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Additional Sampling Layout Optimization Method
for Environmental Quality Grade Classifications

of Farmland Soil
Bingbo Gao, Anxiang Lu, Yuchun Pan, Lili Huo, Yunbing Gao, Xiaolan Li, Shuhua Li, and Ziyue Chen

Abstract—Farmland soil environmental quality is important for
farmland management. To precisely classify the environmental
quality grades of farmland soil, additional samples may be required
for multistage sampling or supplementary investigations. Com-
pared with the sampling optimization methods used for mapping
or estimating global means, environmental quality grade classifica-
tions are primarily focused on estimating the relationships between
the values of unsampled locations and the thresholds that classify
the environment quality grades. Such classifications must use a
sampling layout optimization method to distribute additional sam-
pling units into areas with a high risk of misclassification. To resolve
such problems, this paper provides an additional sampling layout
optimization method that initially develops a classification error
index by building a multi-Gaussian model with the predicted val-
ues and error variances of unsampled locations and then calculates
the probability of a threshold value occurring in the standardized
Gaussian distribution. The average error indexes of all locations
in the study area are then set as the objectivity function of the
additional sampling layout optimization, and the spatial simulated
annealing is adopted to obtain the optimized sampling layout by
minimizing the objectivity function. The performance of the error
index sampling layout optimization method was demonstrated in a
case study using chromium concentration data for Hunan Province,
China. The results showed that the additional samples generated
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by the proposed method produce lower and more stable classifica-
tion error rates than the minimization of the mean of the shortest
distances and spatially random sample methods. The proposed
method can be used to improve the efficiency of additional sam-
pling for environmental quality grade classifications of farmland
soil.

Index Terms—Additional sampling, environmental quality
grade classification, layout optimization, multi-Gaussian model.

I. INTRODUCTION

THE environmental quality of farmlands is of increasing
public concern in developing countries [1], [2]. To

guarantee food security and efficient agricultural production,
environmental quality is frequently maintained via scientific
farmland management [3], [4]. Soil is the fundamental element
of farmlands, and many national standard and scientific reports
have defined environmental quality grades according to the
concentration of soil pollutants. For example, the environmental
quality standard for soils in China (GB 15618-1995) defines
three grades divided by thresholds of the main pollutant. Other
examples include restricting planting regions for certain type
of crops or regions for remediation. Spatial sampling is the
most important investigation tool for farmland soil environment
[5], [6]. To reduce costs, sampling optimization is performed,
and the suitability of sampling methods is determined by the
characteristics of the sampling purpose and the investigated
population [7], [8].

Gruijter et al. [9] described two types of spatial sampling
strategies: design-based strategies and model-based strategies.
The former strategy is a combination of random sampling and
design-based inference, and in this type of spatial sampling strat-
egy, each unit of the population is assigned a probability of se-
lection; this probability is in turn used to estimate the parameters
of the population. The latter strategy is composed of purposive
sampling and model-based inferences, and in this type of spa-
tial sampling strategy, the sampling sites are chosen for a prede-
fined purpose and a model is employed for estimations [10]. The
model-based sampling strategy is more efficient when the values
of unsampled locations must be predicted [11]. In model-based
sampling strategy, besides interactive sampling design and fixed
pattern sampling, such as nested sampling and grid sampling,
objectivity function is often designed and optimized with an op-
timization algorithm to automatically generate a sampling plan.
Three types of objectivity functions are frequently used in soil
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sampling: namely, geographical space coverage, feature space
coverage, and interpolation error minimization [12], [13]. The
geographical space coverage objective is to distribute sampling
sites evenly or according to a certain purpose. The minimization
of the mean of the shortest distances (MMSD) [14] and the mean
squared distance to the sides, vertices, and boundaries [15] are
methods that evenly distribute sampling sites, and Warrick and
Myers criteria is a method that distributes sampling sites for
variogram calculation [16]. Feature space coverage objectivity
is employed when ancillary data or historical data are available,
and its objective is to distribute sampling sites evenly in the fea-
ture space constructed by ancillary data or available historical
data. Such methods include equal range design by Hengl et al.
[17] and the conditioned Latin hypercube method by Minasny
and McBratney [18]. When a spatial variogram is available, the
average or maximum estimation error can be used as an objectiv-
ity function to be minimized, and the average spatial estimation
error of universal Kriging [19] or universal co-Kriging [20] and
means of surfaces with stratified nonhomogeneity (MSN) error
[21] are examples of such methods. However, when additional
sampling sites are required to supplement previous sampling
data to improve the soil environmental quality grade classifi-
cation, the above-mentioned methods are not suitable for the
following two reasons:

1) The spatial autocorrelation of pollutants introduces de-
grees of spatial continuity into the environmental quality
grades; thus, new sites must be drawn from the grade
transition areas, where misclassifications are most likely
to happen, and sites far away from grade transition areas
are less useful for the environmental quality grade classifi-
cation [22]. However, these methods set the same weights
for the all unsampled sites.

2) Estimated values and estimation errors should be consid-
ered at the same time when determining environmental
quality grades. Thus, additional samplings should con-
sider the relationship between the confidence interval of
the estimation result and the grade threshold.

However, the above-mentioned methods either do not con-
sider both values or consider only the estimation error [8].

The spatial uncertainty theory in geostatistics can be used to
resolve the additional sampling layout optimization for farmland
soil environmental quality grade classifications [23], [24]. The
multi-Gaussian model can reveal the uncertainty of estimated
target variables at the unsampled site. Using prior sampling data,
the estimated means and variances of all sites in the sampling
space can be calculated, and the multi-Gaussian model can then
be built to measure the probability of incorrect grade classifica-
tions, which can then be used to guide the additional sampling
layout. Thus, this paper presents an additional sampling layout
optimization method to improve the precision of farmland soil
environmental quality grade classifications.

The remainder of this paper is organized into three sections.
Section II introduces the additional sampling layout optimiza-
tion method for farmland soil environmental quality grade clas-
sifications. Section III presents a case study demonstrating the
performance of the proposed sampling optimization method.

Section IV discusses the sampling method and provides the
conclusion.

II. METHODS

A. Ordinary Kriging and Multi-Gaussian Model

Ordinary Kriging (OK) defines a random variable at each
location, and the spatially dependent random variables of the
study area constitute a random function, with the spatial location
as an independent variable [25], [26]. The value observed at a
location is considered one realization of the variable. Under
stationary conditions, the mean of the variables is a constant
value and the covariance between any two random variables is
dependent only on the distance between them; thus, OK can
be used to predict the values for unsampled locations. Using
OK, the value of an unsampled location is calculated by a linear
combination of nearby sampling data as

ẑ0 =
n∑

i=1

λizi (1)

where ẑ0 is the estimated value of location 0, zi is the value at
location i, and λi is the coefficient. To obtain the coefficients,
(1) is transformed into the following equation by substituting
the values with the corresponding random variables:

Ẑ0 =
n∑

i=1

λiZi (2)

where Ẑ0 is the estimated random variable at location 0, Zi

is the random variable at location i, and λi is the coefficient.
OK employs the unbiased condition and the best condition to
construct an equation set to solve the coefficients. The unbiased
condition sets the mean of the error of the estimation as zero,
such as in (3), and the best condition minimizes the variance of
the estimation error, which is calculated by (4):

E(ERROR) = E
(
Ẑ0 − Z0

)
= E

(
n∑

i=1

λiZi − Z0

)
= 0

(3)

where E(ERROR) is the expectation of the estimation error

Var (ERROR) = E

{[(
Ẑ0 − Z0

)
− E

(
Ẑ0 − Z0

)]2}

=
n∑

i=1

n∑

j=1

λiλj Cov (Zi, Zj )

− 2
n∑

i=1

λiCov (Zi, Z0) + Var (Z0) (4)

where Var(ERROR) is the variance of the estimation error and
Cov (Zi, Zj ) is the spatial covariance between locations i and j.
Cov (Zi, Zj ) can be substituted by the spatial variogram, which
is easier to calculate. By combining (3) in (4) using Lagrange
multipliers, setting the partial first derivatives with respect to
each coefficient and setting the Lagrange multiplier to zero, the
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equation set can be derived as
⎧
⎪⎪⎨

⎪⎪⎩

n∑
j=1

λj γ (Zi, Zj ) − l = γ {Z0 , Zi} i = 1, 2, . . . , n

n∑
i=1

λi = 1
(5)

where γ(Zi, Zj ) is the spatial variogram between locations i and
j, and l is the Lagrange multiplier. The coefficients obtained by
solving (5) can then be substituted into (1) and (3) to calculate
the estimated value of the unsampled location and the variance
of the estimation, respectively.

In the Kriging model, the random variable at each location
follows a Gaussian distribution, and the variables of all locations
together constitute a multi-Gaussian distribution. The mean and
variance estimated above can be substituted into a Gaussian
distribution to obtain the distribution of the random variable as
follows:

G (x, μ, δ) =
1

δ
√

2π
e

(
− (x −μ ) 2

2 δ 2

)

(6)

where x is a random variable, μ is the variable’s mean, and δ is
the standard variance.

B. Error Index for Environmental Quality Grade
Classifications of Farmland Soil

To improve the precision of soil environmental quality grade
classifications, sampling points should be established in areas
with a high risk of misclassification. For unsampled locations,
the results estimated by OK include errors and uncertainty can be
modeled by a multi-Gaussian distribution. Thus, the error index
is defined to reflect the probability of incorrect classifications of
one certain location as follows:

Index = G
(

threshold, ẑ0 ,
√

Var (ERROR)
)

/G
(
ẑ0 , ẑ0 ,

√
Var (ERROR)

)
(7)

where G is the Gaussian distribution defined in (6), threshold is
the critical value for classifying soil environmental into different
quality grades, ẑ0 is the estimated value of location 0 using
OK, and Var(ERROR) is the variance of the estimation. The
numerator of (7) is the probability of a threshold occurring in
a Gaussian distribution as defined by the OK estimation result,
and the denominator is the maximum probability of the Gaussian
distribution. By dividing the maximum probability, Gaussian
distributions of different locations are standardized and can be
compared with each other.

Fig. 1 presents two standardized Gaussian distributions for
two different locations. The blue line with G(x, 60, 40)/G
(60, 60, 40) is for location I, and the green line with
G(x, 60, 20)/G(60, 60, 20) is for location II. The intersection
point for the blue and red lines is the error index value of
location I, which is 0.755, and the intersection point for the
green and red lines is the error index value of location II, which
is 0.325. Although the locations have the same estimated mean
value, location I has a larger error index because it has a larger
estimation variance, i.e., larger uncertainty.

Fig. 1. Error index for two locations with the same mean but different vari-
ances.

Fig. 2. Error index for two locations with the same variance but different
means.

Fig. 2 also presents two standardized Gaussian distributions
for two different locations. The blue line with G(x, 60, 20)/G
(60, 60, 20) is for location III, and the green line with
G(x, 70, 20)/G(70, 70, 20) is for location IV; their error in-
dex values are 0.325 and 0.882, respectively, which were ob-
tained from the intersection points with the red line. Although
locations III and IV have the same estimation error, location
IV has a larger error index because its estimated mean value is
closer to the threshold.

The error index considers both the estimation error and the
closeness of the estimated mean value to the threshold. Larger
estimation errors indicate that the estimated mean is closer to
the threshold and the error index is large.

C. Additional Sampling Layout Optimization Method for
Environmental Quality Grade Classifications of Farmland Soil

To design an optimized additional sampling plan for farmland
soil environmental quality grade classifications, the objectivity
function based on the error index of Section II-B is presented



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING

as

O =
1

N ∗ K

K∑

k=1

N∑

i=1

Index (i;Tk ) (8)

where O is the objective for minimization, N is the total number
of spatial locations in the study area, K is the number of thresh-
olds used to classify the farmland soil environmental quality
grades, and Index(i;Tk ) is the error index of the ith location
with the kth threshold.

Spatial simulated annealing (SSA) can be adopted to realize
the optimization in the following six steps [27]:

1) Initialize the SSA: prepare the sample data from the pre-
vious sampling, use the data to fit the variogram and es-
timate the means and error variances for all unsampled
locations, exclude the locations that were previously sam-
pled to form a sampling space, calculate the error index
and the initial value of O, and set the initial temperature
T and cooling rate α of the SSA.

2) Produce initial additional sample: draw a sample S1 from
the sample space, set S = S1.

3) Update O: use the new sample S to update the variance of
each unsampled location and recalculate O.

4) Produce an additional new sample: randomly select one
unit from S and replace it with a new unit selected outside
of the selected one using a random radius and a random
angle to form a new additional sample S2, and then cal-
culate the value of the objectivity function O′ with S2.

5) Determine whether to accept the new additional sam-
ple: if O > O′, accept S2 and set S = S2; if not, gen-
erate a random number r between 0 and 1 and set
m = Exp(O − O′/T ); if r < m, accept S2 and set S =
S2; otherwise, discard S2.

6) Anneal or terminate: if the stopping criterion is reached,
terminate the iteration and output S; otherwise, set T = T
� α and then return to step 3.

III. CASE STUDY

A. Study Area and Dataset

The study area was located in the central part of Hunan
Province, China, as presented in Fig. 3. In 2011, 807 samples of
farmland soil were collected and analyzed to determine the con-
centrations of heavy metals. Chromium (Cr) was analyzed by
flame atomic absorption spectrometry, and it was selected as the
target variable in this paper. The environmental quality standard
for the soils of China (GB 15618-1995) defines three environ-
ment quality grades for farmland soil, and a Cr concentration
of 90 mg/kg is the threshold between grade I and grade II. The
environmental quality grades for sampling points are shown in
Fig. 3, where the red points indicate grade II and yellow points
indicate grade I.

B. Experiment

In the experiment, the 807 points were treated as a pop-
ulation because more exhaustive data were not available. To
differentiate the efficiency of different additional sampling

Fig. 3. Study area.

Fig. 4. Flowchart of the experiment.

method clearly, only a small part the data (200 points, about
25% of the data) was used as an initial sample, and the large
part was left as sampling candidates. The experiment was con-
ducted in the following five steps as illustrated in Fig. 4:

1) The data were transformed using logarithms because the
data were skewed.

2) Analyze the spatial distribution of the data, namely, the
degree of spatial autocorrelation and spatial stratified het-
erogeneity.

3) The initial sample with 200 points was selected from the
population using the MMSD sampling method to dis-
tribute the sampling points as evenly as possible.

4) A total of 200 points were treated as the compulsory sam-
ple, and additional five samples were selected using the
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error index method presented in this paper, MMSD, and
spatial random sampling method.

5) A total of 200 points were combined with each additional
sample to classify all unsampled points to different en-
vironment results. Then, the classified results were com-
pared with the true to analyze the classification precision
of different methods.

In the second step of the experiment, the spatial variogram
was built to measure the degree of spatial autocorrelation. As
the nugget of variogram is caused by random variation and
the partial sill reflects the variation with distance, the ratio of
nugget to sill can reflect the degree of spatial autocorrelation.
It is generally thought that if the ratio is smaller than 25%,
the spatial autocorrelation is the dominant characteristic. If the
ratio is between 25% and 75%, moderate spatial autocorrelation
exists. However, if the ration is larger than 75%, the spatial
autocorrelation is thought to be weak.

The spatial heterogeneity is also an important character of
spatial data and the spatial stratified heterogeneity is very com-
mon. Even if the spatial autocorrelation is high, there may be
obvious spatial stratified heterogeneity. The Geodetector can be
used to measure the degree of spatial stratified heterogeneity
[28] as follows:

q = 1 − 1
nδ2

L∑

h=1

nhδ2
h (9)

where L is the total number of stratum in the study area, δ2 is
the variance of the whole study area, δ2

h is the variance of the
stratum h, n is the size of the study area, and nh is the size of
the stratum h. The q value is in the range of 0–1. The larger the
q value, the more obvious the spatial stratified heterogeneity.
The significance of q value can also be tested by F-distribution
[29]. The self-organization clustering algorithm considering the
spatial continuity and nonspatial similarity proposed by Jiao
[30] is used to stratify the data.

If the spatial autocorrelation is strong and the spatial stratified
heterogeneity is weak, the prerequisites of OK are satisfied and
the error index proposed in the second part can be used.

C. Results

The Cr concentration histograms before and after log transfor-
mation are presented in Fig. 5. Before log transformation, the Cr
concentration is skewed and presents more small values and few
larger values. After log transformation, the distribution is close
to a Gaussian distribution and satisfies the OK requirements.
The descriptive statistics and results of Kolmogorov–Smirnov
(K–S) test of Cr concentration before and after log transforma-
tion are listed in Table I. The result also suggests that after log
transformation, the distribution Cr concentration is close to a
Gaussian distribution.

The variogram of Cr concentration after log transformation is
presented in Fig. 6. A spherical model was adopted to fit the scat-
tered point distribution, and it can be observed that the spatial
autocorrelation is strong. The parameters of the variogram are
listed in Table II . The ratio of nugget to sill is 19.950%, much
lower than 25%, and the range of the variogram is 6322.197 m.

Fig. 5. Histogram of Cr concentrations before and after log transformation.
(a) Histogram of the Cr concentrations. (b) Histogram of the Cr concentrations
after log transformation.

TABLE I
DESCRIPTIVE STATISTICS OF CR CONCENTRATIONS BEFORE AND AFTER

LOG TRANSFORMATION

Data Std. Skewness Kurtosis Z (K–S) Significance
deviation 2-tailed (K–S)

Cr 18.325 1.898 6.044 3.175 0.000
Ln(Cr) 0.226 0.748 1.527 1.659 0.080

Fig. 6. Variogram of the Cr concentrations after log transformation.
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TABLE II
PARAMETERS OF VARIOGRAM OF THE CR CONCENTRATIONS AFTER

LOG TRANSFORMATION

Model Nugget Partial Sill Nugget/Sill (%) Range

Spherical 1.106 4.438 19.950 6322.197

Fig. 7. Stratification results.

TABLE III
ANALYSIS RESULTS OF SPATIAL STRATIFIED HETEROGENEITY

q Statistic p Value

0.014 0.330

All those results suggest the existence of strong spatial autocor-
relation.

The stratification result of the data using the self-organization
clustering algorithm is presented in Fig. 7. Two strata were
classified. The first stratum locates in the southeast part of the
study area, and the second part locates in the northwest part. The
analysis results of the spatial stratified heterogeneity are listed
in Table III. The q statistic is 0.014 and the significance p value
is 0.330. From the results, it can be determined that the spatial
stratified heterogeneity is very weak.

It can be determined from Fig. 3 that the grade II points are
spatially clustered together and surrounded by grade I points.
The transition regions between grade I and grade II have a
higher risk of incorrect environment quality classifications and
should have higher error indexes. The error indexes of all 807
points estimated by the initial sample are plotted in Fig. 8,
where the dark points indicate the initial sample. A comparison
of Fig. 8 with Fig. 3 shows that the points with higher error
indexes are mostly located in areas with grade transitions and
sparse sampling points. Thus, the error index developed in this

Fig. 8. Error index.

Fig. 9. Classification errors of the different sampling methods.

paper can reveal the risk of incorrect environmental quality
classifications.

The errors in the soil environment grade classifications for the
807 points using the compulsory sample and additional samples
generated by different methods are presented in Fig. 9. The
additional samples from the error index optimization method
proposed in this paper yielded lower rates of classification er-
rors than the MMSD and the spatial random sampling method.
As the sample size increases, the superiority becomes more ob-
vious. Also, when sampling points are added, the precision of
grade classification always gets improved for the error index
optimization method, whereas this was not observed from the
results of other two methods. When the additional sample size
reaches 35, 65, and 95, the classification error of the MMSD
method rises and is greater than the error of the samples with
the size of 25, 55, and 85 correspondingly. And for the spatial
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TABLE IV
SLOPS OF CLASSIFICATION ERROR CURVES OF DIFFERENT SAMPLING METHODS

Segment Slop of Error Index Slop of MMSD Slop of Spatial Random

5–15 –0.173 0.000 –0.050
15–25 0.000 –0.050 –0.074
25–35 –0.124 0.074 0.025
35–45 –0.025 –0.149 –0.074
45–55 –0.074 –0.050 0.074
55–65 –0.074 0.050 0.124
65–75 –0.149 –0.050 –0.173
75–85 0.000 –0.025 –0.050
85–95 –0.050 0.050 –0.050
95–105 –0.025 –0.074 0.099

random sampling method, the classification error rises when
additional sample size reaches 35, 55, 65, and 105. Thus, in
addition to producing higher classification errors, the classifica-
tion errors of the MMSD and spatial random sampling method
are not stable.

The slops of the segments of classification error curves of
different sampling method in Fig. 9 are listed in Table III. The
slop of each segment reflects the efficiency in reducing the clas-
sification error. From Table IV, it can be found that with the
increase of sample size, the reduction of the classification er-
ror becomes smaller in general for all three sampling methods.
Also, the slop of classification error curves can be used to deter-
mine the sample size of additional sample. For the error index
optimization method, the reduction of classification error be-
comes very small when the sample size is larger than 75. Thus,
75 can be suggested as an optimal sample size. For the MMSD
and spatial random sampling methods, 25 can be suggested as
optimal sample because the classification error increases when
sample size reaches 35.

IV. DISCUSSION AND CONCLUSION

When multistage sampling or supplementary investigations
require additional samples, sampling layout optimization is es-
pecially important because it is an efficient method (with regards
to time and costs) that the guarantees inference precision of the
new samples. Whether a sampling method is optimal for an in-
vestigation depends on the purpose of sampling or the quantities
to be inferred. The environmental quality grade classification of
farmland soil is a special inference target for sampling opti-
mization that differs from mapping or global mean estimations
because it does not emphasize the estimation precision of each
location’s value or the global mean. Rather, this classification
scheme is focused on precisely estimating the relationships be-
tween the values of unsampled locations and the thresholds to
classify the environmental quality grades. In such cases, it con-
tributes little in improving the grade classification precision to
sample in locations where the values are far from the thresh-
old and difficult to misclassify. Thus, sampling units should be
set in locations with a high risk of misclassification. The error
index proposed in this paper fully considers the risk of misclas-
sification. By transforming the data into a Gaussian distribution
and estimating the mean and variance of unsampled locations
from prior sampling data, the risk of misclassification can be

quantitated by the probability of the threshold occurring in the
standardized Gaussian distribution. The error index considers
the closeness between the estimated value of an unsampled lo-
cation and the threshold, and at the same time considers the
uncertainty of the estimation. Estimated mean values that are
closer to the threshold and have larger estimation errors indicate
higher risk of misclassification.

By setting the average error index of all locations as the op-
timization object, the error index sampling layout optimization
method presented in this paper can distribute more sampling
sites to locations with higher risks of misclassification while
avoiding the clustering of sampling sites in areas of highest risk
of misclassification. Therefore, the efficiency of sampling gets
improved. As illustrated in the case study, the samples from the
error index optimization method generated fewer classification
errors than the MMSD and spatial random sampling methods.
Additionally, the classification precision was more stable than
the other two methods. Thus, the error index sampling layout
optimization method is suitable for environmental quality grade
classifications of farmland soil.

In the case study, the threshold was defined by the environ-
mental quality standard for the soils of China (GB 15618-1995).
In practical usage, thresholds can be values defined by some re-
lated standards and research report to classify the study area
into different grades. If the thresholds needed are not available,
research should be performed to define them. For example, to
divide the contaminated area to forbid planting certain crops,
the concentration of pollutant in the crops and its health hazards
should both be considered in defining the threshold. The error
index can also be used in the classifications beyond the soil
environment, such as land cover types [31], [32].

To use the error index sampling layout optimization, the fol-
lowing preconditions of OK should be satisfied: the target vari-
able should be stationary and the data should conform to a
Gaussian distribution. If the stationary precondition is not met,
then the error index should be transformed to adapt to the ac-
tual conditions. If the spatial covariance is not stationary and
varies with different directions or different subregions, then a
combined variogram or multi-variograms should be used to es-
timate the means and variance, which is similar to mapping with
Kriging. If the mean is not stationary, then a trend must be re-
moved before the estimation, and during the calculation of the
error index, the local trend should also be subtracted from the
threshold. If the data do not follow a Gaussian distribution, then
a data transform method, such as a logarithmic, Box–Cox, or
Johnson transformation, should be applied. If the distribution
of the concentration of soil pollutants is highly skewed and it is
hard to transform the data into Gaussian distribution, the non-
parametric geostatistical method such as indicator Kriging can
be used to constitute the error index [33], [34].

The spatial unit in the case study is points. However, when
the spatial units to be classified are polygons, the error index
reflecting the risk of misclassification can also be quantitated
in a similar way using block Kring (BK) [35], MSN [36], or
sandwich estimation [37]. When the study area is large, the spa-
tial heterogeneity cannot be neglected. The q-statistics [29] is
a useful tool to measure the degree of spatial stratified hetero-
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geneity to help to choose a proper estimation method. If the
concentration of soil pollutants is homogeneous in the study
area, OK and BK can be adopted to construct the error in-
dex. If a certain degree of spatial stratified heterogeneity exists,
MSN is suitable to construct the error index. And if the spatial
stratified heterogeneity is obvious and the spatial autocorrela-
tion among strata are weak, the sandwich estimation should be
used.

The sample size is also a key factor of an additional sam-
pling plan besides the layout of the sampling sites. In this paper,
optimal sample size was suggested according to the classifica-
tion error curves. However, in practical usage, the classification
error curves are often not available. In those cases, we sug-
gest choosing the sample size using the error index. It can be
carried out in at least following two ways. One is to judge by
the number of spatial units whose error index is higher than
a benchmark, such as 0.5 or 0.4. To facilitate the judgment, a
curve with the above-mentioned number of spatial units on the
vertical axis and additional sample size on the horizontal axis
can be plotted. The additional sample size should be the one
where the number of spatial units with high error index is zero
or lower than the predefined percent. Another way is to judge by
the thematic map of error index. In this way, the shape and area
of clusters of spatial units whose error index are higher than a
benchmark can be used to determine the additional sample size.
As the additional sample size increases, the shape and area of
clusters change. The additional sample size should be the one
that makes the clusters thinner or smaller than the spatial preci-
sion requirement of environmental quality grade classifications.
Also, the error index for sampling layout optimization can be
used in multi-objective optimization to classify more than two
quality grades or investigate more than one target variable. The
authors will endeavor to pursue such work in the future.
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