure 4. Accuracy assessment of the classification results for the SIS with parameter k from 1 to 7.
All the accuracy indices are the average values of 1000 experiments. The y-axis is the value of the
corresponding accuracy index and the x-axis is the order of neighbors (parameter k) used in
classification.

Table 5. Comparison of the average overall accuracies between SPR + SSV and the other classifiers
when SPR was used to perform feature selection.

SV SVM CART kNN

SPR + SSV > (p-Value = 0.000) < (p-Value = 0.000) > (p-Value = 0.000) > (p-Value = 0.000)

p-Value reports the probability associated with the Student’s paired two-tailed t-test.
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that corresponded to first-order adjacency could not match the application needs. When
the number of neighbors was too small, there were only a few neighboring villages that
could be used to calculate the SPR and perform spatial rule matching. Accordingly,
prediction accuracy might suffer from insufficient local training data. Therefore, the
prediction accuracy might be too low to match practical needs.

After the first-order of adjacency, all other indices increased until the fourth-order of
adjacency, although the average recall of ‘Yes’ decreased by less than 0.1. Particularly,
the recall of ‘No’ increased by almost 0.2. When the order of adjacency was four, the
average overall accuracy reached a local maximum. When the order of adjacency was
larger than four, all indices decreased as the order of adjacency increased. From the
experiment, it was clear that the prediction accuracy increased as an increasing amount
of spatial autocorrelation information was considered when the order of adjacency
increased. However, when the order of adjacency was too large, spatial heterogeneity
had an effect. Accordingly, the consideration of too many neighboring villages may
deteriorate the prediction accuracy.

3.2. Segmentation of high-resolution remotely sensed imagery

The automatic selection of textural features for the region merging segmentation of
high-resolution remotely sensed imagery was used as an example to evaluate the
effectiveness of SAR. A QuickBird remotely sensed image was used in the experiment.
The upper-left latitude and longitude coordinates of this image were 116	3036:7200E and
40	2040:9000N, and its lower-right latitude and longitude coordinates were 116	403:8300E
and 40	2018:3300N, respectively. For simplicity, only the Panchromatic band of the image
was used for segmentation. The spatial resolution of the panchromatic band was 0.63 m.
The size of the image was 1000 pixels � 1000 pixels, and its panchromatic band is
shown in Figure 5.

First, the Gabor filter (Dunn et al. 1994) and gray-level co-occurrence matrix (GLCM)
(Haralick et al. 1973) were used to extract textural features from the Panchromatic band.
The scale parameters of the Gabor method were set to 0:1; 0:2; 
 
 
 ; 0:9, respectively.
Additionally, the angle parameters of the Gabor method were set to 0; π=4; 
 
 
 ; 6π=4,
respectively. A total of 72 Gabor filter features were generated using different parameter
combinations. When using the GLCM method, the window parameters were set to squares
of length 5, 7 and 9. The numbers of directions were set to 4, 6 and 8, respectively. For each
combination of the previous two parameters, the contrast, dissimilarity, homogeneity,
angular second moment, energy and correlation GLCM features were calculated. A total
of 108 GLCM textural features were generated using different combinations of parameters.

Next, an over-segmented initial segmentation of the high-resolution remotely sensed
imagery was generated using the Quickshift algorithm (Vedaldi and Soatto 2008) based
on the Panchromatic band of the image. A total of 67,854 regions were in the initial
segmentation. For each region in the initial segmentation, the algorithmic mean of each
spectral or textural feature was used as its feature value. For example, the average gray
value of the Panchromatic band of all pixels in a region was used as the spectral feature
value for the region. When all features were generated, we used the MIN-MAX normal-
ization method to map all feature values to the interval ½0; 1�, and all features were
sorted in descending order by their variance.
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Finally, an SIS was constructed for the initial segmentation of the image. Each region in
the initial segmentation was an object in the SIS, and the normalized features were used as
attributes for the SIS. Meanwhile, the parameter the maximum order of adjacency of the SIS
was set to one because most region merging segmentation methods merge the current
region with one or several its first-order neighbors in each merging step.

Before the target image was segmented, the SAR and AR were used to remove
redundant textural features. All features were discretized into 100 intervals using the
equal-width discretization method. The features selected by the SAR were the 78th and
80th textural features, and the calculating process took only 1.19 s. The features selected
by the AR were the 74th, 78th, 79th and 80th textural features, and the calculating
process took 5766.05 s (approximately 1.5 h). Because the AR took into account all
object pairs and the SAR only considered the pairs whose tails and heads were mutually
first-order neighbors, the SAR took much less time than the AR.

To show the effectiveness of the SAR, the selected normalized textural features
and normalized Panchromatic band were used to segment the target image. A
typical region merging segmentation method, hierarchical step-wise optimization

Figure 5. QuickBird remotely sensed imagery used in the segmentation experiment.
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(HSWO) (Beaulieu and Goldberg 1989), was used to generate the final segmentation
results based on the initial segmentation. To generate compact segments (Zhang
et al. 2014b), the similarity between regions was calculated using the Euclidean
distance and area of the two regions, that is, simðx; yÞ ¼ Dðx; yÞ � areaðxÞ � areaðyÞ,
where Dðx; yÞ is the Euclidean distance between objects x and y, and areaðxÞ is the
area of object x. To avoid the influence of the difference between the attribute
subset used in segmentation, HSWO stopped when the given number of regions
remained. To validate the effectiveness of the SAR for different scales, we stopped
the segmentation process when the numbers of remaining objects were 500, 1000,
1500, 2000, 2500, 3000, 3500 and 4000. The larger the number of remaining
objects, the finer the scale of the segmentation result. The segmentation results
of the target image using all features, features selected using the AR and features
selected using the SAR when 500 regions remained, are shown in Figure 6(b–d).

Four indices (Liu et al. 2012) were adopted to measure the accuracy of the segmentation
results: quality rate (QR), under-segmentation rate (UR), over-segmentation rate (OR) and
composite index ED1 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðOR2 þ UR2Þ=2p

. QR is a goodness measure that evaluates the
number of both ‘miss’ and ‘hit’ (Clinton et al. 2010). Zero values of QR and ED1 both indicate
that the segmentation perfectly matches the reference polygons, that is, there are no over-
segments or under-segments of the target image. A zero value for UR or OR indicates that
there is no under-segmentation or over-segmentation, respectively. Themaximum values of
the four indices are all one, and indicate that the segmentation results are undesirable.

The manually segmented 80 reference polygons used in the accuracy assessment are
shown in Figure 6(a). The four accuracy measures for all segmentation results that
corresponded to different scales and different feature selection methods are shown in
Figure 7. The x-axes of all subfigures in Figure 7 represent different scales. The y-axes of
all subfigures in Figure 7 represent the value of the accuracy index. The blue, green and
red lines in the figure represent the accuracy measures that correspond to the segmen-
tation results using all textural features, textural features selected by the AR and textural
features selected by the SAR, respectively.

From Figure 7(s), for almost all accuracy indices at all scales, the position of the red
line is at the bottom of all three lines. This means that the segmentation accuracy of the
results using textural features selected by the SAR was higher than that using the
textural features selected by the AR and all textural features. The green line is between
the blue line and red line in most cases. This means that the AR also improved the
segmentation accuracy compared with results using all features. However, the AR took
much more time (1.5 h versus almost 1 s) compared with the SAR in selecting features,
and the corresponding segmentation accuracy was lower than that of the SAR at
different scales. Accordingly, the SAR outperformed the AR in segmenting high-resolu-
tion remotely sensed imagery from the perspective of both effectiveness and efficiency.

4. Conclusion

This paper proposed a new rough set-based model for analyzing spatial data by taking
into account spatial heterogeneity and autocorrelation. We proposed using a variant of
equivalent classes that considered spatial heterogeneity, that is, local indiscernible sets,
as basic knowledge granules to approximate target concepts. Based on this new
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knowledge granule, the target concept could be approximated using local upper
approximation and local lower approximation at every x-centered region. We proposed
using a spatial reduct to determine the minimal attribute set that could preserve the
discriminant power for every x-centered region. Furthermore, the traditional SV rule
matching method was improved to take into account spatial autocorrelation of objects.

There are two main advantages of the proposed rough set-based model. First, the
model is more appropriate for analyzing spatial data than the CRS because it takes into
account spatial heterogeneity and spatial autocorrelation. Compared with the CRS, both
experiments showed that the classification accuracy or segmentation accuracy was
improved using the proposed model. Second, a spatial reduct requires much less time

(a) (b)

(c) (d)

Figure 6. Segmentation results of the QuickBird images: (a) reference objects manually segmented
from the remotely sensed imagery, (b) HSWO segmentation results using all features, (c) HSWO
segmentation results using features selected by the AR and (d) HSWO segmentation results using
features selected by the SAR.

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE 23



than a classical reduct for large-scale spatial data. For example, in the second experi-
ment, the SAR took only 1.19 s, whereas the AR took 1.5 h for the same dataset.

Not only does the CRS not take into account the spatial distribution of objects but also
almost all rough set extensions, such as rough fuzzy sets, fuzzy rough sets and variable
precision rough sets, share the assumption that all objects are completely randomly distrib-
uted over space by default. Accordingly, it is necessary to add spatial information into these
extensions to model spatial data in the near future. This paper mainly discussed the basic
concepts of spatial rough sets and showed how to apply this model to real-world spatial
datasets. Little attention has been paid to the theoretical aspects of spatial rough sets. In our
futurework, wewill further study the theoretical aspects of spatial rough sets and the potential
application of these theoretical results, and apply this model to more real-world spatial data.

Furthermore, it is also important to extend the current approach to manage large-scale
spatial data. The proposed model has the potential to be used to manage large spatial
datasets; however, there are still some difficulties that need to be addressed. For example,
the calculating of the spatial reduct can be decomposed into two steps: calculation of
x-local reducts and calculating of the minimal set cover. Because there are generally few
neighboring objects of x and spatial rough sets concentrate only on the neighboring
objects for each geographical object, the first step is not time-consuming and can be easily
sped up using parallel computing resources. However, the second step is a typical set
covering problem, which is an NP-hard issue and is time-consuming for large-scale datasets.

Figure 7. Comparison of the accuracy assessment of the segmentation results using different feature
selection methods at different scales. The y-axis is the value of the accuracy assessment index and
the x-axis is the number of remaining objects.
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