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Abstract:   With the development of in-vehicle data collection devices, 
GPS trajectory has become a priority source to identify traffic conges-
tion and understand the operational states of road network in recent 
years. This study aims to investigate the relationship between traffic 
congestion and built environment, including traffic-related factors and 
land use. Fuzzy C-means clustering was used to conduct an exhaustive 
study on the 24-hour congestion pattern of road segments in an urban 
area, so that the spatial autoregressive moving average model (SARMA) 
could be introduced to analyze the output from the clustering analysis 
to establish the relationship between built environment and the 24-
hour congestion pattern. The clustering result classified the road seg-
ments into four congestion levels, while the regression explained the 
impact of 12 traffic-related factors and land-use factors on the road 
congestion pattern. The continuous congestion was found to mainly 
occur in the city center, and the factors, such as road type, bus station 
in the vicinity, ramp nearby, commercial land use, and so on, had large 
impacts on congestion formation. The Fuzzy C-means clustering is 
proposed to be combined with quantitative spatial regression, and the 
overall evaluation process will assist to assess the spatial-temporal levels 
of service regarding traffic from the congestion perspective.

Keywords: Congestion pattern, taxi GPS data, fuzzy C-means clus-
tering, spatiotemporal regression, built environment factor

1 Introduction

In urban road network, the recurrent or current congestion of a certain road segment may largely 
impact the local network and reduce travel efficiency. Consequently, it is important to identify the 
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congested road segments in real-time and implement corresponding traffic mitigation strategies.  Fixed 
facilities, such as inductive loops, traffic surveillance systems and microwave radars are commonly used 
for road traffic detection and various data collection, including traffic speed, traffic volume, density and 
vehicle classification. However, such facilities are expensive and mostly only serve intersections or free-
ways. The sparse sensor network makes it difficult to identify the problematic links in real-time. Global 
Position System (GPS) data enables the simultaneous analysis of spatial and temporal patterns in traffic 
information. While Global Position System (GPS) data collected from vehicles and mobile phones has 
become increasingly popular, among which taxi GPS data is preferable because of its exhaustive coverage 
of the road network, high frequency and the acquisition convenience (Ding et al., 2014; Wang, Peng, 
Lu, Sun, & Bai, 2017). In general, no fixed definitions were proposed for the level of congestion, while 
travel speed is the most commonly used indicator for traffic congestion assessments (He, Yan, Liu, & 
Ma, 2016). This study intends to investigate the 24-hour congestion pattern of the road network by 
speed, to classify the road segments by their speed patterns through Fuzzy C-means (FCM) clustering, 
and to analyze the problematic segments with continuous low speed or unconventional congestion. Spa-
tial models based on geographical detector, MORAN’s Index and spatial regression (SARMA) were devel-
oped to analyze the relationship between congestion patterns and the surrounding built environment. 

Compared with mobile phone data, floating car data, cargo transport vehicle record and naviga-
tion system, taxi GPS trace data is one of the easiest available sources for accurate travel route and travel 
time records for a wider area with more road details. Data mining based on taxi trip can be traced back 
to the 1970s (Goddard, 1970), which has been applied to a wide range of studies, mainly including 
activity-based and infrastructure-based fields. The activity-based studies mostly focus on driver behavior, 
supply-demand pattern, and traffic state analysis, while the infrastructure-based studies mainly focused 
on lanes channelization (Tang, Yang, Kan, & Li, 2015) and signal-timing estimation (Yu & Lu, 2016).

From driver behavior perspective, Zhang, Qiu, Duan, Du, and Lu (2015) proposed a space-time 
visualization method to demonstrate taxi daily trajectories by GIS-T to recognize working time, operat-
ing range, and residence location without time division. Qing, Parfenov, and Kim (2015) compared 
direct extracted datas like travel distance, speed, demand, and supply mismatch of taxi trip between fair 
weather and extreme storm using Manhattan GPS data, and discovered the reduction in trip distance 
and supply of drives during the extreme storm. Meanwhile, Hwang, Wu and Jian (2006) used structural 
equation modeling techniques to improve taxi dispatching service based on consumer preference model-
ing based on questionnaires and GPS data, however, the time variation was not considered. Tang, Jiang, 
Li, and Li (2016) analysis drivers’ customer searching behaviors by proposed two-layer model based on 
GPS data, and path size, path distance, and travel time act as influencing factors, however, geographi-
cal factors like land use and traffic-related factors were not involved. Yazici, Kamga and Singhal (2016) 
studied New York taxi drivers’ decisions on pick-ups or cruising for passengers after end of trips at the 
JFK airport using a logistic regression based on temporal and weather factors, among which peak hour 
was treated as an independent variable. Chen, Zhang, Li, and Zhou (2014) introduced B-planner for 
planning bidirectional night bus routes using taxi GPS traces, and conducted qualitative analyses using 
clustering results.

Taxi GPS data also contributes to supply-demand pattern of taxi. Hu, An and Wang (2014) an-
alyzed time of day and day of the week variations in urban taxi drivers’ service time and operation 
frequency by descriptive statistics. However, the authors failed to further construct the relationship 
between service and built environment. Qian and Ukkusuri (2015) combined geographically weighted 
regression (GWR) with NYC taxi data to establish the relationship between taxi ridership and demo-
graphic, land-use and transportation system. The hourly demand variation was not reflected as only 
the daily ridership was aggregated and analyzed. Lu and Li (2014) used taxi GPS data to predict OD 
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distribution, while the statistical methods still treated one-day data as a whole and explained by time 
series without multivariable combination.

Conventional studies based on GPS data regarding traffic state include congestion detection (Mon-
tero, Pacheco, Barcelo, Homoceanu, & Casanovas, 2016), link or route travel time, speed and distance 
measurements (Tulic, Bauer, &  Scherrer, 2014; Jiménez-Meza, Arámburo-Lizárraga, & Fuente 2013); 
detecting urban road network accessibility (Cui et al., 2016). Most of these studies only focus on peak 
hours and only use descriptive statistics without deep analysis about influencing factors for time, speed, 
distance, etc. Twice transformation is deficient in state identification. Azimi & Zhang (2010) applied 
clustering algorithms (K-means, Fuzzy C-means and CLARA) to sort freeway traffic conditions by traf-
fic flow, however, the result was qualitative, which was hard for application.  

According to the literature review, the previous taxi GPS data based researches mainly have three 
problems as follows. First, a majority of studies only focus on peak hours or discrete hours, or even ag-
gregated daily data without hourly division, which may only disclose sudden breakdown of peak hours, 
and fail to reflect hourly volatility of traffic system, or neglect temporal difference. Additional analyses 
generally focus on certain straightforward indices, such as speed, flow rate or travel time, while other 
indirect or consequent indicators, such as congestion, tend to acquire less attention because of devoid of 
fixed quantitative definition. Finally, the existing studies failed to utilize independent variables, such as 
land use, built environment, and traffic-related factors, to explain the information extracted from taxi 
GPS data, while GPS data is always used to identify those infrastructure-based factors, as well as land 
use as mentioned (Pan, Qi, Wu, Zhang, & Li, 2013).

This research aims to treat the speed pattern by 24-hour-based dataset, trying to reflect the volatility 
trend by clustering. An analytical framework combining clustering method and spatial regression is pro-
posed to cover the shortage of twice transformation for congestion and quantitative analysis.  Land-use 
variables and traffic-related factors are included in regression. 

The research flow chart is presented in Figure 1: This paper first use taxi GPS data of Shanghai to 
classify road segments in an urban area based on their 24-hour congestion pattern using Fuzzy C-means 
clustering (FCM), which allocated objects to clusters by probability. We then set such probability clas-
sification as the dependent variables and conduct spatial regression with the mixed spatial autoregressive 
moving average model (SARMA) to assess the impacts of environmental factors on speed patterns. 
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Figure 1:  Research flow chart

The remainder of the paper is organized as follows: Section 2 introduces data collection and pro-
cessing; Section 3 presents FCM clustering of road segments; and the spatial analysis models are pro-
posed in Section 4. Finally, conclusion and future research are provided in Section 5.

2 Data preparation

2.1 Data Collection

By 2016, Shanghai has over 58,000 taxis, carrying about 4000,000 passengers each day. In this study, the 
Taxi FCD data on April 10, 2015, a sunny Friday with rather heavy traffic was provided by Qiangshen 
Company on an online open data competition (http://sodata.io/). The original dataset has 114,633,142 
records, with the time interval as 30s. The original records include Taxi ID, Status, Signal Receive Time, 
Signal Measured Time, Longitude, latitude, speed, etc. (Sun, Zhang, Zhang, Chen, & Peng, 2014). Only 
the occupied taxi trips were kept for speed pattern generation (Cui et al., 2016) because the empty taxi 
could not reflect real traffic condition resulting from slowdown for searching passenger, work shifting or 
filling up gas during empty trips.

Focusing on the heavy traffic, only the primary and secondary roads within the Central City (Out-
er Ring) of Shanghai were considered. Road segment was defined as the link between two main inter-
sections. The segments with length less than 300m were removed to avoid the excessive influence of 
intersections. A total of 853 road segments with traffic and built environmental data were screened out, 
representing the most severe congestion during the workday.
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2.2 Data Processing

Data not matching to the nearest roads within 15m, staying still for over 5 minutes, or with speed over 
120 km/h and sudden distance deviation over 1 km/min were eliminated. Thirty visits per hour were 
set as the threshold for segments to avoid error propagation, and 551 segments were kept for further 
analysis. We calculated the average speed of each segment by averaging the taxis passed through each 
hour. Figure 2 presents the boxplot and mean trend of the average speed on all segments by hour. The 
speed pattern shows obvious valleys during peak hours (7 am – 10 am & 4 pm – 5 pm), which means 
the most severe congestion and time-of-day congestion degree variations.

Figure 2:  Total average speed

3 Clustering of road segments

3.1 Fuzzy C-means clustering

The 24-hour speed pattern of 551 selected segments wasas calculated, which also could be expressed by 
congestion. Clustering analysis, an unsupervised machine learning method, was used to aggregate road 
segments into groups based on their speed patterns. First, the 24-hour speed pattern of each segment 
was expressed with a 24-dimension vector: yi={S1, S2, … , S24}, where Si is the average speed of time 
interval hour i. 

Hard clustering (eg., K-means) has less flexibility (Azar, EI-Said, & and Hassanien, 2013; Sun 
&and Elefteriadou, 2012; Sun &and Elefteriadou, 2011), while the soft clustering, fuzzy C-means 
(FCM) clustering algorithm (Dunn, 1973; Bezdek, Ehrlich, & and Full, 1984), expresses that data 
points possibly belong to multiple clusters at the same time by membership degrees, which offers a 
much finer degree of the data model, so that the numeric results could be used for further regression. 
Suppose there are N objects of C classes (C should be pre-determined). The algorithm aims to minimize 
the following function:

        (1)
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Where Xi is the ith object, Vj  is the center of cluster j. m is the fuzzifier greater than 1, and higher 
value means a higher degree of ambiguity. When m is close to 1, it’s more like hard clustering. For the 
best physical significance, according to Bezdek (1980), m = 2 was adopted in this study. uij is the grade 
of membership value of the ith object to the jth cluster,                                   is the A-norm on Rn, 
measuring the similarity of objects to the assigned cluster, according to Bezdek  et al. (1984). Equations 
(2) and (3) illustrate the iteration process to calculate the centroids of clusters and the membership val-
ues:

        (2)

        (3)

Iteration stops when           where Up is the membership uij at the pth iteration. Since the 
membership is within the range of 0 to 1, typically the iteration accuracy ε is set as 0.001 (Bezdek et al.,, 
Ehrlich and Full 1984), or the iteration number is fixed at 100 (Schw &and Jensen, 2010). ε was chosen 
as 1e-5 in this research, which is enough to both guarantee the iteration number and accuracy.

As mentioned, the cluster number is predetermined and requires revising by validity indexes to 
reach a meaningful and explicable result. In principle, an ideal cluster number C could keep balance 
between inter-distance for each pair of centroids,   and intra-distance of clusters,   
   Four validity indexes appropriate for FCM were used to confirm optimal C:

1) Partition coefficient: PC (James, 1973) emphasizes the intensity of membership, and expressed 
by square weighting:

        (4)

A larger value of PC generally indicates a better expression of belongingness.

2) Fuzzified PBM: PBMF (Pakhira, Bandyopadhyay, & Maulik, 2005) indicates the compactness 
within the same cluster and the segregation between clusters. Such effect is reflected by ratio, the greater 
the better:

        (5)

Where, E1 is a constant for a fixed sample.

3) Minimum centroids’ distance: MCD (Zhu & Nandi, 2014) is the minimum distance between 
current cluster centers, aiming to explain the dispersion degree of clusters:

        (6)

Generally speaking, MCD is monotone decreasing with the increase of C, and the suggested C 
should be the point when the recession curve comes to stable. 

4) Fukuyama-Sugeno index: FSI (Fukuyama & Sugeno, 1989) tests both the separation of all ob-
jects and the separation of clusters, and the target is to ensure these two separation degrees conforming 
to each other, the smaller the better:
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        (7)

These indexes evaluated the cluster number from different points of view and were calculated si-
multaneously.

3.2 Clustering result

First, the cluster number was determined through validity indexes. After testing cluster number from 2 
to 7, FSI, PBMF and PC got best cluster numbers of 5, 3, 5, while for MCD, the trend turns to be stable 
when the cluster number attained 4 with an abrupt decline in centroid distance. Finally, 4 clusters would 
get the appropriate physical significance. Cluster 1 has 235 objects, Cluster 2 has 177 objects, Cluster 3 
has 107 objects and Cluster 4 has 32 objects. 

Table 1 presents the 24-hour mean, standard deviation (SD), coefficient of variation (CV) and 
range for the four clusters. 

It can be figured out that Cluster 4 has the largest mean (61.63 km/h, approximate to speed limit 
of primary roads at 60 km/h), CV and range, which implies high level of service on average but also 
comparable larger dispersion. The mean speed of Cluster 3 is 41.11 km/h, which is approximate to 
speed limit of secondary road at 40 km/h. The speed related indexes experience a progressive increase 
trend from Clusters 1 to 4, except for the SD and CV of Cluster 3.

Figure 3 presents the 24-hour speed pattern of four clusters resulting from the FCM clustering. 
The temporal trajectories of road segments are plotted against the primary cluster with the highest 
membership values. All the scatter points are represented by a gradual change of color and size, shown 
in the legend. The horizontal stochastic disturbance is added for the points for better visualization, with 
the black polyline marking the 24-hour trend of cluster centers. As presented in Figure 3(a), Cluster 1 
with the largest sample size (i.e., 235) is labeled as “Congested Segments” with the mean speed of 22.58 
km/h. Its speed trajectory keeps at a low level with relative stable trend compared with other clusters. 
The low dispersion in Cluster 1 implies that the highly congested pattern might be caused by continu-
ous traffic pressure, design flaw, or some certain intrinsic attributes of facilities. Cluster 2 (Figure 3(b)) is 
characterized by comparatively medium speed with 29.51 km/h mean, and could be labeled as “Normal 
Speed Segments” because its speed pattern conforms to the previous researches about typical urban road 
segment travel speed (Kumar & Vanajakshi, 2013). Cluster 2 has the second largest sample size, 177. 
Cluster 3 (Figure 3(c)) could be regarded as a critical state, and exhibits a higher speed and fluctuation 
changes during peak hours, thus labeled as “Unimpeded Segments”. The mean speed, 41.11 km/h, is 
just about 7 km/h higher than that of Cluster 2, which is a comparatively small value, with the 40 km/h 
secondary speed limit. The other dominant factor distinguishing Cluster 3 from Cluster 2 is the peak 
characteristics, and these segments may be on the main commuting corridors and have a tidal phenom-
enon. Cluster 4 (Figure 3(d)) is labeled as “High Speed Segments”, who’s mean speed is the highest, 
61.63 km/h, with the smallest sample size, 32. Such a continuous non-congestion pattern is rare, closed 

Table 1: Statistical indexes of each cluster

Index Cluster 1 Cluster 2 Cluster 3 Cluster 4
MEAN (km/h) 22.59 29.51 41.11 61.63
SD (km/h) 3.38 4.23 6.82 6.27
CV 6.68 6.98 6.03 9.82
RANGE (km/h) 10.93 14.80 24.65 27.42
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to the 60 km/h speed limit of the arterial roads in Shanghai. As the segments in Cluster 4 generally are 
with the highest level of service with almost no congestion, the time-of-day rationality has been proved.

(a) Highly Congested Segments

(b) Normal Speed Segments
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(c) Unimpeded Segments

(d) High Speed Segments

Figure 3:  Temporal clustering of 24-hour speed pattern by segments

Figure 4 illustrates the spatial distribution of studied road segments based on their highest mem-
bership value. The red line is the Huangpu River, which divides Shanghai into Pudong (right) and Puxi 
(left). The drop marks the city center. It can be figured out that the segments in Cluster 1 concentrate 
mainly in Puxi, and these roads connecting the city center with outskirts, carrying a majority of com-
muting vehicles. This may explain why road segments in Cluster 1 have the worst traffic condition. 
Segments in Cluster 2 (green line) evenly distribute across the study area. Clusters 3 and 4 distribute in 
the surrounding parts of the study area, in other words, the roads further away from the city center have 
a higher probability of high speed patterns and the probability of congestion is much lower.
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Figure 4:  Clustering result by primary membership

4 Spatial analysis of road segments

In this research, a quantitative analysis, SARMA, is introduced to provide further explanation for cluster-
ing characteristics and the built environment impacts, while geographic detector and MORAN’s I were 
tested ahead to applicability of SARMA. The explanatory variables include two categories, traffic-related 
factors and land use, which are widely used to explain traffic phenomenon but not in combination with 
taxi GPS data. For example, Zhang, Hong, Nasri, and Shen (2012) measured the impact of residential 
density, employment density, land-use mix, block size and distance from CBD on vehicle-miles travel. 
Tian et al. (2015) assessed relationship between traffic generation and mixed-use development. Briefly, 
main built environmental factors affecting traffic state or travel behavior could be divided into traffic-
related (Hahn et al., 2002; Feng, Li, Zhao, & Hu, 2011; Zhang & Levinson, 2017) and land-use related 
(Wheaton, 1998; Handy, Cao, & Mokhtarian, 2005) ones. 

Based on the previous researches, variables chosen for further analysis are purposed as follows:
1) Traffic-related factors:
F1: Road type, primary or secondary road. In the numeric analysis, 1 for the primary road and 2 for 

the secondary road. The average speed of the primary road was always higher than that of the secondary 
road in this study.

F2: Road segment length. Since the segment was defined as the road link between two intersec-
tions, the segment length might affect average speed greatly.

F3: Distance to the nearest ramp. Ramps are bottlenecks for traffic breakdown, and breakdown 
may affect miles away (Kerner & Klenov, 2006), so distance to the nearest ramp would impact road 
congestion.

F4: Number of bus stations along the road segment per 100m. More bus stations might reflect 
the commuting pressure, bring more frequent lane-changing or heavy vehicle rate (Hahn et al. 2002). 

F5: Distance to the nearest metro station. Metro stations carry large amount of passenger flow and 
transship of bus or sedan.

F6: The relative location to the urban expressway rings. The urban expressway system in Shanghai 
has three rings: inner ring, middle ring and outer ring, which typically distinguish the center with the 
suburb. The regions divided by the three rings are donated by 1, 2, 3, 4 from the inner center to the 
outside of the outer ring.
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F7: Number of parking lots open to the society within 500m per 100m. Parking lots would be the 
main destination for private vehicles, which may bring congestion around. Since people would walk to 
their final destination, parking lots’ influencing scope should be the typical walking distance, 0.25 miles 
(Yang & Diez-Roux, 2012), and the buffer was chosen as 500m in this paper.

2) Land use:
F8: Number of schools within 500m per 100m.  Because schools in China produce a significant 

traffic pressure on its surrounding roads on the time of going or leaving school by picking-up behavior 
of parents or school bus (Yu & Liu, 2011), it should be considered. And the influencing buffer is also 
500m as parking lots.

F9: Distance to the nearest hospital. Hospital is the main service institution in urban areas, which 
is the potential congestion zones because of high traffic demand (Wen, Chin, & Lai, 2017).

F10-12: Land use. Land use may have significant interactions with transport (Moeckel, 2016; 
Miller & Evans, 2011). Land use mainly considers commercial area (F10), residential area (F11) and 
transportation area (F12), while actors like education and hospital have been involved before. Transpor-
tation land cover mainly includes the railway station, airport, transportation hubs, etc. Three factors are 
expressed by the area proportion within a radius of 500m:

        (8)

Where Si is the target function area, n is the number of lane use types, including commercial land, 
residential land, and transportation land.

Table 2 provides the minimum, mean, and maximum values of the built environmental variables. 
The second column gives the abbreviation of variables, and the last three columns provide a brief de-
scription of statistical data, according to the definition mentioned above.

4.1 Geographical detector

FCM cluster classified the road segments by 24-hour speed pattern, however whether the traffic- related 
factors and land use have noticeable impact on congestion phenomenon remains doubtable. Geographi-
cal detector (Wang et al., 2010) was introduced to judge the built environmental parameters which may 

Table 2:  Variables in the segment cluster membership model

Variable
Abbrevia-

tion
Min Mean Max

F1: Road type Rd_type 1 1.57 2
F2: Road segment length (m) Rd_len 300 1314 4510
F3: Distance to the nearest ramp (m) Dist_ramp 8.33 990.9 4304
F4: Number of bus stations along the road 
segment per 100 m (stations/100m) Num_bus 0.0 0.24 2.47

F5: Distance to the nearest metro station (m) Dist_metro 8.05 814.9 3213
F6: Relative location to the freeway rings Ring 0.0 2 3
F7: Number of parking lot with 500m Parking 0.0 3.15 39
F8: Number of schools within 500 m per 100 
m (schools/100m, r=500m)

Num_scho 0.0 0.46 2.92

F9: Distance to the nearest hospital (m) Dist_hosp 13.47 979.8 6207
F10: Commercial area proportion (%) Com_pro 0.0 5.25 59.12
F11: Residential area proportion (%) Res_pro 0.0 29.29 99.41
F12: Transportation area proportion (%) Trans_pro 0.0 15.63 100

WJF
高亮
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be responsible for the road segments clustering. The advantage of using such geographical spatial detec-
tors is that it considers built environmental parameters of various units. The power of determinant (PD) 
was introduced to determine whether a spatial factor may be responsible for clustering result.

Assuming there are n objects, and cluster Di contains nDi objects,                  The power of 
determinant factor R is calculated by:

        (9)

where PDR is the factor R’s power of determinant on clustering result, σR is the global variance of 
factor R in the study region, and              is the variation of factor R in cluster Di. Equation (9) inter-
prets the ratio of the nDi weighted variation in single clusters over the global variance. The value range 
of PDR is [0, 1], a larger value indicates the factor R’s value between clusters is largely distinct, and the 
determinant power of R is stronger. If PDR equals to 1, factor R alone could perfectly classify objects.

Figure 5 presents factors’ explanatory power. Bus station factor (0.130) has the highest PD, which 
means more bus stations along the road segment per 100m is related to high possibility of congestion, 
because bus stations of higher density reflect larger commuting volume along the road segments. The 
secondary factor is road type (0.105), the average speed on the primary road is always higher than that 
of the secondary road resulting from speed limit, intersection density, and control strategy (arterial prior-
ity). The third highest factor is the distance to the nearest hospital (0.091), which carries a high volume 
of patients. When the trip is concerned with diseases, people are inclined to take a taxi or private vehicle, 
causing higher traffic volume. The number of schools within 500m per 100m (0.084) and transporta-
tion land use (0.071) are also main explanation factors, as schools obviously attract more commuting 
traffic, and transportation hubs would gather huge amount of mixed traffic flow to pick up passenger 
or cargo. Unusual phenomenon comes from the distance to the nearest metro distance with low PD, 
as people using metro line mainly take public transit with less private vehicles. The factors of residential 
land around, segment length and location relative to freeway rings are less powerful, meaning less obvi-
ous difference between clusters, but they may be significant in a certain cluster. The low power of resi-
dential factor is particularly interesting, as our clustering result mainly reflects the overall speed pattern 
on a 24-hour basis while the neighborhoods may only have significant impacts on traffic in peak hours.

Figure 5:  Power of each determinant in ascending sequence

By the geographical detector, some factors were found affecting congestion formation in all clusters, 

2

WJF
高亮
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which disclose global influence. Others may only have exclusive impacts on certain clusters with unob-
vious global influence (low PD), which may require further investigation for each cluster, respectively.

4.2 MORAN’s I

GLOBAL MORAN’s I (Moran, 1950) measures spatial correlation and tests whether observed objects 
have similarities with the spatial adjacency objects. For the value of MORAN’s I ranges, [-1, 1], I = 0 
means totally spatial independence, I > 0 reflects positive correlation and I < 0 means negative correla-
tion. The calculation formula is as follows:

        (10)

where, Xi and Xj are the observed values, which indicate membership to clusters, and X is the mean 
value. Wij is the spatial weight matrix describing the spatial relationship among objects. MORAN’s I can 
be calculated cluster by cluster.

Spatial weight matrix plays an important role in the spatial analysis. Binary joint matrix is com-
monly used to characterize spatial weight matrix (Cliff &and Ord, 19821), if two observations directly 
connect with each other, Wij = 1, otherwise Wij = 0. However, binary joint matrix is not suitable for line 
object, such as road segments. Because of the connectivity of roads and the transmissibility property, 
road segments would impact each other. The spatial weight matrix used was based on distance decay 
(Greicius, Krasnow, Reiss, & Menon, et al. 2003), and midpoint of the road segment represents the 
location feature:

        (11)

Where b= 1000m, and the matrix is standardized by row, dij is the distance between midpoints of 
two road segments.

Z test was used to access the result of MORAN’s I, and it could be interpreted by typically P-value 
(Cliff & Ord, 1982):

        (12)

Where E(I) is the mean value of MORAN’s I, and VAR(I) is the variation of MORAN’s I.
MORAN’s I evaluated whether objects’ memberships to a cluster have aggregation effects spatially, 

the result is shown in Table 3.

All MORAN’s I values are larger than 0, and only Cluster 2 fails to pass the 5% level of the sig-
nificance test. The positive value indicates the bipolar aggregation phenomenon. As in a certain cluster, 
road segments with higher membership gather together and lower ones as well, indicating lag effect for 
neighboring segments, which means neighboring segments have similar possibility and level of conges-
tion. Although MORAN’s I value is still comparable small, it discloses spatial gathering and explains the 

_

Table 3:  MORAN’s I for clusters

Index Cluster1 Cluster 2 Cluster 3 Cluster 4

MORAN’s I 0.246 0.032 0.14 0.271

Z value 5.997 0.816 3.434 6.694

P value 1.01e-09 0.207 0.0 1.09e-11
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effectiveness of FCM clustering.

4.3 Spatial regression of road segments

The results from FCM are used to conduct multiple regression analysis based on continuous member-
ship uij and environment factors. Geographical detector and MORAN’s I have proved the factors’ impact 
on clustering result and the spatial similarity of the nearby road segments, so in addition to the 12 fac-
tors, lagging influence from neighboring segments are also considered. A spatial model involving both 
spatial autocorrelation and multivariable system is therefore preferred. A spatial lag mode called mixed 
spatial autoregressive moving average model (SARMA) (Anselin, Bera, Florax, & Yoon, et al. 1996) is 
introduced to consider both dependence and errors with nearer objects having a greater impact. The 
structure of SARMA is shown in Equations (13) & (14).

        (13)

        (14)

where yi is the segment’s membership belonging to Cluster i, X is the vector of environment char-
acteristics; ρ is the spatial autoregressive parameter measuring neighborhood effects, ρ>0 means positive 
correlation and vice versa; λ is the spatial error coefficient, disclosing and quantifying the inherent simi-
larity or dissimilarity; ε is the random error term; W is the spatial weight matrix mentioned in Section 
4.2, and β is the coefficient vector. 

Before SARMA regression, each factor was standardized by Equation (15) to make the estimated 
coefficient at a comparable magnitude:

        (15)

Where, yi' is the standardized value, E(y) is mean and SD(y) is the standard deviation.
Results of the SARMA regression is presented in Table 4, in which strong factor influence and spa-

tial lagging effect have been disclosed. In other words, surrounding location characteristics and neigh-
boring road segments are related with the type of speed pattern on the road segment.

For Cluster 1 (Highly Congested Segments), all significant factors show a continuous traffic 
pressure. The merging area on a ramp may cause congestion, thus blocking the ground road. Bus sta-
tions and parking lots alongside also bring continuous traffic flow. For road segments whose highest 
membership belonging to Cluster 1, 55.1% of the schools around are universities or vocational schools, 
seldom reflecting commuting feature compared with high schools. Moreover, demand for hospitals is 
general stupendously high, stimulating private traffic flow and taxis. Noting the coefficient for road 
type is positive, which indicates that secondary road with lower speed limit causes more impact. An 
interesting finding is that higher portion of transportation type land -use lowers the membership degree 
for Cluster 1, which means less congestion. This is probably due to the fact that the high proportion of 
transportation-type land use represents transit hub, such as an airport or a railway station, where road 
network in the vicinity is usually well organized. Small hubs such as highway bus stations or logistic sta-
tions are generally accompanied with congested high occupancy traffic. 

Cluster 2 (Normal Speed Segments) has a strong trend of commuting traffic demand. Significant 
factors with commuting phenomenon including schools, metro stations and commercial land-use ef-
fects. However, the influential factors such as bus station, parking lot and hospital in the vicinity come 
to be less significant, and the average speed is improved overall. Longer road segment generally means 
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fewer signal controls, which is also a critical factor. And ramps nearby will greatly affect the travel speed, 
which causes more congestion. 

Cluster 3 (Unimpeded Segments) has less significant factors, and the factors are inversed com-
pared with Cluster 1. Road segments in Cluster 3 are mainly primary roads (with negative coefficient), 
and the disturbing factors, such as ramps, bus stations, and parking lots become fewer or further, while 
the proportion of transportation land-use turns to be extremely high. These actually relieve the traffic 
pressure on the road. 

For Cluster 4 (High Speed Segments), primary-membership objects’ mean speed is close to 
60km/h speed limit, while the surrounding built environmental factors are similar to the ones in sub-
urban, which can also be obtained from Figure 4.  The low density of ramp, bus station, metro station 
and hospital all prove this conclusion. According to this result, relative location to the expressway rings 
and the proportion of residential have little impact on the congestion formation. Based on general 
understanding, residential area is always regarded as the origin of commuting traffic flow and causes 
congestion. This may be true in peak hours. However, when considering the entire 24-hour patterns, 
the impact of residential district may not be obvious. Furthermore, commercial land, such as CBD only 
plays a key role in Cluster 2, and contributes little to road clustering analysis. However, it acts as an 
important threshold between “Highly Congested” and “Normal Speed.”

The spatial-lagged dependent variable ρ and spatial error variable  λ were chosen and further ana-
lyzed. Spatial-lagged dependent variable indicates the contagious or alien of a dependent variable based 
on positive or negative values. For Clusters 1, 2 and 3, ρ is significantly positive, indicating that the 
adjacent road segments have a similar cluster type. This discloses the fact that for segments within 1000 
m, their congestion pattern and traffic condition are mainly driven by the environment factors around. 
However, ρ value for Cluster 4 is negative, indicating low speed on road segments near a high speed 
segment. This may result from dis-connectivity of roads or high traffic demand in a special location. 
The significance of λ associated with Clusters 2 and 3 is negative, which implies that unobserved factors 
nearby impact membership differently. While λ for Cluster 4 is positive, showing unobserved neighbor-
ing variables have parallel effects on segment clustering.
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Table 4:  SARMA models for cluster membership prediction

Factors Cluster 1
Highly Congested 

Cluster 2
Normal Speed 

Cluster 3
Unimpeded

Cluster 4
High Speed

(Intercept) 0.3731 *** 0.2885 *** 0.1332 *** 0.0803 ***
(0.0328) (0.0245) (0.0138) (0.0105)

Rd_type 0.0695 *** -0.0577 *** -0.0181 ***
(0.0113) (0.0083) (0.0059)

Rd_len 0.0229 **
(0.0098)

Dist_ramp -0.0192 * -0.0306 *** 0.0165 ** 0.0395 ***
(0.0114) (0.0085) 0.0073 (0.0084)

Num_bus 0.0831 *** 0.0186 * -0.0369 *** -0.0173 ***
(0.0114) (0.0096) (0.0085) (0.0057)

Dist_metro -0.0229 ** 0.0257 ***
(0.0099) (0.0080)

Ring

Parking 0.0305 ** -0.0160 *
(0.0140) (0.0089)

Num_scho 0.0373 *** -0.0269 **
(0.0139) (0.0106)

Dist_hosp -0.0307 ** 0.0227 ***
(0.0140) 0.0082

Com_pro 2.3256 **
(1.1483)

Res_pro

Trans_pro -3.6390 *** 0.0239 ***
(1.2078) (0.0085)

Rho 0.1242 ** 0.1432 * 0.2978 * -0.2764 *
(0.0789) (0.0767) (0.0716) (0.0882)

Lambda -0.1979 ** -0.2465 * 0.4858 ***
(0.0915) (0.0894) (0.0684)

LR test 9.9031 *** 3.3252 * 9.5079 *** 31.497 ***
Log likelihood - 55.7193 113.7466 296.686

-37.7427 8
AIC 107.49 -79.44 -195.49 -561.37
Note: * indicates p<0.1, ** indicates p<0.05, *** indicates p<0.01. Standard errors are recorded in parentheses.
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The regression result could be implemented to recognize the congested road segments in urban area 
of Shanghai. During the process of transportation planning or urban planning, the result could also be 
applied to assess road network layout and its combination with land use and traffic-related factors. For 
example, a secondary road segment with low proportion of transportation and high density of bus sta-
tion has higher probability of suffering continuous congestion, such as Cluster 1. With better insights 
for problematic road segments, some spatial or temporal redesigns, such as setting variable lanes, widen-
ing roads, optimizing road function or setting bus transit lane could be conducted.

5 Conclusion and recommendations 

In this study, taxi GPS data were used to analyze 24-hour speed pattern of primary roads and secondary 
roads. Speed was used as the main indicator to further disclose the congestion phenomenon of roads. 
Correlations with 12 built environmental factors including traffic-related factors and land use were fur-
ther investigated using the data from Shanghai, China as a case study. 

First, the average speed of road segments per hour was extracted from GPS trajectories. Fuzzy C-
means algorithm was applied to cluster the segments with 24-hour dimension vector based on average 
speed to classify roads into 4 different congestion level. A geographical detector was then utilized to find 
key common factors related to congestion patterns. MORAN’s I was computed based on types of cluster 
to investigate spatial similarity of adjacent segments and confirmed a spatial lagging effect. Based on pre-
vious findings, a spatial regression model was implemented to identify influential environmental factors 
associated with each cluster, and the interaction between neighboring segments.

Compared with previous studies, this paper combined clustering method with quantitative spatial 
analysis for better explanation. The influencing factors of congestion were explored using spatial regres-
sions, thus to provide better understanding of existing congestion level and quick service evaluation 
based on environmental data and road conditions. 

While the results are promising, further studies need to be conducted to improve the performance 
of the model. First, in this research, the taxi GPS data doesn’t cover the entire scope of Shanghai, confin-
ing the study mainly to urban areas. Secondly, only one weekday data was analyzed, while multi-date 
analysis may have to be carried out in the future. Particularly during the spatial analysis, the proposed 
models failed to consider the interactions of environmental factors, which may ignore significant im-
pacts. Moreover, certain research for peak hour analysis would also be carried out in the future, since 
short-period analysis may disclose some important features or distinct phenomenon only appearing in 
peak duration. Since peak hours generally have more variation and may need additional accuracy, it 
would also be interesting to have various temporal divisions for data, which may result in more realistic 
classifications with respect to congestions. An attempt would be that based on general statistics of the 
current division, further dividing the congested hours into half-hour period considering the ordinary 
taxi trip would be less than 30 minutes (or even 15 minutes), while using 1 hour for non-peak trips.

Acknowledgements

This work was supported in part by the Humanities and Social Science Research Project, Ministry of 
Education, China [15YJCZH148], the Philosophy and Social Science Research Project of Shanghai, 
China [2014BGL009], and the Fundamental Research Funds for the Central Universities in China 
[15JCZZ04]. Any opinions, findings, and conclusions or recommendations expressed in this paper are 
those of the authors and do not necessarily reflect the views of the sponsors.



692 JOURNAL OF TRANSPORT AND LAND USE 10.1

References

Anselin, L., Bera, A. K., Florax, R., & Yoon, M. J. (1996). Simple diagnostic tests for spatial depen-
dence. Regional Science and Urban Economics, 26(1), 77–104.

Azar, A. T., El-Said, S. A., & Hassanien, A. E. (2013). Fuzzy and hard clustering analysis for thyroid 
disease. Computer Methods and Programs in Biomedicine, 111(1), 1–16.

Azimi, M., & Zhang, Y. (2010). Categorizing freeway flow conditions by using clustering methods. 
Transportation Research Record, 2173, 105–114.

Bezdek, J. C. (1980). A convergence theorem for the fuzzy ISODATA clustering algorithms. IEEE 
Tansactions on Pattern Analysis and Machine Intelligence, 2(1), 1–8.

Bezdek, J. C., Ehrlich, R., & Full, W. (1984). FCM: The fuzzy c-means clustering algorithm. Computers 
and Geosciences, 10(2–3), 191–203.

Chen, C., Zhang, D., Li, N., & Zhou, Z. H. (2014). B-Planner: Planning bidirectional night bus 
routes using large-scale taxi GPS traces. IEEE Transactions on Intelligent Transportation Systems, 15(4), 
1451–1465.

Cliff, A. D., & Ord, J. K. (1982). Spatial processes: Models and applications. Quarterly Review of Biol-
ogy, 57(2).

Cui, J., Liu, F., Janssens, D., An, S., Wets, G., & Cools, M. (2016). Detecting urban road network ac-
cessibility problems using taxi GPS data. Journal of Transport Geography, 51, 147–157.

Ding, J., Gao, S., Jenelius, E., Rahmani, M., Huang, H., Ma, L., & Ben-Akiva, M. (2014). Routing 
policy choice set generation in stochastic time-dependent networks: Case studies for Stockholm, 
Sweden, and Singapore. Transportation Research Record, 2466, 76–86.

Dunn, J. C. (1973). A fuzzy relative of the ISODATA process and its use in detecting compact well-
separated clusters. Journal of Cybernetics, 3(3), 32–57.

Feng, H., Li, C., Zhao, N., & Hu, H. (2011). Modeling the impacts of related factors on traffic opera-
tion. Procedia Engineering, 12, 99–104.

Fukuyama, Y., & Sugeno, M. (1989). A new method of choosing the number of clusters for fuzzy C-
means method. Presented at the 5th Fuzzy System Symposium, Kobe, Japan.

Goddard, J. B. (1970). Functional regions within the city center: A study by factor analysis of taxi flows 
in central London. Transactions of the Institute of British Geographers, 49, 161–182.

Greicius, M. D., Krasnow, B., Reiss, A. L., & Menon, V. (2003). Functional connectivity in the resting 
brain: A network analysis of the default mode hypothesis. Proceedings of the National Academy of Sci-
ences, 100(1), 253–258.

Hahn, E., Chatterjee, A., Younger, M. S., Hahn, E., Chatterjee, A., & Younger, M. S. (2002). Macro-
level analysis of factors related to area-wide highway traffic congestion. Transportation Research Re-
cord, 1817, 11–16.

Handy, S., Cao, X., & Mokhtarian, P. (2005). Correlation or causality between the built environment 
and travel behavior? Evidence from northern California. Transportation Research Part D Transport 
and Environment, 10(6), 427–444.

He, F., Yan, X., Liu, Y., & Ma, L. (2016). A traffic congestion assessment method for urban road net-
works based on speed performance index. Procedia Engineering, 137, 425¬–433.

Hu, X., An, S., & Wang, J. (2014). Exploring urban taxi drivers’ activity distribution based on GPS 
data. Mathematical Problems in Engineering, 2014(2), 1–13.

Hwang, K., Wu, K., & Jian, R. J. (2006). Modeling consumer preference for Global Positioning Sys-
tem-based taxi dispatching service: Case study of Taichung City, Taiwan. Transportation Research 
Record,1971, 99–106.



693Analyzing spatiotemporal congestion pattern on urban roads based on taxi GPS data

Jiménez-Meza, A., Arámburo-Lizárraga, J., & Fuente, E. D. L. (2013). Framework for estimating travel 
time, distance, speed, and street segment level of service (los), based on GPS data. Procedia Technol-
ogy, 7(4), 61–70.

Kerner, B. S., & Klenov, S. L. (2006). Probabilistic breakdown phenomenon at on-ramp bottlenecks 
in three-phase traffic theory: Congestion nucleation in spatially non-homogeneous traffic. Physics, 
1965, 473–492.

Kumar, V., & Vanajakshi, L. D. (2013). Modewise travel time estimation on urban arterials using transit 
buses as probes. Paper presented at the 92nd Annual Meeting of the Transportation Research Board, 
Washington, D.C.

Lu, Y., &  Li, S. (2014). An empirical study of with-in day OD prediction using taxi GPS data in Sin-
gapore. Langmuir the Acs Journal of Surfaces and Colloids, 30(31), 9567–9576.

Miller, J. S., & Evans, L. D. (2011). Divergence of potential state-level performance measures to assess 
transportation and land use coordination. Journal of Transport and Land Use, 4(3), 81–103.

Moeckel R. (2016). Constraints in household relocation: Modeling land-use/transport interactions that 
respect time and monetary budgets. Journal of Transport and Land Use, 10(1), 211–228.

Montero, L., Pacheco, M., Barcelo, J., Homoceanu, S., & Casanovas, J. (2016). A case study on coop-
erative car data for traffic state estimation in an urban network. Presented at the 95th Annual Meet-
ing of the Transportation Research Board, Washington, D.C.

Moran, P. A. (1950). Notes on continuous stochastic phenomena. Biometrika, 37(1–2), 17–23.
Pakhira, M. K., Bandyopadhyay, S., & Maulik, U. (2005). A study of some fuzzy cluster validity indices, 

genetic clustering and application to pixel classification. Fuzzy Sets and Systems, 155(2), 191–214.
Pan, G., Qi, G., Wu, Z., Zhang, D., & Li, S. (2013). Land-use classification using taxi GPS traces. IEEE 

Transactions on Intelligent Transportation Systems 14(1), 113–123.
Qian, X., & Ukkusuri, S. V. (2015). Exploring spatial variation of urban taxi ridership using geographi-

cally weighted regression. Paper presented at the 94th Annual Meeting of the Transportation Re-
search Board, Washington, DC.

Qing, C., Parfenov, S., & Kim, L. J. (2015). Identifying travel patterns during extreme weather using 
taxi GPS data. Presented at Transportation Research Board 94th Annual Meeting, Washington, DC.

Schw, M. V., & Jensen, O. N. (2010). A simple and fast method to determine the parameters for fuzzy 
C–means cluster analysis. Bioinformatics, 26(22), 2841–2848.

Sun, D., & Elefteriadou, L. (2011). Lane changing behavior on urban streets: A focus group based 
study. Applied Ergonomics: Human Factors in Technology and Society, 42(5), 682–691.

Sun, D., & Elefteriadou, L. (2012). Lane changing behavior on urban street: An “in-vehicle” field ex-
periment based study. Computer-Aided Civil and Infrastructure Engineering, 27(7), 525–542.

Sun, D., Zhang, C., Zhang, L., Chen, F., & Peng, Z. R. (2014). Urban travel behavior analyses and 
route prediction based on floating car data. Transportation Letters, 6(3), 118–125.

Tang, L., Yang, X., Kan, Z., & Li, Q. (2015). Lane-level road information mining from vehicle GPS 
trajectories based on Naïve Bayesian Classification. ISPRS International Journal of Geo-Information, 
4(4), 2660–2680.

Tang, J., Jiang, H., Li, Z., & Li, M. (2016). A two-layer model for taxi customer searching behaviors 
using GPS trajectory data. IEEE Transactions on Intelligent Transportation Systems, 17, 1–7.

Tian, G., Ewing, R., White, A. Hamidi, S., Walters, J., & Goates, J. P. (2015). Traffic generated by 
mixed-use developments: Thirteen-region study using consistent measures of built environment. 
Journal of Urban Planning and Development, 137(3), 248–261.

Tulic, M., Bauer, D., & Scherrer, W. (2014). Link and route travel time prediction including the cor-
responding reliability in an urban network based on taxi floating car data. Transportation Research 



694 JOURNAL OF TRANSPORT AND LAND USE 10.1

Record, 2442, 140–149.
Wang, J. F., Li, X. H., Christakos, G., Liao, Y. L., Zhang, T., Gu, X., & Zheng, X. Y. (2010). Geographi-

cal detectors‐based health risk assessment and its application in the neural tube defects study of the 
Heshun Region, China. International Journal of Geographical Information Science, 24(1), 107–127.

Wang, H., Peng, Z. R., Lu, Q. C., Sun, J., & Bai, C. (2017). Assessing effects of bus ser-
vice quality on passengers’ taxi-hiring behavior. Transport. Advance online publication. doi: 
10.3846/16484142.2016.1275786 

Wen, T. H., Chin, W. C., & Lai, P. C. (2017). Understanding the topological characteristics and flow 
complexity of urban traffic congestion. Physica A: Statistical Mechanics and its Applications, 473(1), 
166–177.

Wheaton, W. C. (1998). Land use and density in cities with congestion. Journal of Urban Economics, 
43(2), 258–272.

Yang, Y., & Diez-Roux, A. V. (2012). Walking distance by trip purpose and population Subgroups. 
American Journal of Preventive Medicine, 43(1), 11–19.

Yazici, M. A., Kamga, C., & Singhal, A. (2016). Modeling taxi drivers’ decisions for improving airport 
ground access: John F. Kennedy airport case. Transportation Research Part A: Policy and Practice, 91, 
48–60.

Yu, J., & Lu, P. (2016). Learning traffic signal phase and timing information from low-sampling rate taxi 
GPS trajectories. Knowledge-Based Systems, 110, 275–292.

Yu, L., & Liu, Y. (2011). Traffic characteristics analysis and suggestions on school bus operation for 
primary school students in Beijing. Journal of Transportation Systems Engineering & Information Tech-
nology, 11(5), 193–200.

Zhang, J., Qiu, P., Duan, Y., Du, M., & Lu, F. (2015). A space-time visualization analysis method for 
taxi operation in Beijing. Journal of Visual Languages and Computing, 31, 1–8. 

Zhang, L., & Levinson, D. (2017). A model of the rise and fall of roads. Journal of Transport and Land 
Use, 10(2), 1–23. 

Zhang, L., Hong, J. H., Nasri, A., & Shen, Q. (2012). How built environment affects travel behavior: 
A comparative analysis of the connections between land use and vehicle miles traveled in U.S. cities. 
Journal of Transport and Land Use, 5(3), 40–52.

Zhu, Z., & Nandi, A. K. (2014). Blind digital modulation classification using minimum distance cen-
troid estimator and non-parametric likelihood function. IEEE Transactions on Wireless Communica-
tions, 13(8), 4483–4494.

WJF
高亮


