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ABSTRACT
In arid areas, the variation of air temperature can be considerable,
so instantaneous air temperature (Tai) estimation is needed in
different environmental researches. In this research, two different
remote sensing data are used for estimating Tai for clear sky days
in 2009 in Fars Province, Iran, including atmospheric temperature
profile and land surface temperature (LST) data from Moderate
Resolution Imaging Spectroradiometer. The Tai from a number of
surface weather sites is used to judge the best Tai estimation.
Stations’ elevation, latitude, and land cover type are considered
to show their effect on Tai estimation. The estimated Tai evaluation
focuses on daily and seasonal timescales in the daytime and night
time separately. Both LST and vertical temperature profile data
produced relatively high coefficient of determination values and
small root mean square error value for Tai estimation, especially
during the night time. Land cover and elevation vary the error
values in Tai estimation more, when LST data is used. In compar-
ison atmospheric temperature profile indicates a smaller error in
Tai estimation in spring and summer and in urban land cover type,
while using LST data presents a better result in fall and winter
especially at night time.
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1. Introduction

Air temperature is known as measured temperature at the shelter height 2 m above
ground (hereafter Ta). Knowledge of instantaneous air temperatures (hereafter Tai) is
critical to understand the environmental conditions. Spatial and temporal information
on instantaneous air temperature, which is considered in current study, is important for
modelling regional evapotranspiration and estimating net radiation. Land surface eva-
potranspiration models routinely use solar radiation directly or, in combination with
longwave radiation, to provide a measure of the net energy available to evaporate
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water. Variation of the downwelling components of net radiation is dominated by
atmospheric variations, primarily air temperature and clouds (Prigent, Aires, and
Rossow 2003). The air temperature has temporal and spatial variations. The density of
the station network (number of station per unit area) is frequently insufficient to
represent the spatial distribution of air temperature at detailed spatial scales due to
lack of high-resolution data, especially in developing countries (Emamifar, Rahimikhoob,
and Noroozi 2013). However, the development of satellite remote sensing technology
provides an opportunity to obtain such high-resolution data.

Several authors have proposed methods to estimate air temperature using remote
sensing data. In estimating air temperature, land surface temperature (LST) has been
frequently used. Surface temperatures are governed by land–atmosphere interactions
and the energy fluxes between both. LST is a key parameter in land surface processes
due to its control of the upward terrestrial radiation, and consequently, the control of
the surface sensible and latent heat flux exchange with the atmosphere (Arya 2001).
Surface heat fluxes can induce local convection in the boundary layer, producing
changes in air temperature, surface winds, cloudiness, and (potentially) precipitation
(Arya 2001).

Although LST and air temperature are strongly correlated, both have different physical
meanings, magnitudes, measurement techniques, response to atmospheric conditions,
and diurnal phase (Jin and Dickinson 2010). Vancutsem et al. (2010) explained that the
lapse rate between LST and instantaneous air temperature is controlled by a complex
surface energy. The temperature lapse rate can vary greatly in a diurnal cycle, and patterns
are influenced seasonally through variations in the day and night lengths. In this case,
Cresswell et al. (1999) study showed that during daytime, surface temperature is generally
higher than air temperature, and at night time, the opposite occurs. This point is used
indirectly (due to lack of measured LST data in study area) to evaluate Moderate
Resolution Imaging Spectroradiometer (MODIS) LST product in current study.

Several authors have mentioned many other factors that have impact on the LST–Tai
lapse rate such as soil emissivity, moisture content and wind velocity, turbulence, cloud
cover, water vapour content, elevation, topography, leaf area index, and vegetation
(Huband and Monteith 1986; Jin and Dickinson 2010; Mildrexler, Zhao, and Running
2011). Benali et al. (2012) stated that several factors such as wind velocity and vegetation
are important in energy balance in the land–atmosphere system, and consequently, influ-
ence the LST–instantaneous air temperature relation; however, accurate wind data is
difficult to obtain in the studied area and the biophysical controls of vegetation in the
energy balance are quite complex. Thus, the main goal of this work is to estimate instanta-
neous air temperature using easy remote sensing methods with minimum input data.

Most recent studies have focused on estimating the minimum, maximum, mean daily,
or mean monthly air temperatures using LST data; few works have addressed estimating
instantaneous air temperature. Determining Tai is an indispensable element to calculate
hydrological variables, such as evapotranspiration (Allen et al. 2007) and net radiation on
a regional scale, especially in arid climate. Instantaneous air temperature at the time of
satellite overpass is needed when using remote sensing methods in solar net radiation
estimation (Bisht et al. 2005). Nevertheless, despite the methods used, previous studies
reported errors of about 2.0–3.0°C for a variety of target variables and both spatial and
temporal resolutions (Zakšek and Schroedter-Homscheidt 2009).
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Sun et al. (2005) suggested a method based on thermodynamics to retrieve regional
Tai using MODIS LST and normalized difference vegetation index (NDVI) data. Crop Water
Stress Index (CWSI) was used as the basis for the establishment of the relationship
between air temperature and LST. An accuracy of within 3.0°C was achieved for more
than 80% of the data processed in their study. The determination of CWSI and aero-
dynamic resistance are two parameters that were crucial in their method. Lack of input
data in calculating the parameters such as net radiation as well as CWSI were the
limitations in the use of Sun et al.’s (2005) method for estimating Tai based on satellite
data and thermodynamics in our study.

Artificial intelligence methods are another approach which have been developed for
estimating air temperature using remote sensing data, including artificial neural network
(Zhao, Zhang, and Shijin 2008; Mao et al. 2007; Sahhin 2012) and the M5 model tree
(Emamifar, Rahimikhoob, and Noroozi 2013). Zhao, Zhang, and Shijin (2008) developed an
algorithm based on back propagation (BP) neural network for retrieval of near-surface
daily mean, maximum, andminimum air temperature from remotely sensed data in south-
western China. Parameters used for the training of the BP neural network included:
remotely sensed albedo, NDVI, layered meteorological data the station’s observed daily
mean, maximum, and minimum temperature provided by geographical information
system (GIS) as well as the digital elevation model (DEM) of the study site. They concluded
that the BP neural network integration with surface meteorological observations could be
a promising approach for retrieving near-surface air temperature with reliable accuracy.
Mao et al. (2007) used an algorithm based on the radiance transfer model (Moderate
Resolution Atmospheric Transmission (MODTRAN4)) and a dynamic learning neural net-
work for estimation of near-surface air temperature from Advanced Spaceborne Thermal
Emission and Reflection Radiometer (ASTER) data. The comparison of estimation results
with ground measurement data at meteorological stations indicates that the RM-NN
(radiative transfer model with neural network) can be used to estimate near surface air
temperature with acceptable accuracy from ASTER data. Mean monthly air temperature
was forecasted in 20 cities of Turkey based on remote sensing and artificial neural network
(Sahhin 2012). In their research city, month, altitude, latitude, longitude, monthly mean
LST were chosen as input for network. The results showed the accuracy of 1.0–1.3°C
between the estimated and measured mean monthly air temperature. Emamifar,
Rahimikhoob, and Noroozi (2013) used M5 model tree to estimate air temperature in
the southwest of Iran. The input variables for the M5 model tree were the daytime and
night time MODIS-Terra LST, extraterrestrial solar radiation, and Julian day. The results of
their study showed that mean daily air temperature can be estimated with acceptable
levels of the statistical indicators from MODIS data and from the two geographic para-
meters using the M5 model. These methods require observation data to provide training
data for predictions using artificial intelligence. However, the goal of the current study is
focusing on estimating instantaneous air temperature without the direct use of observa-
tion data.

In addition to the above-mentioned methods, Benali et al. (2012) explained that the
regression models can be suitable for areas with complex landscape characteristics. Low
density of the observed data, complex landscape characteristics, and lack of various
parameters in the studied area motivated this study to estimate Tai based on simple
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statistical analysis in remote sensing method using MODIS LST data as the only input
data.

As another approach, MODIS atmospheric temperature data is used to estimate Tai as
well. Some authors have proposed methods to estimate Tai using temperature profile
data. The satellite temperature profile data includes vertical temperature profile data
(Retrieved_Temperature_Profile). Rhee and Jungho (2014) improved a method sug-
gested by Mendez (2004) to estimate air temperature based on a linear interpolation
between the bottom profile level (1000 hPa) and ground level (2 m above ground level).
He used the pressure difference between 1000 hPa and 620 hPa levels, considering the
vertical properties of the atmosphere, and calculated the ground level air temperature as
the temperature of the 1000 hPa plus the adiabatic lapse rate, which resulted in a strong
agreement with the observed data (R2 (coefficient of determination) = 0.8 and RMSE
(root mean square error) = 1.5°C) for their study area. Tang and Li (2008) argued that
approximating air and dew point temperatures at 1000 hPa as near-surface tempera-
tures in estimating net longwave flux may be inappropriate due to variations caused by
Earth’s terrain and suggested using the hydrostatic assumption in the atmosphere to
estimate near surface temperatures. They assumed a hydrostatic atmosphere assump-
tion to extrapolate Tai provided at the lowest vertical pressure level from the MODIS
atmospheric profile product to estimate Tai. Tang and Li (2008) and Bisht and Bras (2011)
improved the instantaneous upwelling longwave radiation calculation using hydrostatic
assumption in extrapolating Tai from MODIS temperature profile data. Air temperature
derived from MODIS temperature profile data improved the RMSE by 1.0°C and 1.5°C for
day and night, respectively (Bisht and Bras 2011).

The objective of this study is to estimate real-time air temperature (Tai) in a simple
way with minimum input data using remote sensing based methods. Two principal
approaches have been used in this study to map Tai from remote sensing data: statistical
analysis using MODIS LST data and extrapolating Tai from MODIS air temperature profile.
Stations’ elevation, latitude, and land cover are consider to demonstrate their effect on
Tai estimation in daily and seasonal timescale (at daytime and night time).

2. Materials and methods

2.1. Study area and data set

The study area for the present work is the Fars Province in southern Iran (surface area of
122, 608 km2, one of the largest provinces in Iran), which is known for its arid and semi-
arid climate and flourishing agriculture. The study area experiences four distinct seasons
over the year and has complex topography with various land cover types. Such condi-
tions allow the analysis of the effect of various factors, including seasonality, elevation,
latitude, and land cover type on air temperature estimation, thus the spatial and
temporal heterogeneity has been tested as well in the study area (in Section 2.2).

In Fars Province there are 22 Automatic Weather Stations (AWS). Among these stations,
16 reliable stations were selected based on continuous instantaneous air temperature
records for each month in 2009 (Figure 1). Mao-Gui and Wang (2010) improved a
computer optimization package based on mean of surface with nonhomogeneity theory
with the purpose of improving accuracy in the global estimation of some spatial
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properties, given a spatial sample distributed over a heterogeneous surface. They intro-
duced and applied a spatial sampling optimization method using meteorological net-
work. Wang et al. (2012) also reviewed spatial sampling in collecting data for
heterogeneous areas such as the studied area. However, based on stratified heterogeneity
study (Section 2.2), several subareas have been identified (Figure 1). Spatial sampling
study could improve the accuracy of estimation, but a limited number of stations in our
study area make the spatial sampling study impossible; thus, this study is based on the
only 16 reliable AWS in Fars Province for 2009 and no station selection method has been
tested.

AWS record near-surface air temperature (at 2 m height) and soil temperature (T10 at
10 cm depth) every 10 min. Measured soil and air temperature data are used indirectly
to evaluate LST data from MODIS. Measured air temperature data are also used to
validate estimated Tai. The land cover type of the meteorological stations and the
study area is assigned using the land cover map of Fars Province, prepared by Fars
Agricultural Organization. Figure 1 shows the dominant land cover in the locality, where
the stations are located. All data are from 2009 in this study.

MODIS sensor products from the satellites Terra and Aqua are used as remote sensing
data sources. LST in MOD11 and MYD11, and temperature profile from MOD07 and
MYD07 are used in the satellite-based data method. Aqua passes over the Fars Province
at about 8:55–10:35 and 21:30–23:20 UTC (Coordinated Universal Time) and Terra passes
at about 6:25–8:10 and 17:45–19:25 UTC.

This research is based on clear-sky days (with less than 25% cloud in sky) recorded in
2009 in Fars Province, southwest Iran, under the condition that no precipitation occurred
in three previous days (to have the same soil moisture condition in the studied days). In
this year, 238 days met the desired conditions. Instantaneous air temperature during the
overpass of satellites Terra and Aqua is gathered from 16 automated weather stations.

Figure 1. Geographical distribution of AWS in Fars province, Iran; the stations are grouped into three
elevation classes and three latitude classes (a), and four land cover types (b).
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2.2. MODIS LST data

Using nearest neighbour method in space and time, the MODIS LST data were collected
in the studied days. For evaluating MODIS LST data in the study area, measured air
temperature and soil temperature at 10 cm depth are used indirectly. Lack of direct
surface measurements of LST in the study area means that we can only check the
qualitative consistency of the satellite values by comparison with the stations’ air
temperature and soil temperature at 10-cm depth. Uncertainty in LST estimates
increases when significant variations of temperature occur. The accuracy of MODIS LST
in arid and semi-arid areas has been reported to be lower due to higher overestimations
of surface emissivity (Hulley and Hook 2009). Moreover, errors in LST retrieval may be
larger in bare soil and highly heterogeneous areas due to large uncertainties in surface
emissivity, and when the column water vapour content is high (Hulley and Hook 2009).
The use of LST products in Tai estimation is strongly influenced by errors on the LST
retrievals. In the present work, the accuracy of MODIS LST products on board Terra and
Aqua spacecraft were examined indirectly, based on expected behaviour of LST in
comparison to measured Tai and T10 data.

The main LST and Tai and T10 difference lies in their diurnal cycles. The expectation is
that during daytime, especially in summer, the value of LST will generally be larger than
both Tai and T10 and during nighttime, especially in winter, the value of LST will
generally be smaller than Tai and T10 (Arya 2001). Solar radiation is the driving factor
influencing this difference. The surface responds more rapidly to a changing solar force.
The surface will warm up more quickly in the morning with the rising sun, inducing a
positive LST–Tai and LST–T10 difference during daytime, whereas it will cool more rapidly
at night, generating a negative LST–Tai and LST–T10 difference. The fraction of absorbed
solar radiation at the surface is determined by the surface albedo that depends on the
vegetation type and fractional cover, the albedo usually decreasing with increasing
vegetation density. However, the dominant vegetation impact is associated with its
effect on evaporative cooling, denser vegetation is usually associated with more under-
lying soil moisture and with less restricted transpiration (Prigent, Aires, and Rossow
2003). In the absence of in situ measurements to validate the retrieved LST, the following
analysis will attempt to examine the variations of the difference of LST–Ta and LST–T10
with the factors that are expected to affect it. Given that all these factors are inter-
connected, it is difficult to isolate the influence of a single parameter. However, we will
confirm that the expected behaviour is observed, and, if that is the case, the errors on
the used LST data cannot be large.

The daytime average difference of LST–T10 is between 11.0°C and 12.3°C; at night the
average difference of LST–T10 is between −2.7°C and −4.7°C. The average difference of
LST–Tai is 9.7–10.3°C and −5.3 to −5.9°C at daytime and nighttime, respectively. The
daytime and nighttime histograms of all differences are plotted for each season to show
the distribution of negative and positive difference values. For both MODIS, Terra and
Aqua LST data, the LST–T10 and LST–Tai value showed a dominant positive result during
daytime and negative values during nighttime in all seasons. Thus, the MODIS values of
the LST meet the expectations. Figure 2 shows the winter and summer daytime and
nighttime LST–Tai value.
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In this study, the correlation between LST and observed Tai for daytime and nighttime
(at the time of satellite overpass) is examined in several ways, considering stations’
elevation, latitude, and land-use type. These spatial factors were examined to show their
effect on the accuracy of Tai estimation. For this purpose, spatial stratified heterogeneity
should be tested at the early stage of spatial data analysis (Wang, Zhang, and Bo-Jie
2016). Spatial variation of attributes or uneven distribution of events or their relationship
across a region is known as spatial heterogeneity. Stratification of heterogeneity means
that the observations are homogeneous within each stratum but not between strata. A
stratified heterogeneity is mostly significant if the values within the strata are homo-
geneous or the variance within the strata is zero; a stratification of heterogeneity
vanishes when there is no difference between the strata (Wang, Zhang, and Bo-Jie
2016). The q-statistic has been proposed by Wang, Zhang, and Bo-Jie (2016) to measure
a spatial stratified heterogeneity. The value of the q-statistic varies between 0 and 1. As a
larger q value indicates a stronger stratified heterogeneity effect (Wang, Zhang, and Bo-
Jie 2016), we used q-statistic to show and measure the degree of stratified heterogeneity
in our study. The p-value test is used to test the hypotheses. If p < α, then there is
stratified heterogeneity at the significant level α. ‘Geodetector,’ a free downloadable

Figure 2. MODIS histograms of LST–Tai in winter daytime (a), winter nighttime (b), summer daytime
(c), and summer nighttime (d).
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software (Wang, Xin-Hu, and Christakos 2010), is used for computing q- statistic and
p-value for the stratification in the current study. The results are presented in Table 1. As
it is shown, all spatial factors including elevation, latitude, and land-use type show
significant heterogeneity across the study area. The strongest heterogeneity was seen
in land-use type strata and the weakest was seen in latitude strata (it should be
mentioned that the elevation and latitude stratification are based on prior knowledge
of the study area). These results emphasize on the fact that these spatial factors affect
the Tai estimation, and thus the spatial stratification improves the accuracy of estimation.
Table 2 compares the average of Tai in each stratum based on ‘Risk Detector’ worksheet
of Geodetector software. As it is shown, the average difference in land-use cover strata is
more than elevation strata and the average difference in latitude strata is the least. As
well as spatial heterogeneity, temporal heterogeneity is critical in current study, and the
same test was run for diurnal (day and night) and seasonal temporal factors (Table 1). As
expected, for both diurnal and seasonal strata, the heterogeneity was significant (which
was stronger for day and night). These results indicate that considering the effect of
diurnal and seasonal factors in Tai estimation is critical as it was proved for spatial factors.
Table 2 shows the average of Tai in each temporal stratum. In addition to spatial factors,
temporal factors show a significant difference in average, which highlights the need for
considering both spatial and temporal heterogeneities in current study.

Correlation between LST and observed Tai in all 16 AWS was calculated for daytime
and nighttime separately (hereafter, Aday and Anight). Since the study province has a wide
range of elevation and changes in elevation cause temperature oscillations, the stations
are grouped into three elevation classes: stations with elevation from 400 to 1000 m
above sea level (hereafter, ASL), stations with elevation from 1000 to 1600 m ASL, and
stations with elevation from 1600 to 2300 m ASL (Figure 1). The MODIS LST and
observed Tai correlation were examined in these three groups for daytime and nighttime
as well (hereafter, Eday and Enight methods). Stations are also grouped based on latitude
distribution which conveniently groups stations according to climate characteristics.

Table 1. q-statistic test for spatial and temporal stratification heterogeneity.

Statistic

Stratum

Land use Elevation Latitude Day and night Season

q-statistic 0.58 0.42 0.33 0.65 0.41
p-value 0.0000 0.0000 0.000002 0.0000 0.0000
Number of strata 4 3 3 2 4

Table 2. Tai average in each stratum computed by Geodetector software in ‘Risk Detector’worksheet (°C).
Stratum

Factor Agriculture Low forest Bare land and poor pasture Urban

Land-use type 19.5 (°C) 23.3 (°C) 26.8 (°C) 24.4 (°C)

Elevation (m) 400–1000 1000–1600 1600–2300
28.1 (°C) 24.4 (°C) 19.4 (°C)

Latitude North Centre South
19.4 (°C) 25.6 (°C) 27.2 (°C)

Day and Night Day Night
35.8 (°C) 11.0 (°C)

Season Spring Summer Fall Winter
26.6 (°C) 32.4 (°C) 16.3 (°C) 9.4 (°C)
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These classes are named the North, Centre, and South class (Figure 1). Within the latter
grouping, stations with severe arid climate type are placed in the South class (in
Southern Fars). The North class (in Northern Fars) consists of stations with semi-arid
climate type; the Centre (in Central Fars) class consists of stations with arid climate type.
In this classification, the MODIS LST data and observed Tai correlation were examined
based on latitude for daytime and nighttime (hereafter, Lday and Lnight methods). Also,
based on land cover type, stations are grouped into four land cover classes: agriculture,
low forest, urban, and bare land and poor pasture (Figure 1). Fars Province includes
21.2%, 7.2%, 18.6%, 51.3%, and 1.7% agriculture, low forest, urban, bare land and poor
pasture, and other (salt land and rock), respectively. There is no station located in salt
land or rock land cover type. The MODIS LST and observed Tai correlation in this
classification are named as Cday and Cnight method in this study.

The scatter plots showed the linear regression as the most appropriate one in all LST–
Tai correlations (Tai day = aLST day + b and Tai night = aLST night + b).

The estimated Tai in different classes was evaluated in daily as well as seasonal
timescale for daytime and nighttime separately to show the effect of diurnal and
seasonal differences on Tai estimation.

Figure 3 shows the best fitted regression between LST and observed Tai data for all 16
automated weather stations for daytime (Aday). Figure 4 shows the best daytime fitted
regressions between LST and observed Tai data in three elevation classes (Eday).

2.3. MODIS temperature profile data

The MODIS Atmospheric Profile data include temperature profile data
(Retrieved_Temperature_Profile) for 20 geopotential heights (Retrieved_Height_Profile),
from 5 to 1000 hPa (Sobrino et al. 2014), evaluated the MODIS MOD07 daytime and
nighttime products (from Terra) over the Iberian Peninsula during the decade from 2000
to 2010 using nine radiosonde stations. The validation provided satisfactory results, with
bias around 1 K on average and standard deviation between 2 and 3 K for air tempera-
ture at different pressure levels.

Figure 3. Regression plot between all stations’ LST data at the time of satellite over pass and
observed Tai in daytime.
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Radiosonde data at 00:00 UTC was gathered from the only available station in Fars
Province in Shiraz station to investigate the accuracy of the satellites (Aqua and Terra)
temperature profile data at nighttime from 1000 to 620 hpa pressure level (the layers
which are important in this study). The results show large errors in comparison with
Sobrino et al.’s 2014 study for Terra (which was expected). Greater level of accuracy
could be obtained in the validation process for Terra if the measured data used in the
validation process were taken at the instantaneous time at the Terra pass over the Fars
Province (not with differences in time). Aqua shows much better accuracy with RMSE
around 1.4–2.3 K, especially when the satellite overpass was later than 23:00 UTC.
Seasonal average errors for Aqua satellite data show under estimate of air temperature
in higher pressure levels (1000, 900, 850 hpa) in wintertime, while the lowest errors have
been seen in summertime. This evaluation is not reliable for Terra satellite data, due to
the long-time difference between measured radiosonde data and satellite overpass. So
overall, despite the limitations of the measured data in the evaluation process, it can be
concluded that MODIS atmospheric temperature profile is reliable from both Terra
(Sobrino et al. 2014) and Aqua (current study investigate) satellites.

The adiabatic lapse rate phenomena occur between 1000 and 620 hPa (Rhee and
Jungho 2014). In this study air temperature data were obtained based on the linear
interpolation/extrapolation, using the geopotential height and air temperature data of
620 hPa and 1000 hPa and the elevation (Rhee and Jungho 2014) for daytime and
nighttime, separately. The linear relationship between the geopotential height and air
temperature in the lower levels is assumed in Equation (1), where z is geopotential

Figure 4. Regression plots between LST data and observed Tai data in three classes based on
stations’ elevation for daytime ((a) < 1000 m, (b) 1000–1600 m, and (c) 1600–2300 m ASL).
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height. Slope a and intercept b may be obtained using data at 620 hPa and 1000 hPa
levels (Equations (2) and (3)), where Ta1000 hPa, Ta620 hPa, z1000 hPa, and z620 hPa are
instantaneous air temperature at 1000 hPa level, instantaneous air temperature at 620
hPa level, geopotential height at 1000 hPa level, and geopotential height at 620 hPa
level, respectively. The Tai can then be calculated using the height above mean sea level
(AMSL), which is elevation AMSL plus 2 m (Jocik Mendez 2004). This method is named as
P1day and P1night in this study for daytime and nighttime Tai estimation, respectively:

T ¼ a: z þ b; (1)

a ¼ ðT1000 � T620Þ=z1000 � z620; (2)

b ¼ T1000 � z1000 a : (3)

Moreover, a hydrostatic atmosphere was assumed to extrapolate Tai using MODIS
MOD07 and MYD07 products. The hydrostatic atmospheric assumption can be
expressed as Equation (4), as indicated by (Tang and Li 2008)

dp=dz ¼ ðPL � PSÞ=Δz ¼ � ρg; (4)

where dp/dz is the changes in pressure while the height changes, g is the standard
gravity, ρ is the density, and PL is the lowest pressure level of the MODIS atmospheric
profile measurement, while PS is the surface pressure level obtained from the MODIS data.
The ambient lapse rate is assumed to be −6.5 Kkm−1 (Cosgrove et al. 2003) and can be used
to relate instantaneous temperature at the lowest pressure level, Ta

L, and instantaneous
near-surface temperature, Ta

S (Equation 5). Combining Equation (4) and Equation (5) and
rearranging the terms, instantaneous near-surface air temperature can be estimated as
Equation (6). Bisht and Bras (2011) developed this method for estimating instantaneous Tai
in solar net radiation calculation at the time of satellite overpass. This method is named as
P2day and P2night in this article for daytime and nighttime Tai estimation, respectively.

TaL � TaSΔz ¼ �6:5Kkm�1; (5)

TaS ¼ TaL þ � 6:5Kkm�1 � ρg PS � PL
� �

: (6)

If the lowest 1000 hPa layer was not accessible for the study area, the nearest lower
layer was used in its place in both methods. Since the studied area is located in a high
elevation area, the 1000 hPa pressure level is not available except in some areas in
southern Fars. For missing 1000 hPa level data, 950 hPa level or less pressure level data
were used instead. Elevation, latitude, and land cover classifications in Section 2.2 are
also mentioned in P1 and P2 methods validation (Section 3).

3. Results and discussions

Measured data from the only 16 AWS are used to validate the estimated air temperature
from remote sensing method using MODIS LST and temperature profile data.

Validation processes are performed through statistical criteria, such as the coeffi-
cient of determination, root mean square error, and mean bias error (MBE). The
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estimated air temperature at the time the satellite passes was compared to data from
the meteorological stations. In this case, the error values, such as MBE and RMSE,
become very important criteria. The validations are performed in daily and seasonal
timescale.

3.1. Daily validation

Considering R2, RMSE, and MBE value in Table 3, P1 and P2 methods show a better
agreement with observed data (P2 method seems to be slightly more accurate than P1
method) than all LST methods. Generally, temperature profile data and LST data explain
81–86% and 68–78% variability, respectively. This difference is possibly due to the larger
temperature variation of daily LST data than the atmospheric temperature profile (Rhee
and Jungho 2014). Both LST and atmospheric temperature profile methods show a
relatively better Tai agreement with observed data at nighttime rather than daytime.
Vancutsem et al. (2010) explained that higher stability of atmospheric temperature profile
and especially LST products at nighttime due to lack of solar radiation and its effect on the
thermal infrared signal for LST is the reason of this difference. Moreover, angular aniso-
tropy has a larger effect on LST data accuracy during daytime, due to mixed sunlit and
shaded areas within a pixel, and its impact depends on the land cover structure (Prigent,
Aires, and Rossow 2003). Mostovoy et al. (2006) study showed that the difference between
LST and estimated Tai increases with view angle from 0° to ±65°. The error increased by
1.0–2.0° with increased view angle in Mostovoy et al. (2006) study.

Table 3 shows that in using LST in Tai estimation, the errors vary by land cover and
elevation classification, while only slight variation is noted by latitude classification. Land
cover has a potential impact on Tai estimation due to its effect on land emissivity. Rhee
and Jungho (2014) explained that during the daytime lower LST have been seen in
agricultural land cover due to the cooling effect of vegetation on LST. Larger error value
is shown in Table 3 for daytime agricultural regions. Mountain regions (north class and
some centre regions) also showed a larger error for both daytime and nighttime using
LST data, unlike temperature profile method. The higher accuracy of P1 and P2 methods
in altitude regions can be explained by the fact that in north and centre classes the 1000
or even 950 hPa layers are rarely possible where the air temperature values are more

Table 3. R2, MBE and RMSE values in Tai estimation in daily timescale.
Method R2 MBE (°C) RMSE (°C)

Aday 0.71 4.7 4.9
Anight 0.73 4.5 4.7
Eday (150–1000, 1000–1600, 1600–2300) 0.80; 0.77; 0.74 3.5; 3.6; 4.0 3.8; 3.9; 4.3
Enight (150–1000, 1000–1600, 1600–2300) 0.79; 0.78; 0.76 3.2; 3.4; 3.8 3.5; 3.6; 3.9
Lday (North, Centre, South) 0.70; 0.77; 0.71 4.2; 3.7; 3.9 4.6; 3.8; 3.8
Lnight (north, centre, south) 0.71; 0.76; 0.73 4.1; 3.5; 3.6 4.4; 3.7; 3.6
Cday (agriculture, low forest, bare land and urban) 0.71; 0.73; 0.76; 0.67 4.0; 3.6; 3.1; 4.2 3.9; 3.8; 3.3; 4.6
Cnight (agriculture, low forest, bare land and urban) 0.75; 0.74; 0.78; 0.68 3.5; 3.4; 3.0; 4.1 3.5; 3.7; 3.2; 4.4
P1day 0.83 2.8 3.3
P1night 0.86 2.6 3.2
P2day 0.81 2.5 3.1
P2night 0.85 2.4 2.9
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unstable. The measured surface pressure in high-elevation stations showed the range of
735–890 hPa in 2009.

The results show a larger error in the north of Fars Province when using LST data, due
to large urban areas (land-cover type) and mountainous regions (1600–2300 m class in
elevation classification) in comparison to centre and south; however the uncertainly in
the south and southeast of the study area is more variable due to lower station density.
Rhee and Jungho (2014) explained that the larger error of LST in urban areas for
estimating Tai is related to high percentage of impervious areas, which exacerbate the
discrepancy between the surface and air temperature, especially during the daytime. In
this case, the error values in Tai estimation are smaller in P1 and P2 methods than the
LST method. LST product seems to be more sensitive to land cover and the time of
satellite overpass, especially during daytime, however, estimated Tai using atmospheric
temperature profile seems to be sensitive to elevation due to surface pressure variations
and atmosphere stability in higher layers.

Overall, hydrostatic assumption in estimating Tai using MODIS vertical temperature
profile (P2) seems to be more accurate than linear extrapolation (P1), and both these
methods seem to be more suitable than LST method, especially during daytime for the
study area.

3.2. Seasonal validation

The error estimation in seasonal timescale shows that using atmospheric temperature
profile data for Tai estimation has a better agreement with observation data in spring
and summer (Table 4). This can have particular relevance on air temperature inversion in

Table 4. RMSE values in Tai estimation in seasonal timescale (°C).
Method Spring Summer Fall Winter

Aday 5.5 5.3 4.5 4.3
Anight 5.0 5.1 4.3 4.3

Eday 150–1000 (m) 3.5 4.2 3.1 2.8
1000–1600 (m) 3.8 4.3 3.1 3.1
1600–2300 (m) 4.3 4.7 3.3 3.1

Enight 150–1000 (m) 3.6 3.8 3.0 2.9
1000–1600 (m) 3.8 4.0 2.9 3.0
1600–2300 (m) 4.0 4.3 3.3 3.3

Lday North 4.5 4.9 4.1 3.7
Centre 4.4 4.2 3.8 3.5
South 3.9 4.1 3.6 3.5

Lnight North 4.0 4.5 3.8 3.5
Centre 4.1 4.0 3.6 3.4
South 3.6 3.7 3.5 3.3

Cday Agriculture 4.2 4.4 3.9 3.5
Low forest 3.8 4.2 3.7 3.4
Bare land 3.4 3.7 3.2 3.0
Urban 4.9 5.1 4.5 4.1

Cnight Agriculture 3.6 3.5 3.5 3.3
Low forest 3.7 4.0 3.6 3.2
Bare land 3.5 3.4 3.1 2.8
Urban 4.7 5.0 4.3 3.9

P1day 2.5 2.3 3.5 3.4
P1night 2.3 2.1 3.5 3.3
P2day 2.3 2.2 3.4 3.3
P2night 2.0 1.9 3.3 3.2
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fall and winter and more uncertainty in extrapolating (P1 method) and hydrostatic
assumption methods (P2 method) for estimating Tai in these seasons. The measured
temperature profile data from Shiraz station (at 00:00 UTC) shows that throughout the
winter there are frequent surface temperature inversions (only six days did not show
this). These inversions extend from the surface to maximum heights of 225, 270, and
203 m in January, February, and March, respectively. The evaluation process in Section
2.3 showed the same results for cold seasons. However, using LST data shows better
results than P1 and P2 methods in fall and winter. This result is explained by the high
variation of LST in warm seasons in LST method as mentioned in Section 3.1 Fabiola
Flores and Mario Lillo (2010) reported that coastal areas raise the value of RMSE on a
regional level in the warmest months using linear extrapolation method, while these
areas show the lowest errors for the coldest months. They related this result to higher
cloud fraction and higher relative humidity in the warmest months in Chile which
caused difficulties in extracting data from MODIS images. However, unlike Chile, the
cloud fraction and relative humidity are higher in the coldest months in Fars.

Benali et al.’s (2012) study showed higher accuracy of daily average air temperature,
using LST data in summer. They explained that the higher accuracy of daily average air
temperature estimations in the summer is due to the higher accuracy of the LST
product, when clear-sky days are more common, probably. Their result does not agree
with the current study and Rhee and Jungho (2014) research. That can refer to the dry
climate type of the study area (with rare cloudy days during the year, especially in recent
decades) which is different from Benali et al.’s (2012) study area. They suggested that
cloud cover had an inverse relationship with model performance. Cloud contamination
decreases the LST value leading to lower LST–Tai differences.

Estimation errors of air temperature from P1, P2, and especially LST can vary by
elevation, latitude, and land cover classes. Differences are observed between land cover
classes for LST method during spring, summer, and fall (Table 4) and P1 and P2 methods
during summer and fall (not shown). The station-average MBE and RMSE in different land
cover classes show that the error value in LST method is larger in stations with urban land
cover class, especially in summer and spring. It is likely that the error value in Tai estimation
is smaller in urban area using P1 and P2methods. This result can be explained by the same
reason as mentioned in Section 3.1. Lee et al. (2011) finding showed that land cover can
also be especially important for dry regions (like the study area), where winter cereals and
pastures typically have a strong contrast in vegetation cover between wet and dry
seasons. Table 4 shows that during spring, summer and fall the cooling effect of vegeta-
tion on LST causes larger error values in Tai estimation during daytime.

For elevation classes no increasing and decreasing error were observed in seasonal scale
for LST method, except in summertime in high elevation classes. The latitude classes (like
elevation classes) show no increasing and decreasing error in seasonal scale, but a larger
error value in the north of Fars was due to higher elevation and larger urban area in this
class. The inter-annual pattern varies from cold to mild winter and mild to warm summer
from north to south in three latitude classes. In temperature profile method, elevation
classes show fewer errors in summer and higher elevation classes. The sensitivity of P1 and
P2 method to land cover type does not seem to be significant as it is shown in this research.

Comparatively, as a sample Figure 5 shows the results of daily Tai estimation methods
in Shiraz station in daytime. Shiraz station is classified in urban land cover class in centre
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latitude class with 1484 m elevation ASL. Considering station land cover, atmosphere
temperature profile data in estimating Ta for the studied area shows the smallest error.

3.3. Sources of uncertainty

The accuracy of the LST and temperature profile has a significant effect on estimated Tai.
Uncertainty sources in LST retrieval can be addressed as radiometric noise, surface
emissivity, atmospheric contribution, and sensor view angle. Emissivity is one of the
largest uncertainty sources in LST production. Benali et al. (2012) reported that the
difference of 0.01 in emissivity can cause a 2.0°C error in the LST retrieval. The MODIS
emissivity is calculated using the MODIS land cover. Wan (1997) showed that emissivity
is a function of soil and vegetation conditions.

View angle is another possible uncertainty source for LST retrieval. However, the view-
angle effect may be ignored when the angle is less than 45° (Wan 1997). Similarly they
reported that view angle effect can be reduced when averaged over several pixels. Prigent,
Aires, and Rossow (2003) showed that angular anisotropy has a larger effect during daytime,
due to mixed sunlit and shaded areas within a pixel, and its impact depends on the land
cover structure. During the day, errors of MODIS LST estimations increase with increasing
satellite viewing angles (Prigent, Aires, and Rossow 2003). This can be another reason for the
higher accuracy of Tai estimation at nighttime using LST data.

Several sources of errors must be addressed in MODIS temperature profile inaccuracy.
Surface uncertainties such as surface elevation, emissivity, and skin temperature as well
as atmospheric transmittance calculation error and cloud detection are some sources of
error in this product (Seemann et al. 2003). Further work to improve MODIS temperature
profile and MODIS LST product will include improving surface emissivity and land cover.
A more accurate skin temperature and cloud mask product should also be investigated
in improving the MODIS temperature profile.

Figure 5. The daytime comparison of estimated Tai values against observed data.
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4. Conclusion

Air temperature data can be used for many environmental and agricultural studies, such
as surface net radiation estimation. In this study, LST and atmospheric temperature
profile data from MODIS were used in estimating high spatial resolution instantaneous
air temperature data for Fars province (Iran) with limited in situ data.

LST and vertical temperature profile data showed acceptable accuracy in estimat-
ing daily and seasonal air temperature (with temperature profile method superior to
LST method). They showed quite reasonable coefficient of determination values and
the results were within the accuracies reported in the literature considering the
methodologies for Tai estimation based on remote sensing data. Daily and seasonal
P1 and P2 outperformed LST in terms of error values, especially in urban regions and
high elevation regions, but LST showed higher accuracy during fall and winter,
especially at nighttime. However, the relation between LST and Tai, varies with local
conditions, because the LST is influenced by land cover, elevation, and vegetation.

Further developments will consider mainly two topics including cloudy days and soil
moisture effect on air temperature. These factors were eliminated in this study due to
lack of data and, thus, clear sky days with no precipitation in three previous days were
selected as studied days.

In conclusion, the relatively low spatial resolution of measured Tai data can be
improved using remote sensing methods. The current study results can be extended
to areas with limited in situ data due to complex topography and a wide range of
temperature.
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