
RESEARCH ARTICLE Open Access

Assessing environmental factors associated
with regional schistosomiasis prevalence in
Anhui Province, Peoples’ Republic of China
using a geographical detector method
Yi Hu1,2,3,4, Congcong Xia1,2,3,4, Shizhu Li5,9*, Michael P. Ward6, Can Luo7, Fenghua Gao8, Qizhi Wang8,
Shiqing Zhang8 and Zhijie Zhang1,2,3,4,9*

Abstract

Background: Schistosomiasis is a water-borne disease caused by trematode worms belonging to genus
Schistosoma, which is prevalent most of the developing world. Transmission of the disease is usually associated
with multiple biological characteristics and social factors but also factors can play a role. Few studies have assessed
the exact and interactive influence of each factor promoting schistosomiasis transmission.

Methods: We used a series of different detectors (i.e., specific detector, risk detector, ecological detector and
interaction detector) to evaluate separate and interactive effects of the environmental factors on schistosomiasis
prevalence. Specifically, (i) specific detector quantifies the impact of a risk factor on an observed spatial disease pattern,
which were ranked statistically by a value of Power of Determinate (PD) calculation; (ii) risk detector detects high risk
areas of a disease on the condition that the study area is stratified by a potential risk factor; (iii) ecological detector
explores whether a risk factor is more significant than another in controlling the spatial pattern of a disease; (iv)
interaction detector probes whether two risk factors when taken together weaken or enhance one another, or whether
they are independent in developing a disease. Infection data of schistosomiasis based on conventional surveys were
obtained at the county level from the health authorities in Anhui Province, China and used in combination with
information from Chinese weather stations and internationally available environmental data.

Results: The specific detector identified various factors of potential importance as follows: Proximity to Yangtze River
(0.322) > Land cover (0.285) > sunshine hours (0.256) > population density (0.109) > altitude (0.090) > the normalized
different vegetation index (NDVI) (0.077) > land surface temperature at daytime (LSTday) (0.007). The risk detector
indicated that areas of schistosomiasis high risk were located within a buffer distance of 50 km from Yangtze River. The
ecological detector disclosed that the factors investigated have significantly different effects. The interaction detector
revealed that interaction between the factors enhanced their main effects in most cases.
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Conclusion: Proximity to Yangtze River had the strongest effect on schistosomiasis prevalence followed by land cover
and sunshine hours, while the remaining factors had only weak influence. Interaction between factors played an even
more important role in influencing schistosomiasis prevalence than each factor on its own. High risk regions influenced
by strong interactions need to be targeted for disease control intervention.

Keywords: Schistosoma japonicum, Geographical detector, Spatial variation analysis, Environmental factors, Geographic
information systems, China

Multilingual abstracts
Please see Additional file 1 for translations of the abstract
into six working languages of the United Nations.

Background
Schistosomiasis, caused by a trematode worms belonging
to the genus Schistosoma [1], is a chronic, debilitating
disease that occurs in tropical and subtropical environ-
ments, where it remains a burden of major public health
and economic significance [2]. An estimated 779 million
people live in schistosome-endemic areas with more
than 200 million individuals currently infected [3]. The
global burden of schistosomiasis has been estimated at
3.3 million disability-adjusted life years (DALYs) accord-
ing to the latest estimate of the global burden of diseases
(GBDs) [4], but the true burden could be considerably
greater than previously expected [5].
Transmission of schistosomiasis is usually associated

with multiple biological characteristics and social factors,
which influence vector biology, ecology, economic and
policy factors [6]. For example, climatic and environmen-
tal conditions suitable for both parasite and intermediate
host snail, coupled with inadequate water supply at home,
sanitation and poor hygiene conditions, are the root
causes for the persistence of schistosomiasis prevalence
[7]. Understanding the relationship between risk factors
and schistosomiasis is of great importance as it supports
the implementation of effective control programs.
It is also important to note that most of the preceding

work on schistosomiasis is based on analyzing prevalence
data, employing conventional statistical approaches [8, 9]
or Bayesian spatial statistics [10–12]. However, these
models usually assume that the response variable (e.g.,
occurrence of schistosomiasis infection) follows a certain
statistical distribution (e.g., binomial) and violation of such
assumptions, which is often the case in practice (e.g., when
the sample sizes are small), can have a major impact on
model validity. Besides, problems can occur when dealing
with a nominal covariate that has many categories with
multiple regression models [13]. To add such nominal co-
variates to the model effectively adds “noise” or unreliability
and thus poses a difficulty in model building. Furthermore,
it is difficult to interpret interactive effects of covariates in
classic models and the inclusion of interactions when a

study is not specifically designed to assess them can make
it difficult to estimate the other effects on the model [14].
Therefore, there is a need to develop better on more suit-
able techniques for assessing the association between health
outcome and risk factors.
In this study focused on schistosomiasis, we used a

method of a series of detectors based on variables com-
monly used in geographical information systems (GIS) as
proposed by Wang et al. [15] to assess risk factors associ-
ated with health outcomes by means of spatial variance
analysis (SVA). The basic idea of SVA is to measure the
degree according to which the spatial distribution of the
health outcome (e.g. schistosomiasis prevalence) is consist-
ent with that of the risk factors. Based on this idea, four
geographical detectors (specific detector, risk detector,
ecological detector and interaction detector) were used to
assess the potential association with the health outcome, i.e.
prevalence of schistosomiasis. We first mapped the spatial
distribution of schistosomiasis prevalence in Anhui Prov-
ince at the county level and then evaluated the potential in-
fluence of the risk factors. Finally, we employed the four
detectors to assess the association between prevalence and
these factors.

Methods
Approach and study area
Techniques of geographic information system (GIS),
satellite-generated remote sensing (RS) and the geograph-
ical detector approach were combined for integrated risk
modelling of Schistosoma japonicum. The analysis was
conducted at the county level, and the geographical focus
was Anhui Province in eastern China.

Parasitological data
The S. japonicum infection prevalence data were collected
from a cross-sectional, survey carried out by health pro-
fessionals of the Anhui Institute of Parasitic Diseases in
November 2005. The databases in China are county-
based, with all reported schistosomiasis cases and the
population at risk given at the county level. These data
were originally collected through village-based field sur-
veys using a two-pronged diagnostic approach [screening
by a serological test on all residents of 5 to 65 years old
followed by confirmation by a faecal parasitological test
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(Kato-Katz technique)] [16] for those with positive ser-
ology. The data were collated at the township level and
the reported data were summed at the county level. At the
time of the collection of the study data, there were 39
schistosome-endemic counties and 39 non-endemic coun-
ties in Anhui Province. A map of prevalence of schisto-
somiasis at the county level is shown in Fig. 1.

Environmental data
The environmental data utilized for the study can be
grouped as follows:

(i) Physical factors These included the land surface
temperature (LST), the normalized different
vegetation index (NDVI), sunshine hours and
altitude. LST and NDVI were derived from the Level
1 of the Atmosphere Archive and Distribution
System (https://earthdata.nasa.gov/about/daacs/
daac-laads). Eight-day composite images with 1-km
resolution for the year 2005 were downloaded from
the website. These images were georeferenced and
sub-set in ERDAS 2011 software (https://www.gim-
international.com/content/news/erdas-2011-soft-
ware). ArcGIS, version 10.0 software (ESRI; Red-
lands, CA, USA) was used to extract average LST
and NDVI data for each pixel of the image. Monthly
sunshine hours in 2005 were derived from the China
Meteorological Data Sharing Service System (http://
www.cma.gov.cn/2011qxfw/2011qsjgx/). With

available data from 756 meteorological stations, Kri-
ging interpolation was used to derive continuous
overlays of sunshine hours for each month. The
average values for each pixel of these overlays were
also extracted within ArcGIS 10. Altitude data were
obtained from the digital elevation model (DEM)
from the Shuttle Radar Topography Mission
(SRTM), an international project spearheaded by the
U.S. National Geospatial-Intelligence Agency (NGA)
and the U.S. National Aeronautics and Space Ad-
ministration (NASA).

(ii)Social factors These included the distance to Yangtze
River, land cover and population density. The shape
file data of Yangtze River were downloaded from
Conservation Science Data Sets of World Wild
Foundation at http://worldwildlife.org. Proximity to
Yangtze River was regarded as a social factor given
the fact that it reflects local activities, i.e. the closer
to the river, the higher the chance to get infected.
To assess the effect of proximity to Yangtze River,
buffers around the Yangtze River were drawn using
ArcGIS 10.0. Land cover data for Anhui in 2004
were obtained from China’s Ministry of Land and
Resources (MLR). It includes six major types
(cultivated land, forest, grass land, water body,
unused land and rural/urban settlements) and 25
sub-categories. Considering the environment
suitability with respect to breeding of freshwater
snails, we reclassified the land cover factor into:

Fig. 1 Prevalence of schistosomiasis at the county level in Anhui Province, China
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paddy fields, dry land, forest, grass land, water body
and other (which included used land and rural/
urban settlement). Population density data were
sourced from Center for International Earth Science
Information Network (CIESIN) at Columbia
University, USA (http://sedac.ciesin.columbia.edu/
data/sets/browse).

Statistical analysis
The main idea of the geographical detector system used here
is that if a risk factor dominates a disease, then the spatial dis-
tribution of the factor is consistent with that of the disease.
The mechanism is quantified by power values as follows:
In the study area Ω, let schistosomiasis be measured by

prevalence in grids, h1, h2,…, hn and let C and D be two po-
tential risk factors associated with the infection (as shown in
Fig. 2). Measurements of C and D can be the continuous or
categorical variable, then Ω is assumed to be stratified by
the attribute of C and D (which are usually fixed) and
denoted as subareas {c1, c2, c3} and {d1, d2, d3}, respect-
ively. The schistosomiasis layer H is overlaid by a potential
factor layer, such as D. The average prevalence (or morbidity
rate), together with their variances of schistosomiasis preva-
lence in each subarea and in the whole study areaΩ, are de-
noted by yd1 , yd2 , yd3 , yD and Vard1, Vard2, Vard3, VarD,
respectively. If schistosomiasis prevalence is completely
dominated by factor D, the prevalence (or morbidity rate) in
grids hi will be homogeneous in each of the subareas {d1, d2,

d3} and therefore, Vardi (i = 1, 2, 3) will be zero; if schisto-
somiasis prevalence is completely independent of factor D,
the accumulated area’s weighted dispersion variances
of the prevalence in the subareas will be no different
from the pooled area’s weighted dispersion variances
of the study area Ω. The mechanism is measured by
the Power of Determinant (PD):

PD ¼ 1−
ðNd1Vard1 þ Nd2Vard2 þ Nd3Vard3Þ

N � VarD
ð1Þ

where N and Ndi denote the areas of the study area Ω and
the subarea di, respectively. The PD value actually explains
how much variation of the prevalence can be controlled by
the distribution of the risk factor. If factor D completely
controls schistosomiasis, PD equals 1; if it is completely un-
related to schistosomiasis, PD equals 0. The value of PD lies
in [0, 1]. The larger the value of PD, the greater the impact
of factor D on schistosomiasis prevalence. The PD value,
therefore, can be used to quantify the association between
schistosomiasis prevalence and the risk factors studied.
Specifically, the geographical detectors, based on PD,

are composed of the following four detectors:

(i) specific detector It quantifies the impact of a risk
factor on an observed spatial disease pattern;

(ii)risk detector It detects high risk areas of a disease on
the condition that the study area is stratified by a
potential risk factor;

Fig. 2 Layers of schistosomiasis (H) and risk factors (C and D). H is measured by the prevalence in grids and C and D are stratified by
their attributes
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(iii)ecological detector It explores whether a risk factor
is more significant than another in controlling the
spatial pattern of a disease;

(iv)interaction detector It probes whether two risk
factors when taken together weaken or enhance one
another, or whether they are independent in
developing a disease.

A detailed discussion about the four detectors can be
seen in the Appendix.
The density of grid hi can be specified based on the re-

search objective. The more grid points there are, the higher
the resulting accuracy, but also the greater the time
consumed and therefore a balance is needed in practice.
We set grid hi to be 1 × 1 km in line with the spatial reso-
lution of RS data on climatic conditions. The software of
geographical detector used in the study can be freely down-
loaded at http://www.sssampling.org/Excel-GeoDetector.

Results
The specific detector identified the significant risk factors
and their relative influence on schistosomiasis prevalence
ranked by PD value as follows (Table 1): proximity to
Yangtze River (0.322) > Land cover (0.285) > sunshine hours
(0.256) > population density (0.109) >DEM (0.090) >NDVI
(0.077) > LSTday (0.007).
The ecological detector (Table 2) showed that the differ-

ence of PD between proximity to Yangtze River, land cover,
and sunshine hours were not statistically significant; the
differences between the remaining factors were not statisti-
cally significant either; however, the differences between any
one of the first three factors and any one of the remaining
factors were statistically significant. Results of the specific
detector and the ecological detector suggested that proxim-
ity to Yangtze River, land cover, and sunshine hours can be
classified into important factors that had strong effect on
schistosomiasis prevalence, while the remaining factors can
be grouped into factors of weak influence.
The risk detector uncovered that the average prevalence

rates of schistosomiasis prevalence in each buffer region of
Yangtze River were 3.89‰ (0–10 km), 2.87‰ (10–50 km),
0.83‰ (50–100 km) and 0.01‰ (>100 km), respectively.
Table 3 shows that there was a significant difference in the
average prevalence between each buffer zone. Note that the
average prevalence decreased dramatically from the 10–
50 km buffer to that of 50–100 km emphasizing the strong
influence on risk by Yangtze River. Risk analysis with

respect to the prevailing land cover is presented in Table 4,
which shows that the average prevalence of schistosomiasis
is the highest in the grass lands (3.44‰), which is signifi-
cantly different from that of the other types of land cover.
Table 5 shows the mutual interaction between the seven

factors investigated arranged so the strength provided by
each pair of factors can be seen. The interactive effect be-
tween proximity to Yangtze River and land cover was found
to enhance each other (Yangtze River ∩ sunshine hours
(0.388) >max (Yangtze River (0.322), land cover (0.285))) to
increase the schistosomiasis prevalence, whereas the inter-
actions between proximity to Yangtze River and LSTday was
found to unilaterally weaken the influence of Yangtze River
to decrease the schistosomiasis prevalence (min (Yangtze
River (0.322), LST (0.007)) < Yangtze River ∩ LST (0.306) <
max (Yangtze River (0.322), LST (0.007))). Note that the in-
teractions between the most important factors (proximity
to Yangzte River, land cover, and sunshine hours) mutually
enhance their separate impacts.

Discussion
In this study, we used four geographical detectors to
assess effects of environmental factors on schistosomiasis
prevalence. We believe this method to be “not classic” in
that it offers a new approach to extracting the implicit

Table 1 Values of Power of Determinate (PD) for risk factors

Factors Proximity
to Yangtze

Land
cover

Sunshine
hours

Population
density

DEM NDVI LSTday

PD
value

0.322 0.285 0.256 0.109 0.090 0.077 0.007

Table 2 Statistically significant differences of the influence of
risk factors on schistosomiasis

Factors Proximity
to Yangtze

Land
cover

Sunshine
hours

Population
density

DEM NDVI LSTday

Proximity
to Yangtze

Land
cover

Nb

Sunshine
hours

Nb Nb

Population
density

Ya Ya Nb

DEM Ya Ya Nb Nb

NDVI Ya Ya Nb Nb Nb

LSTday Ya Ya Nb Nb Nb Nb

athe difference of influence between the two factors is significant at the 95%
confidence level
bthe difference of influence between the two factors was not significant at the
95% confidence level

Table 3 Statistically significant differences of the average
prevalence between four distance buffers of Yangtze River

Buffer 0-10 km 10-50 km 50-100 km >100 km

0-10 km

10-50 km Ya

50-100 km Ya Ya

>100 km Ya Ya Ya

athe difference of influence between the two factors is significant at the 95%
confidence level
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interrelationships between a health outcome and risk
factors without any assumptions or restrictions with re-
spect to the response variable, and it detects the spatial
patterns of risk factors and health outcome which are
difficult to model using classic epidemiological methods.
Perhaps most importantly, it quantifies interactive effects
between factors which are difficult to estimate and inter-
pret in classic models. Geographical detectors have been
successfully used to explore determinants and their inter-
action with tube defects [15], the under-five mortality in
earthquake [17], typhoid and paratyphoid fever [18], ty-
phoid cancer [19], hand-foot-mouth disease [20], and Class
B notifiable disease [21]. Over the past decades, there has
been increasing attention to schistosomiasis-related factors,
and the challenges that their complex interactions present
to public health services and control programs [5]. This
paper demonstrates how the detector system used here was
used to provide some clues to these issues.
With the four geographical detectors, we found that

proximity to Yangtze River had the strongest effect on
schistosomiasis prevalence followed by land cover and
sunshine hours, while the remaining factors had only

weak influence. The observed risk factors found to be
related to S. japonicum infection are well interpretable
with the epidemiology of schistosomiasis and known biol-
ogy of snails. Studies confirm that the snail habitats of are
widely distributed in the lower reaches of Yangtze River
[22]. Frequent flooding, which is common, snails in these
habitats can be dispersed and deposited widely in various
other localities, such as rivers, lakes, and wetland. Hence,
risky water contact is more likely for individuals living on
or near the shore and engaging in agricultural activities
and fishing. The buffer regions of Yangtze River can thus
be regarded as indicators of exposure. In our study area,
snail habitats were mainly located within a buffer distance
of 50 km from the Yangtze River (Fig. 3). This also ex-
plains why schistosomiasis prevalence decreased signifi-
cantly in the regions beyond the 10–50 km buffer. The
risk detector disclosed that the grass land is the highest
risk (average prevalence of 3.44‰) among other types of
land cover, which is because grass land provides ideal
breeding habitats for snails. Climate conditions, such as
daylight and LST, have been shown to influence the distri-
bution and density of snails and the rate of schistosomal
development in the snail host [23–25]. Our study, how-
ever, shows that only sunshine hours was responsible for
the spatial pattern of schistosomiasis prevalence, while
LST had week influence.
Of more interest is how interactions between environ-

mental factors influence schistosomiasis prevalence. Heavily
schistosomiasis-affected areas are usually influenced by a
mixed interaction of multiple factors [3]. It is difficult to as-
sess and interpret interactions using classic epidemiological
methods if there are too many risk factors, while the inter-
action detector used here explores the interactive effect by
overlaying spatial pattern of risk factors and quantifies it
using the PD value. This makes it possible, and easy, to in-
terpret and compare interactions with separate effects. Our
analysis shows that interactions between proximity to Yang-
tze River and other environmental factors had (unilaterally)
enhanced the separate effect of proximity to Yangtze River
(except LSTday) and that interactions between the weakly
influencing factors (unilaterally or nonlinearly) enhanced
their single effects as well. These findings suggest that inter-
actions between risk factors play an important role in influ-
encing schistosomiasis prevalence and should be accounted
for when planning control interventions.
The risk detector can identify high risk regions so that

priority prevention and disease intervention can be taken.
Our results uncover that the buffer region of 10 km
around Yangtze River and region of grass land were of
great concern. In particular, the region intersected by the
above two regions should be given a priority, as this small
area is an accurate location of high risk. A specific inter-
vention here would be particularly efficient and thus
streamline the use of limited resources.

Table 4 Statistically significant differences between the average
prevalence rates between six types of land cover

Land cover
(average prevalence)

Paddy
fields

Dry land Forest Grass
land

Water
body

Other

Paddy fields (1.77‰)

Dry land (2.41‰) Ya

Forest (1.58‰) Ya Ya

Grass land (3.44‰) Ya Ya Ya

Water body (1.98‰) Nb Nb Ya Ya

Other (2.07‰) Nb Nb Ya Ya Nb

athe difference of influence between the two factors is significant at the 95%
confidence level
bthe difference of influence between the two factors was not significant at the
95% confidence level

Table 5 Interactions (measured by PD value) between pairs of
risk factors

Factors Proximity
to Yangtze

Land
cover

Sunshine
hours

Population
density

DEM NDVI LSTday

Proximity
to Yangtze

Land
cover

0.388

Sunshine
hours

0.372 0.333

Population
density

0.365 0.201 0.205

DEM 0.349 0.184 0.198 0.104

NDVI 0.331 0.121 0.151 0.148 0.080

LSTday 0.306 0.099 0.040 0.110 0.040 0.035

Hu et al. Infectious Diseases of Poverty  (2017) 6:87 Page 6 of 8



The present study highlights some limitations that should
be noted. First, the geographical detector approach is based
on spatial variance analysis of the spatial consistency of
health risk distribution with suspected risk factors. If the
risk factors do not present spatial patterns (e.g., patients’
age and gender) or the study area is too small to display a
spatial pattern, it is difficult to identify these factors without
a field sampling survey for suspect factors [15]. Second, it is
somewhat subjective to deal with quantitative factors com-
pared to qualitative factors, the values of which are deter-
mined by their nature or attributes (e.g., land cover)
because arbitrary methods of discretization (e.g., equal
interval and quantile) may not characterize actual associ-
ation between risk factors and a health outcome. Therefore,
some prior knowledge would be helpful in discretizing
quantitative variables. Finally, uncertainty about the PD
value has not been considered yet and this constitutes an
area for further work.
In general, the causes of many diseases are complicated

and health resources are limited in undeveloped areas.
Therefore, tools, such as the geographical detector system
presented here are extremely welcome that are relatively
easy and efficient to implement in determinant detection
for priority prevention and disease intervention. These
detectors, we believe, can be used for other environment-
related diseases where there are complex relationships
between exposure and the health outcome of interest.

Conclusions
This study presents an application of a series of geograph-
ical detectors in assessing environmental factors associated
with schistosomiasis prevalence in Anhui Province. It was
found that proximity to Yangtze River, land cover, and
sunshine hours were the main factors responsible for
schistosomiasis prevalence and that most interactions
between risk factors enhanced their single effects.
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